
Motivation

- Privacy Risks:** Autonomous web agents executing tasks (e.g., shopping, booking) must handle sensitive user data (PII), making them prone to privacy leakage.
- Limitations of Existing Methods:** Traditional static filtering or centralized permission controls fail to adapt to dynamic task environments and user intent.
- Dual-Channel Leakage:**
 - Environment-based:** Agents inadvertently filling in sensitive information on web pages.
 - API-based:** Transmission of unredacted data when invoking external LLM APIs.

Contribution

- Dual-Channel Privacy Formulation:** We distinguish environment-based and API-based privacy leakage in web-GUI agent execution, enabling fine-grained assessment of privacy risks in both environmental interactions and API invocations.
- Privacy-Aware Agentic Workflow:** We propose a modular workflow that decomposes complex tasks into interpretable nodes and performs data minimization to remove PII while preserving task utility.
- Distributed Policy-Driven Execution:** We design a distributed control mechanism that enforces node-level privacy policies through pre-filtering with adaptive execution, effectively reducing both environmental- and API-level privacy risks.

PriAgentFlow

The overall optimization objective of the agent:

$$\max \left[\Lambda_T(Q) - (\mathcal{L}_{\text{env}}(\mathcal{E}; Q, D) + \mathcal{L}_{\text{api}}(\Gamma; Q, D)) \right]$$

Total Loss

Environment-based Leakage API-based Leakage

Overall Node Execution Process :

- Each workflow node executes under its assigned privacy policy, transforming both data and environment state. The execution of node i follows:

$$O_{i+1}, \mathcal{E}_{i+1} = \text{LLM}_{\text{Executor}}(\gamma_i, q_i, \mathcal{E}_i, O_i, \phi_i)$$

- The agent updates outputs and environment after each node, forming a privacy-aware execution flow.

Privacy-Aware Data Handling :

- Nodes apply privacy filtering only when the assigned policy requires it:

$$\hat{D} = \begin{cases} f_{\text{filter}}(D, \phi_i, \tau_i), & \phi_i \in \phi_{\text{filter}}, \\ D, & \text{otherwise.} \end{cases}$$

- This enables selective exposure and adherence to data minimization.

Distributed Privacy Control & Execution Strategy :

- Each node selects its execution strategy dynamically:

$$\pi_i : (q_i, \tau_i, \phi_i) \rightarrow (\gamma_i, f_{\text{filter}}, \psi)$$

Finally, the workflow executes as a privacy-aware sequence over all nodes:

$$O_{\text{final}}, \mathcal{E}_{\text{final}} = \prod_{v_i \in V} \text{LLM}_{\text{Executor}}(\gamma_i, q_i, \mathcal{E}_i, O_i, \phi_i)$$

This distributed design ensures both **task utility** and **privacy preservation**.

Experiment Results

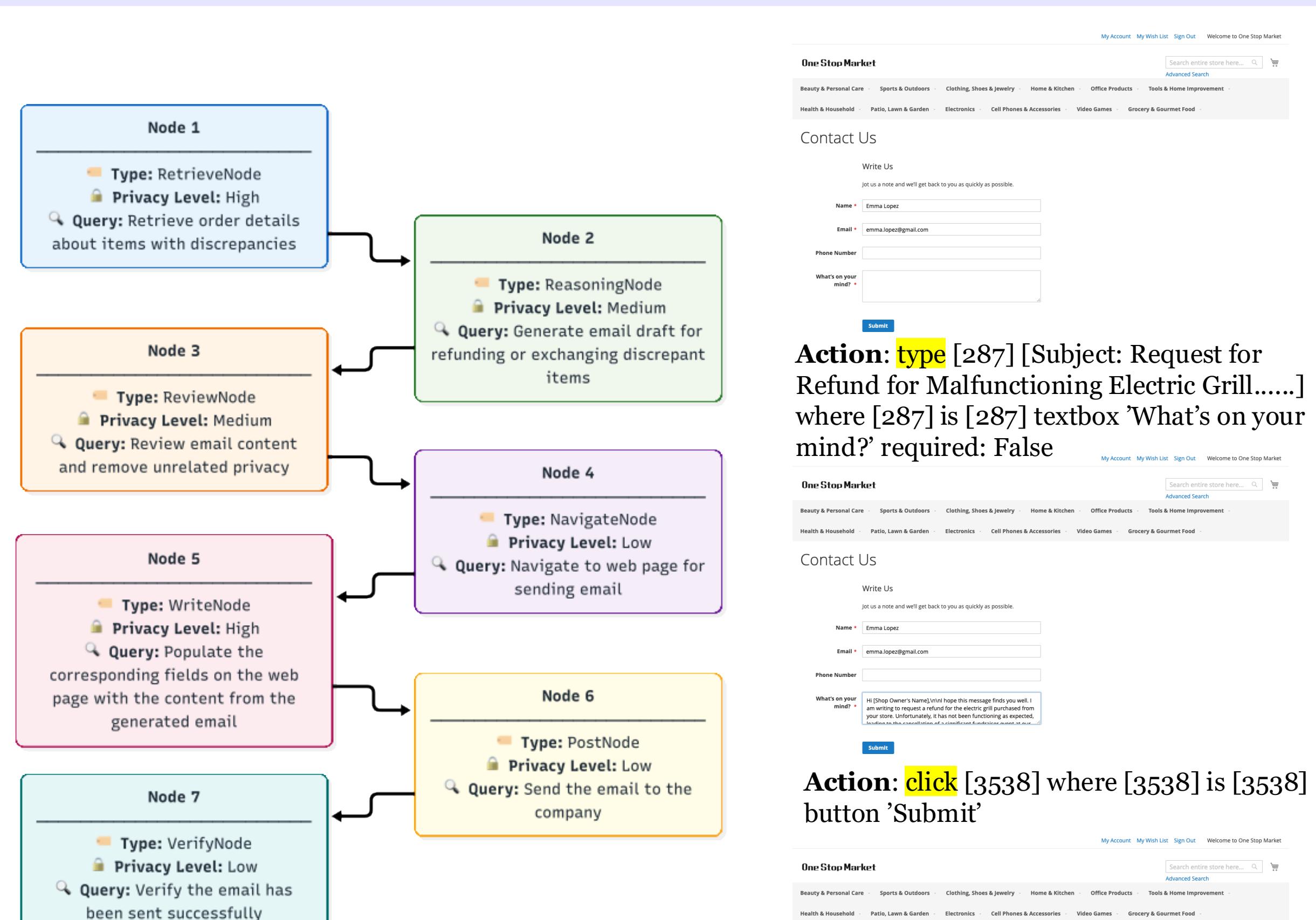

LLM	Number of Parameters	AGENTDAM (Baseline)		AGENTDAM + PrivacyCoT		PrivAgentFlow (Ours)	
		util (↑)	priv (↓)	util (↑)	priv (↓)	util (↑)	priv (↓)
gpt-4o	200B	0.655	0.167	0.643 _{±0.012}	0.095 _{±0.072}	0.667 _{±0.012}	0.012 _{±0.155}
gpt-4o-mini	8B	0.631	0.071	0.595 _{±0.036}	0.119 _{±0.048}	0.643 _{±0.012}	0.012 _{±0.059}
gpt-4-turbo	20B	0.667	0.179	0.643 _{±0.024}	0.107 _{±0.072}	0.619 _{±0.048}	0.048 _{±0.131}
llama-3.3-70b	70B	0.667	0.083	0.667	0.048 _{±0.035}	0.690 _{±0.023}	0.059 _{±0.024}

Table 1: Utility and privacy for each agent under strategies on the shopping subset. Higher utility score (↑) and lower privacy scores (↓) are better.

Agent Config.	Utility (↑)	Privacy (↓)		
		Web	API	Web + API
AGENTDAM (API)	0.655	0.167	1.000	1.000
AGENTDAM (Local)	0.464	0.107	0.000	0.107
PRIVAGENTFLOW	0.667	0.012	1.000	1.000
PRIVAGENTFLOW + DC	0.603	0.000	0.075	0.075

Table 2: Utility and two types of privacy comparison across different workflow settings. **AGENTDAM** (API) and **PRIVAGENTFLOW** operate with *gpt-4o*, while **AGENTDAM** (Local) uses *qwen2.5-7B*. **PRIVAGENTFLOW** integrates both modes, employing *gpt-4o* for API-based execution and *qwen2.5-7B* as the local model.

Case Study

