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Research Problem » Stage lll: Iterative Refinement. Answer quality is

- - evaluated and refined via selective depth/breadth
« Background. Existing Graph-RAG systems assume expansion (Figure. 2).
centralized knowledge graphs, which is unrealistic in
practice. f . P
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gated (e.g., hospitals, countries, organizations).
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Core Idea. We model cross-domain Graph-RAG as a
sequential, agentic decision process instead of one-

. "Further insights show Mediterranean
Execution countries prioritize olive oil and fish ...”
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shot retrieval. AW
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diversity ... East Asian meal”s focus on
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 which domains to query, \Sym‘hesis Agent A o

* how deep or broad to traverse,

oL Figure 2: lllustration of Stage Il
* when to stop, under explicit time and cost budgets.

Retrieval is governed by explicit, interpretable agent

i > decisions rather than fixed pipelines.
SCOUT-RAG Framework . PIPEl .
. y  Domain Control. Relevance is estimated from
SCOUT-RAG consists of three Stages coordinated by semantic Sim”arity, know|edge richness, and
four agents (Figure. 1). historical utility, enabling cold-start deployment.
Domains  Query Relevance * Depth-Breadth Control.
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: ' MODERATE _ Stop, otherwise
Stage + Best-Answer Track. A best-answer tracking
: : ' Domain mechanism prevents late-stage degradation.
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Ly heen Experiments

Setup. We evaluate on 89 question-answering tasks
across 45 distributed domains (each question involves a
different subset of domains), comparing against
centralized and decentralized GraphRAG baselines with
DRIFT.

Results. SCOUT-RAG achieves near centralized
DRIFT quality with:

* >80% token reduction,

Synthesis  Generation | « >80% latency reduction, compared to exhaustive
| Agent  Agent decentralized traversal,
---------- ) * Near-centralized quality at a fraction of the cost.
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A Closer Look at the Time Budget.
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Figure 1: Overview of the proposed SCOUT-RAG framework ; =
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« Stage |I: Domain Relevance Assessment.

Score (0-100)
A

Overall Score (0-100)

Classifies domains into HIGH / MODERATE / v/ e -

POTENTIAL / IRRELEVANT. K e |8 e
» Stage Il: Domain-Scoped Seeding. HIGH — global J ] = ovent | | | oot

retrieval, MODERATE — local retrieval; partial " timal g e =

answers are synthesized into an initial response. Figure 3: Time-performance monitoring and comparison.
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