

Alina Zhidkovskaya^{*1}, Kirill Rapatskikh¹, Jerzy Kamiński¹, Grigorii Barakhsin¹, Anna V. Kalyuzhnaya¹, Alexey Druzhinin², Andrey Savchenko², Julia Belikova², Konstantin Polev², Nikolay Nikitin¹

¹ITMO University, Saint Petersburg, Russia; ²Sber AI Lab, Moscow, Russia

*Email: alina.zhdk@gmail.com

What is AutoPumpkin?

- An automated ensemble of LLM-based judges for multi-agent systems
- Uses execution traces (OpenTelemetry)
- No labeled data required
- Works with any MAS architecture

AutoPumpkin Architecture

Two-Tier LLM Metrics Framework

AutoPumpkin deploys specialized LLM agents across two orthogonal levels for comprehensive MAS assessment via execution traces.

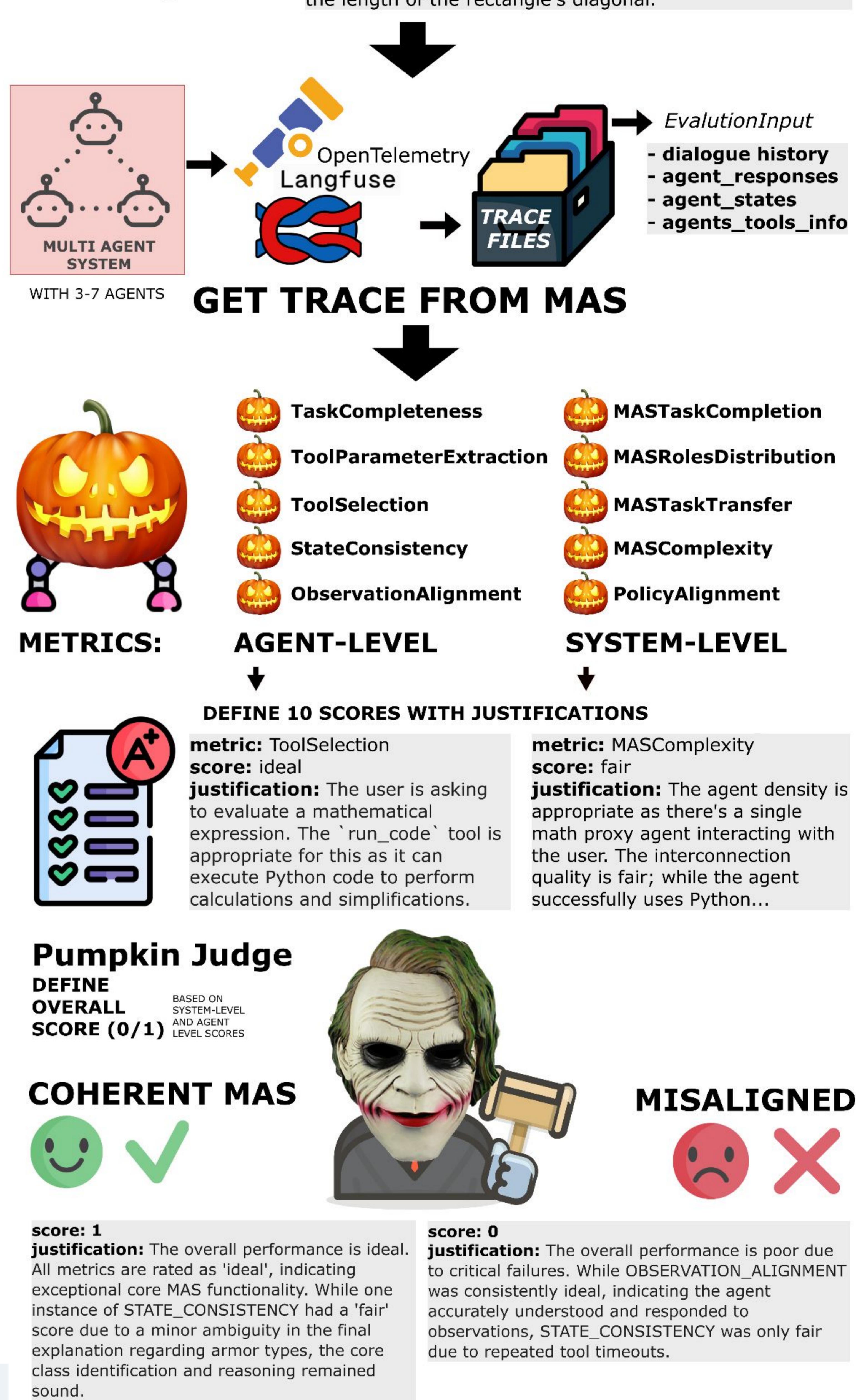
Agent-Level Metrics: per-agent task completion, observation accuracy, reasoning consistency, appropriate tool usage, correct tool parameters.

System-Level Metrics: overall task completion, effective role allocation, task transfer, design complexity, rule compliance.

AutoPumpkin Judge: SystemTaskCompletion + MASComplexity + ToolSelection -> binary Success/Fail (F1 = 0.85).

Performance Comparison

On our own GAIA-based dataset of 328 traces, **AutoPumpkin reaches F1 0.65, while TRAIL scores 0.634**, so both judges perform similarly on our tasks. This shows that our 3-metric ensemble is already reliable in-distribution before any cross-benchmark testing. On the TRAIL dataset (111 traces), AutoPumpkin then clearly pulls ahead, **achieving F1 0.85 vs 0.71** at threshold 2.5 and 0.75 vs 0.579 at threshold 3.0, without any extra tuning for this benchmark.


AutoPumpkin generalizes across datasets, maintaining competitive performance when evaluated on unseen benchmarks.

Threshold	TRAIL	AutoPumpkin
< 2.5	0.71	0.85
< 3.0	0.579	0.75
< 4.0	0.58	0.43

Table 1. Evaluation on TRAIL dataset. AutoPumpkin judge outperforms TRAIL baseline at decision boundaries < 2.5 and < 3.0.

INPUT QUERY:

Let T=20. The lengths of the sides of a rectangle are the zeroes of the polynomial $x^2-3 T x+T^2$. Compute the length of the rectangle's diagonal.

Fig. 1. AutoPumpkin pipeline

Novel Benchmark & Dataset

- 328 GAIA traces (163 large + 165 small MAS)
- Each = unique auto-generated MAS for specific task
- OpenTelemetry logs + manual success/fail labeling by GAIA

This setup lets us study how well different judges correlate with actual task success, rather than just intermediate behaviors.