

Bo-Wen Zhang^{1,2*}, Jin Ye^{1,2*}, Jie-Jing Shao^{1*}, Yu-Feng Li^{1,3}, Lan-Zhe Guo^{1,2†}¹State Key Laboratory of Novel Software Technology, Nanjing University, China²School of Intelligence Science and Technology, Nanjing University, China³School of Artificial Intelligence, Nanjing University, China

I. Abstract

While LLM agents demonstrate potential across various domains, their **trustworthiness in complex, real-world tasks** remains under-examined, particularly in travel planning where **constraint satisfaction** acts as a persistent bottleneck. This paper presents a systematic examination of the domain: 1) we provide a **comprehensive review of existing benchmarks**, summarizing design trends and emerging challenges; 2) we categorize prevailing solutions into **general-purpose, multi-agent, and neuro-symbolic approaches**, analyzing their trade-offs; and 3) we introduce **modular ability analyses** to pinpoint failures, revealing that significant challenges remain in **reasoning and processing information under constraints**, suggesting that task decomposition is the most promising path forward.

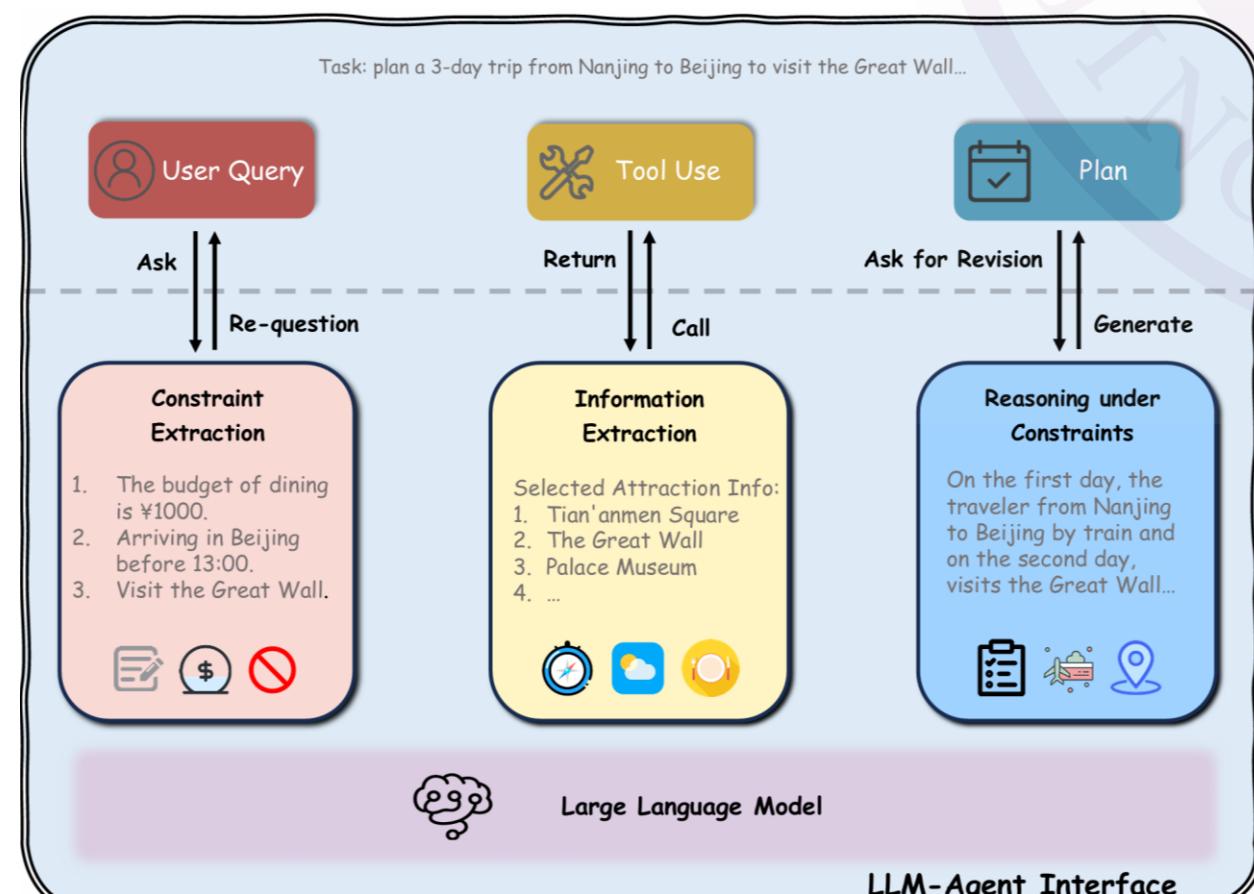
II. Benchmarks Analysis

Benchmark	Goal Interpretation		Information Integration		User-Need Data Design	
	Spatio-Temporal Constraints	Preference Modeling	Static Context	Tool Interaction	Human-Authoried Queries	Open-World Intent
NATURAL PLAN (Zheng et al. 2024)	✗	✗	✓	✗	✗	✗
TravelPlanner (Xie et al. 2024)	✗	✗	✓	✓	✗	✗
TravelPlanner+ (Singh et al. 2024)	✗	✓	✓	✓	✗	✗
ChinaTravel (Shao et al. 2024)	✓	✓	✗	✓	✓	✓
TripCraft (Chaudhuri et al. 2025)	●	✓	✓	✗	✗	✗
TripTailor (Wang et al. 2025)	●	✓	✓	✗	✗	✗
RETAIL (Deng et al. 2025)	●	✓	✓	✗	✗	✗
RealTravel (Shao et al. 2025c)	✗	✓	✓	✓	✗	✗
TripTide (Karmakar et al. 2025)	●	✓	✓	✗	✗	✗
TripScore (Qu et al. 2025)	●	✓	✓	✗	✓	✓

✓ Supported ● Partially supported ✗ Not supported

- **Goal Interpretation:** Strict spatio-temporal constraints pose a major challenge to agents' fine-grained reasoning capabilities.
- **Information Integration:** Realistic evaluation benefits from sandbox where agents actively verify dynamic information.
- **User-Need Design:** Implicit constraints in open-world queries remain a critical bottleneck for current models.

III. Key Capabilities



- **Intent Understanding:** Move beyond explicit instruction following to handle **open-world constraints** and **ambiguous user needs** through active clarification and implicit preference extraction.
- **Tool Usage:** Shift from static, closed-world generation to **dynamic** sandbox environments, where agents actively verify real-time information (e.g., availability, pricing) via external APIs.
- **Planning & Reasoning:** As the **central competency**, agents must generate **hallucination-free** itineraries that strictly adhere to **spatio-temporal constraints** while fully satisfying **user requirements**.

IV. Experiments

➤ Overall Results

LLMs struggle to generate entirely valid plans.

Method	Model	DR	Micro-Env	Macro-Env	Micro-Log	Macro-Log	FPR
TravelPlanner-Val							
ReAct	GPT-4-Turbo	89.4	61.1	2.8	15.2	10.6	0.6
DeepResearch	Tongyi	95.0	49.6	0.0	6.19	5.56	0.0
DPPM	DeepSeek-V3	100	96.9	77.8	82.6	73.3	64.4
LLM-Modulo	GPT-4-Turbo	100	89.2	40.6	62.1	39.4	20.6
LLMFP	GPT-4	95.0	95.0	95.0	95.7	98.9	93.3
TTG	GPT-4o	100	85.4	91.7	87.9	91.7	91.7
ChinaTravel-Val							
ReAct	GPT-4o	96.1	50.5	0.0	72.4	32.5	0.0
DeepResearch	Tongyi	24.7	32.5	0.0	57.9	26.6	0.0
LLM-Modulo	GPT-4o	91.5	87.2	3.24	92.9	66.2	3.24
TTG	DeepSeek-V3	9.09	12.8	2.59	7.65	5.19	1.29
TripCraft-Agentic-3-days							
DeepResearch	Tongyi	86.9	55.6	0.0	33.2	21.8	0.0
LLM-Modulo	GPT-4o	100	76.4	0.0	48.0	42.7	0.0
LLMFP	GPT-4o	100	99.3	94.5	99.1	98.8	93.6
TTG	GPT-4o	100	99.0	90.7	94.1	86.6	81.1

➤ Constraints Extraction Results

LLMs are effective at extracting closed world constraints, but open constraint extraction remains challenging.

Benchmark	Model	Precision	Recall	F1 Score
TravelPlanner	GPT-5.2-5.2	0.88	0.87	0.87
	Claude Sonnet 4.5	0.94	0.91	0.92
	Deepseek V3.2	0.91	0.90	0.90
	Qwen3-Max	0.92	0.88	0.90
TripCraft	GPT-5.2-5.2	0.90	0.93	0.92
	Claude Sonnet 4.5	0.94	0.97	0.96
	Deepseek V3.2	0.89	0.92	0.91
	Qwen3-Max	0.92	0.94	0.93
ChinaTravel	GPT-5.2-5.2	0.63	0.58	0.61
	Claude Sonnet 4.5	0.72	0.65	0.69
	Deepseek V3.2	0.61	0.63	0.62
	Qwen3-Max	0.74	0.56	0.64

➤ Error Recognition

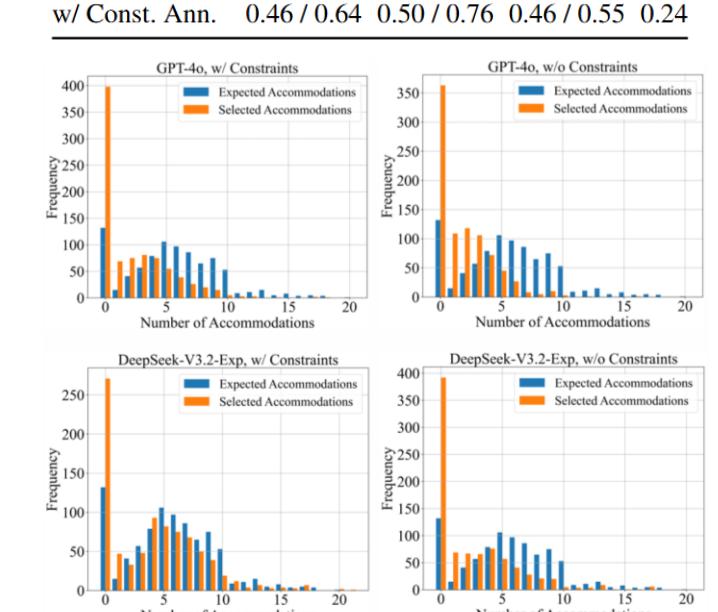
LLMs can recognize some errors given the error range and correct constraints

Model	TravelPlanner	TripCraft	ChinaTravel
DeepSeek-Chat	62.00	55.00	66.00
DeepSeek-Reasoner	58.00	54.00	70.00
GPT-5.2	44.00	39.00	69.00
GPT-5.2-Medium	63.00	43.00	70.00

➤ POI Selection

LLMs adopt conservative and inaccurate policies.

Setting	F1	Prec	Rec	EM
GPT-4o				
w/o Const. Ann.	0.27 / 0.36	0.43 / 0.73	0.22 / 0.24	0.09
DeepSeek-V3.2-Exp				
w/o Const. Ann.	0.32 / 0.43	0.41 / 0.76	0.29 / 0.30	0.18



V. Conclusion

- **The Trustworthiness Gap:** A persistent gap remains between current LLM capabilities and robust autonomous planning.
- **The Trade-off:** Existing approaches face a dilemma: Neuro-symbolic methods offer precision but lack adaptability, while General-purpose agents offer broad applicability but fail at complex constraint satisfaction.
- **Future Directions:**
 - **Methodology:** Develop modular frameworks that fuse structured reasoning with adaptive language models.
 - **Evaluation:** Construct realistic, large-scale benchmarks paired with fine-grained diagnostic protocols to accurately isolate specific breakdowns in reasoning and planning.