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Background: Tool-using LLM agents repeatedly call external tools
(MCP-style tool loop)

Main Results

Assumptions:

« Dependency control: decay g, branching B

« Metric knob: A trades strict fact match vs semantic similarity

» Control knob: periodic re-grounding resets dependency horizon

Main Guarantee (informal): w.h.p>1 —n,

D(T) = E[D(T)] (linearin T), ID(T) — E|D(T)] < 0(\/T10g(1/77))

When: bounded influence / decay (8B < 1), stable responses.

Interpretation: No exponential blow-up; deviations grows like VT.

Experiments

Setup: agent retrieves & answers from pre-cached datasets

One chain: the agent retrieves — answers — retrieves — answers for
10-60 steps

Distortion score: at each step, we calculate how far the answer moved
away from the tool-anchored reference

Problem: In long chains, small mismatches can feed back and change
later tool calls — drift cascades

Goal: Turn tool chains into a monitored, controlled system with error
budgets

Uncontrolled drift
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Controlled Fidelity Workflow (this paper)

Key Idea: A Fair-Game Forecast for Long Tool Chains
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1. Stability forecast
Forecast of final drift: Z; = E[D(T)| F}]

E[Zt+1|Ft] =Zt-

Math note: We analyze This fair-game
forecast derived from the process.
The agent's working state is not itself
a fair game.

High-probability band:

2. Key condition:

Each step has bounded influence:

High-probability band:
igh-probability ban |Z¢+1—2Z¢ | < € (fan-out /

width ~\T :
i ) drift capped)
Zo=D(T)
_— — » 3. Consequence:
O Time (t) i Deviations are O(c[T), so drift

is predictable (but may still grow
linearly).

Measure: define per-step drift A; and cumulative D(T)

Predict: bound how far D(T) can deviate from this expected trend
(envelope)

Control: re-grounding + branching limits keep influence bounded
(prevents runaway)
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Forecast Z; = E[D(T)| F};] satisfies
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Models: Qwen2-7B, Llama-3-8B, Mistral-7B
Goal: Can we forecast cumulative distortion over long tool chains (e.g.,
T < 30)?

Cumulative Distortion D(T)
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Takeaways
Predictability: distortion tracks a linear trend; deviations are O(T)
under bounded influence.
Tuning: larger A substantially reduces measured distortion (up to
~80%).
Monitoring: fit § from autocorrelation to set envelopes and alarms.
Control: re-ground to cap propagation

Future Work
Relax assumptions: extend guarantees beyond bounded influence /
decay.
Production validation: test MCP monitoring and re-grounding on live
toolchains with retrieval freshness, APl failures, and non-stationarity.
Multi-agent systems: extend monitoring to multi-agent settings with
shared tools and shared state, where cross-agent propagation creates
additional dependency paths.
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