
Trusted Monitoring  ⟶  perfect empirical
safety.

Factor(D,U)  ⟶  strong safety (1.2% ASR)
and also shows lower usefulness.

Factor(U,T)  ⟶  severely degraded
safety and monitoring capability with
minimal usefulness improvement. 

The comparable AUROC values for Trusted
Monitoring and Factor(D,U) demonstrate that
monitoring concrete implementations provides
sufficient context for effective security
classification, whether observing complete
solutions or isolated child tasks.

The stage being monitored is a strong determinant
of security. 

The unaudited ASR shows that moving the
untrusted model to the planning stage inherently
creates a slightly more vulnerable attack surface,
with Factor(U,T) starting at a higher baseline
attack rate than Trusted Monitoring. 

When the auditing budget is applied, Trusted
Monitoring’s monitor proves significantly more
effective, achieving a lower, final ASR, while
Factor(U,T) fails to reach the same level. 

This gap in final safety confirms the fragility of plan
monitoring: the ambiguity and low-context nature of
the decomposition signal fundamentally limits the
monitor’s ability to discriminate between honest and
malicious intent.

Models & Resources

Trusted model (T): ⟶ Llama 4 Scout
Untrusted Model (U): ⟶  Gemini 2.0 Flash

Evaluation Approach:
 Conduct controlled red team evaluations in BigCodeBench (dataset of python
coding tasks).
Decomposer generates task decompositions under either an honest policy or an
attack policy.
 Monitor analyzes the final implementation code using a prompt that contains
indicators of attacks and false positives, which the monitor uses to evaluate
suspiciousness

Protocol Decomposer Implementer Monitor Access

Trusted
Monitoring

N/A Untrusted Complete solution

Factor(U,T) Untrusted Trusted Decomposition only

Factor(T,U) Trusted Untrusted
Child task

implementations

Factor(D,U)
Trusted Future
Decomposer

Untrusted
Child task

implementations

Factor(U,T): Controlling Untrusted
AI by Monitoring their Plans

The Problem:

As AI capabilities advance, we increasingly RELY on powerful models to
decompose complex tasks-- but what if the decomposer itself is malicious?

Can monitors effectively detect malicious decomposers when they can
only observe decompositions, rather than complete implementations?

What tactics might attack policies use to create compromised
instructions?

Our evaluation reveals that monitor discrimination depends critically on
context availability.

Motivation & Introduction

Our Approach:

Methodology

Results
*All error bars represent 95% confidence intervals from bootstrap

analysis (n=1000).

Demonstrates monitor discrimination across
protocols through ROC analysis. 

Both Trusted Monitoring (AUROC 0.96) and
Factor(D,U) (AUROC 0.96) achieve near perfect
discrimination between attacked and benign
samples, demonstrating that monitors can
effectively classify implementations whether
observing complete solutions or isolated child
tasks.

In contrast, Factor(U,T) (AUROC 0.52) performs
barely better than random chance, confirming that
decomposition-only monitoring lacks the concrete
details necessary for reliable security classification.

Figure 1: Safety-accuracy points across protocols and
baselines. Factor(T,U) was not evaluated for safety.

Figure 2: Attack success rates and unaudited ASR
comparison. Factor(D,U) achieves 1.2% ASR. Error bars
represent 95% bootstrap confidence intervals (n=1000).

Figure 3: Monitoring discrimination across protocols. Trusted Monitoring achieves near-perfect discrimination by observing
complete Python implementations, whereas Factor(U,T) shows substantially degraded performance when monitoring only
decomposition plans.

Contributions

Factor(U,T) monitoring achieves substantially degraded
discrimination (AUROC 0.52) compared to Trusted Monitoring with
full implementation context (AUROC 0.96). 

Factor(D,U), which monitors concrete child implementations rather
than abstract decompositions, maintains excellent discrimination
(AUROC 0.96) and achieves strong safety (1.2% ASR). 

Rules & Restrictions

Full access to blue team prompts,
outputs, and scaffolding. 

This demonstrates that monitors require concrete implementation
context rather than abstract plans to reliably detect malicious intent.

Access to U_honest outputs for
calibrating detection thresholds and
measuring usefulness

RED TEAMRED TEAM BLUE TEAMBLUE TEAM

Key idea: Let untrusted (stronger) model decompose, trusted models
execute child tasks

Current Solutions:  Use trusted (weaker but reliable) models for decomposition,
which limits usefulness for tasks where decomposition itself is challenging.

Does not have access to the internals
of the attack policy or U_attack
outputs during protocol.


