

Tri-Bench: Stress-Testing VLM Reliability on Spatial Reasoning under Camera Tilt and Object Interference

Amit Bendkhale | Independent Researcher, India

Motivation

- VLMs are widely used, but 3D spatial reasoning is unclear.
- Do VLMs reason in 3D or rely on 2D image cues?
- What natural factors can affect VLM spatial reasoning?
- We propose a compact benchmark for fast stress-testing.

New Dataset

- 100 triangles, with 4 views → 400 images

- Diversity in triangle shapes along with their 2D projections:

3D → 2D ↓	S	I	E
S	237	65	20
I	17	39	5
E	2	0	15

scalene (S) = 64%
isosceles (I) = 26%
equilateral (E) = 10%

3D → 2D ↓	A	O	R
A	113	8	35
O	34	116	49
R	5	4	36

acute (A) = 38%
obtuse (O) = 32%
right (R) = 30%

- 10 everyday objects for interference
- Square border provided as a guardrail for homography

VLM Tasks

- Single prompt for 6 relative measurement prediction tasks:

Q1. Triangle Side Type	Q4. Difference: $ \angle ABC - \angle ACB $
Q2. Triangle Angle Type	Q5. Ratio of max/min sides
Q3. Ratio of AB and AC	Q6. Maximum angle difference

Result 1: accuracy w.r.t. 3D vs 2D

Model	w.r.t. 3D Ground Truth	w.r.t. 2D Image Projection
Gemini-2.5-Pro	75.30	80.89
Gemini-2.5-Flash	71.58	77.14
GPT-5	64.32	65.04
Qwen2.5-VL-32B	64.70	66.22
AVERAGE	68.98	72.32

Average accuracy (%) of VLMs across all tasks

connect

arXiv

github

Result 2: majority class bias

Model	S (Q1)	I (Q1)	E (Q1)	A (Q2)	O (Q2)	R (Q2)
Gemini-2.5-Pro	99.61	2.88	0.00	78.29	88.28	0.00
Gemini-2.5-Flash	98.83	1.92	0.00	72.37	80.47	5.83
GPT-5	99.61	0.96	0.00	92.11	3.91	1.67
Qwen2.5-VL-32B	100.00	0.00	0.00	100.00	0.00	0.00
AVERAGE	99.51	1.44	0.00	85.69	43.16	1.88

Average accuracy (%) of VLMs across Q1 and Q2, as per 3D triangle shapes

Result 3: question-wise analysis

Average accuracy (%) across all VLMs for each task Q1-Q6, under four capture conditions

Key Takeaways

1. VLMs are accurate ~70% of the time
2. VLM answers are closer to image-plane relations instead of actual 3D
3. VLMs show very high majority class bias under precision tasks Q1-Q2
4. Non-planar camera tilt shows consistent accuracy decline of ~4%
5. Object interference impact is negligible

Future Work

- Multi-view geometry
- Lighting variations
- Granular Camera Tilt
- Sequential Prompting
- Reasons for inaccuracy
- Complex shapes
- Relative vs Absolute
- Better error metrics
- Heavy object occlusion
- Analyzing Training Bias