

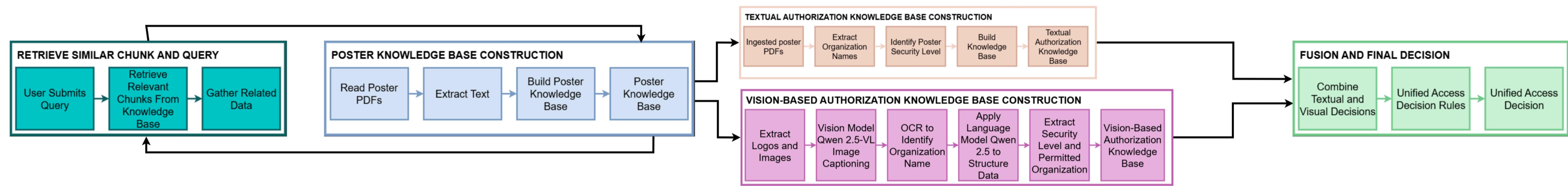
Halil Yesil¹, Sumeyye Gultekin², Fatma Bozyigit³, Baris Tekin Tezel¹, Moharram Challenger³

¹Dokuz Eylul University, Izmir, Turkey | ²Cankaya University, Ankara, Turkey

³University of Antwerp and Flanders Make, Antwerp, Belgium

Problem

RAG systems face critical security challenges when handling sensitive information:


- ✓ Risk of unauthorized data access during retrieval and generation
- ✓ Accidental exposure of confidential documents
- ✓ Current solutions require extensive preprocessing or manual database construction
- ✓ Scalability limitations in enterprise deployments

Our Solution

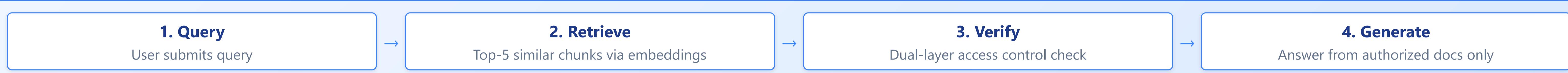
Database-independent framework with real-time access control

- ✓ No manual database construction required
- ✓ Three specialized knowledge bases for dynamic security
- ✓ Multimodal access control (text + images)
- ✓ Automated email-based organization identification
- ✓ Real-time authorization decisions without preprocessing
- ✓ Scalable deployment for enterprise environments

Methodology

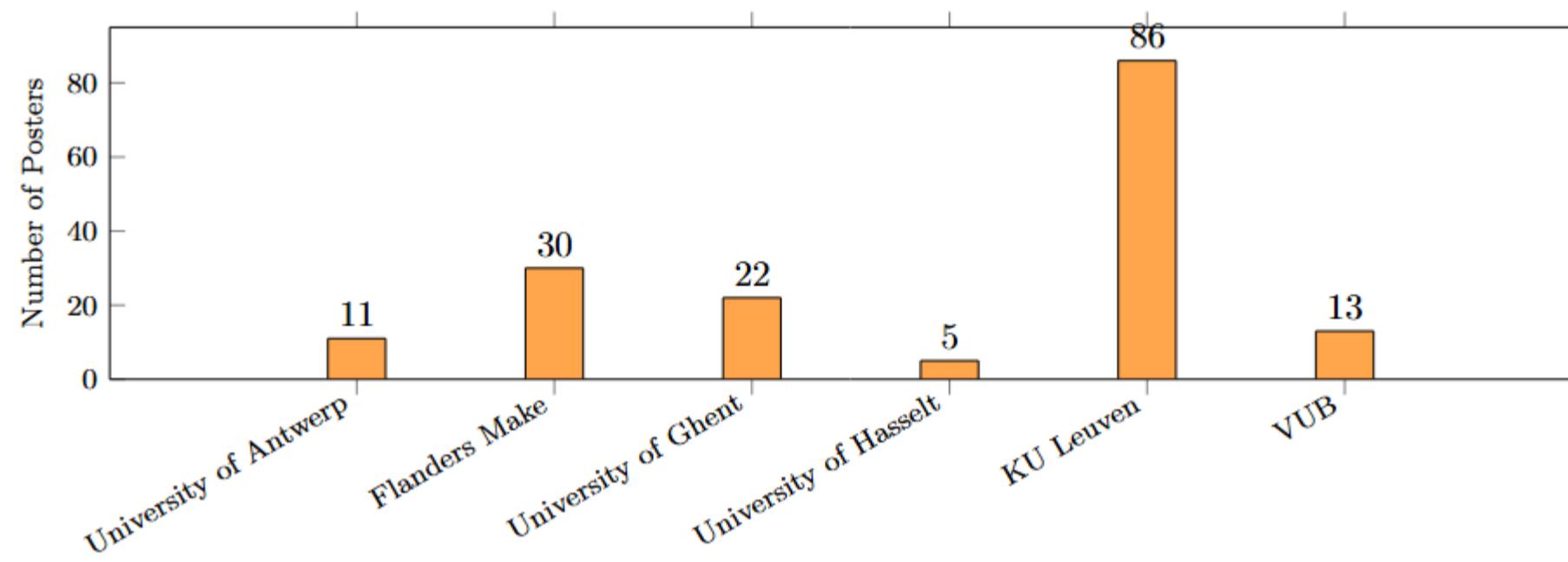
1. Retrieval Phase

User submits query → System retrieves top-5 similar chunks from Poster Knowledge Base using cosine similarity on embeddings


2. Authorization Phase

Extract user org from email → Query text & vision-based authorization KBs → Apply LLM reasoning (qwen2.5:72b) to verify permissions

3. Generation Phase


Combine textual and visual access decisions → Unified access control
→ Generate response only from authorized chunks

System Architecture

Dataset

167 Research Posters from 6 organizations:

Hybrid Annotation Strategy:

We added organization logos and security level indicators to posters

Security levels: Confidential, Private, Copyright, Public

Formats: Text-only, Image-only, Hybrid indicators

Data Preprocessing:

- Modified raw posters with security classifications (confidential, private, copyright, public)
- Kept some posters with original public status for access level diversity
- Added organization logos and security level indicators as visual elements
- Enables visual identification of ownership and security levels
- Supports both human and automated access control verification

Key Components

Knowledge Base Creation:

- ✓ **Poster Content KB:** Document embeddings using mxbai-embed-large for semantic retrieval
- ✓ **Text Access KB:** Organization-level and security-level permissions extracted from document text
- ✓ **Image Access KB:** Visual logo analysis using qwen2.5vl:72b vision-language model

Knowledge Base Construction Process:

- Poster Content KB:** Supports RAG mechanism → Extract text from PDFs → Generate embeddings → Store in vector database → Enable answer generation from relevant pieces matching user queries
- Text Access KB:** Two-level access control → Organization-level permissions (based on affiliation) → Security-level permissions (based on document classification)
- Image Access KB:** Process visual content with qwen2.5vl:72b → Extract organizational ownership and security classifications

Access Control Process:

- Extract user organization from email domain
- Query text & image access control databases
- qwen2.5:72b analyzes overlap between permissions
- Generate response only from authorized documents

Results & Performance

Text Access Control

92%

Accurate extraction and classification from document text

Image Access Control

78%

Visual content analysis and logo recognition

Combined System

93%

Multimodal fusion improves overall accuracy

Evaluated on

167

Research Posters

Across

6

Organizations

Key Contributions

- ✓ First database-independent access control framework for RAG systems
- ✓ Novel multimodal security classification combining text and visual analysis
- ✓ Three specialized knowledge bases architecture for dynamic access control
- ✓ Automated organization identification through email domain extraction

Conclusion

- ✓ Achieved 93% overall accuracy combining text (92%) and vision (78%) modalities
- ✓ Successfully evaluated on 167 research posters from 6 organizations
- ✓ Demonstrated scalability and quick deployment capability
- ✓ Eliminates extensive preprocessing while maintaining high accuracy

Impact: Enables secure RAG deployment in sensitive domains (healthcare, legal, finance) where data privacy and access control are critical requirements