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While LLM agents demonstrate potential across various domains, their trustworthiness in complex, real-world tasks remains under-
examined, particularly in travel planning where constraint satisfaction acts as a persistent bottleneck. This paper presents a systematic
examination of the domain: 1) we provide a comprehensive review of existing benchmarks, summarizing design trends and emerging
challenges; 2) we categorize prevailing solutions into general-purpose, multi-agent, and neuro-symbolic approaches, analyzing their
trade-offs; and 3) we introduce modular ability analyses to pinpoint failures, revealing that significant challenges remain in reasoning and
processing information under constraints, suggesting that task decomposition is the most promising path forward.
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remain a critical bottleneck for current models. » Constraints Extraction Results | | B
LLMs are effective at extracting closed world constraints, LLMs adopt conservative and inaccurate policies.
but open constraint extraction remains challenging.
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1. The budget of dining Selected Attraction Info: On the first day, the g 2200
is ¥1000. 1. Tian'anmen Square traveler from Nanjing DeepSeek-Chat 62.00 55.00 66.00 = 100 £ 150
2. Arriving in Beijing 2. The Great Wall to Beijing by train and DeepSeek-Reasoner 58.00 54.00 70.00 ol 100
before 13:00. 3. Palace Museum on the second day, GPT-5.2 44.00 39.00 69.00 ' [l II[ © lll“ml
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LLM-Agent Interface

» Intent UnderstandirTg: Move beyond explicit
instruction following to handle open-world

constraints and ambiguous user needs through active » The Trade-off: Existing approaches face a dilemma: Neuro-
clarification and implicit preference extraction. symbolic methods offer precision but lack adaptability, while

General-purpose agents offer broad applicability but fail at
complex constraint satisfaction.

» The Trustworthiness Gap: A persistent gap remains between
current LLM capabilities and robust autonomous planning.

» Tool Usage: Shift from static, closed-world generation
to dynamic sandbox environments, where agents
actively verify real-time information (e.g., availability, » Future Directions:
pricing) via external APIs. » Methodology: Develop modular frameworks that fuse

> Planning & Reasoning: As the central competency, structured reasoning with adaptive language models.

agents must generate hallucination-free itineraries that » E\{aluati.on: Constrgct rea.listic, 1?1rge—scale benchmarks
strictly adhere to spatio-temporal constraints while paired with fine-grained diagnostic protocols to accurately
fully satisfying user requirements. isolate specific breakdowns in reasoning and planning.
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