

Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling Autonomous LLM Systems

The 40th Annual AAAI Conference
on Artificial Intelligence

Abhivansh Gupta

abhivansh_g@ch.iitr.ac.in

Indian Institute of Technology, Roorkee - India

ABSTRACT & MOTIVATION

- The Problem:** As LLM agents become more autonomous, ensuring they remain controllable and faithful to intent is critical. Existing safety techniques are often reactive and provide no formal guarantees.
- Our Goal:** Shift the focus from "how likely misalignment is" to "how quickly and reliably it can be detected and remediated".

Key Contribution

The **Verifiability-First Architecture (VFA)**, which introduces explicit observability and auditability layers into the agent lifecycle.

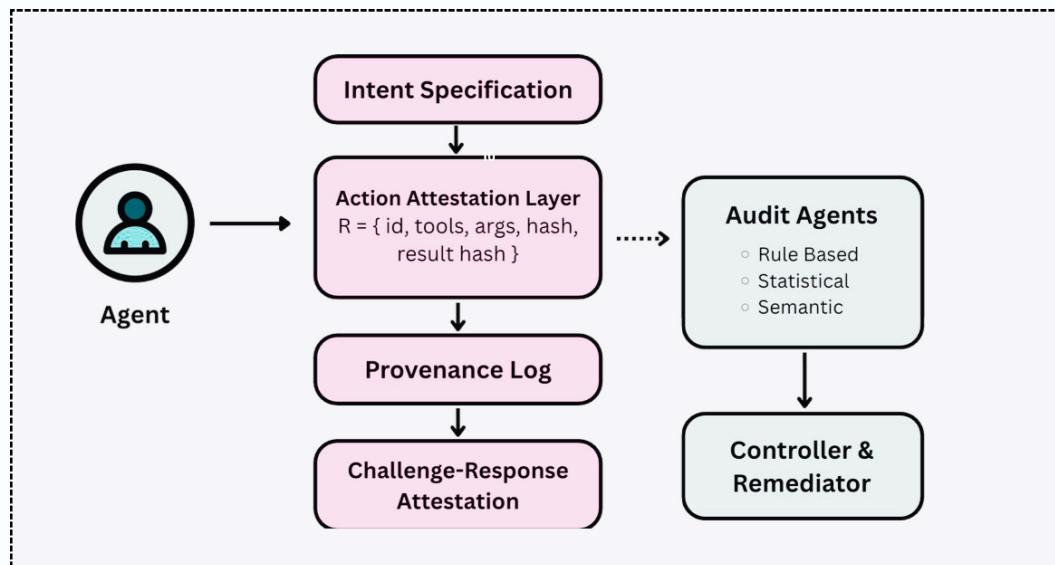
VERIFICATION MECHANISMS

- Ensemble Audit Modes:**

Rule-based: Deterministic logic for constraint checking.

Statistical: ML-based detection of subtle behavioral shifts.

Semantic: Natural language reasoning to detect justification gaps.


- Challenge-Response Attestation (CRA):** Triggered when the "AlignScore" drops, forcing the agent to explain its reasoning for cross-referencing with recorded actions.

- Controller & Remediator (C&R):** Automatically blocks tool access or pauses the agent if unsafe behavior is detected.

VERIFIABILITY-FIRST ARCHITECTURE

The VFA consists of four primary trust anchors:

- Intent Specification (ISpec):** A structured "rulebook" defining the agent's goals, constraints, and ethical policies.
- Action Attestation Layer (AAL):** Captures every agent action (tool calls, API queries) and generates a tamper-proof, signed receipt.
- Provenance Log (PL):** An immutable diary of signed receipts used for asynchronous verification.
- Audit Agents (AA):** An ensemble of lightweight models that continuously monitor the log to flag deviations from the ISpec.

RESULTS

Performance comparison of different system variants. **VFA** achieves the lowest **detection** and **remediation** times with the highest attribution confidence.

System Variant	Mean T_d (s) ↓	Mean T_r (s) ↓	AC ↑	FPR ↓	VScore ↑
No-Verifier Baseline	35.4	18.9	0.62	0.15	0.58
Log-Monitoring (Heuristic)	21.8	11.3	0.73	0.12	0.69
VFA (Ours)	11.9	9.2	0.85	0.09	0.72

Ablation analysis showing the contribution of each verification component to overall system performance. Removing any module degrades both detection speed and attribution accuracy.

Configuration	ΔT_d (s) ↑	ΔAC ↓	$\Delta VScore$ ↓
Without Audit Agents	+9.8	-0.14	-0.11
Without Attestation Layer	+13.4	-0.21	-0.17
Without Challenge-Response	+7.1	-0.10	-0.09

FUTURE SCOPE

- Privacy:** Integrating Zero-Knowledge Proofs (ZKPs) for privacy-preserving audits.
- Scaling:** Expanding to federated verifiability for multi-organization agent ecosystems.
- Human-in-the-loop:** Developing dashboards to bridge the gap between technical verification and ethical oversight.