

Introduction & Motivation

The Agent Tool-Selection Hallucination Problem

Large language models (LLMs) increasingly power AI agents that decide how and when to call tools — invoking APIs, querying data sources, and completing complex tasks (Brown et al. 2020; Schick et al. 2023; Qin et al. 2024). However, these models exhibit **tool-calling hallucinations**, distinct from textual hallucinations:

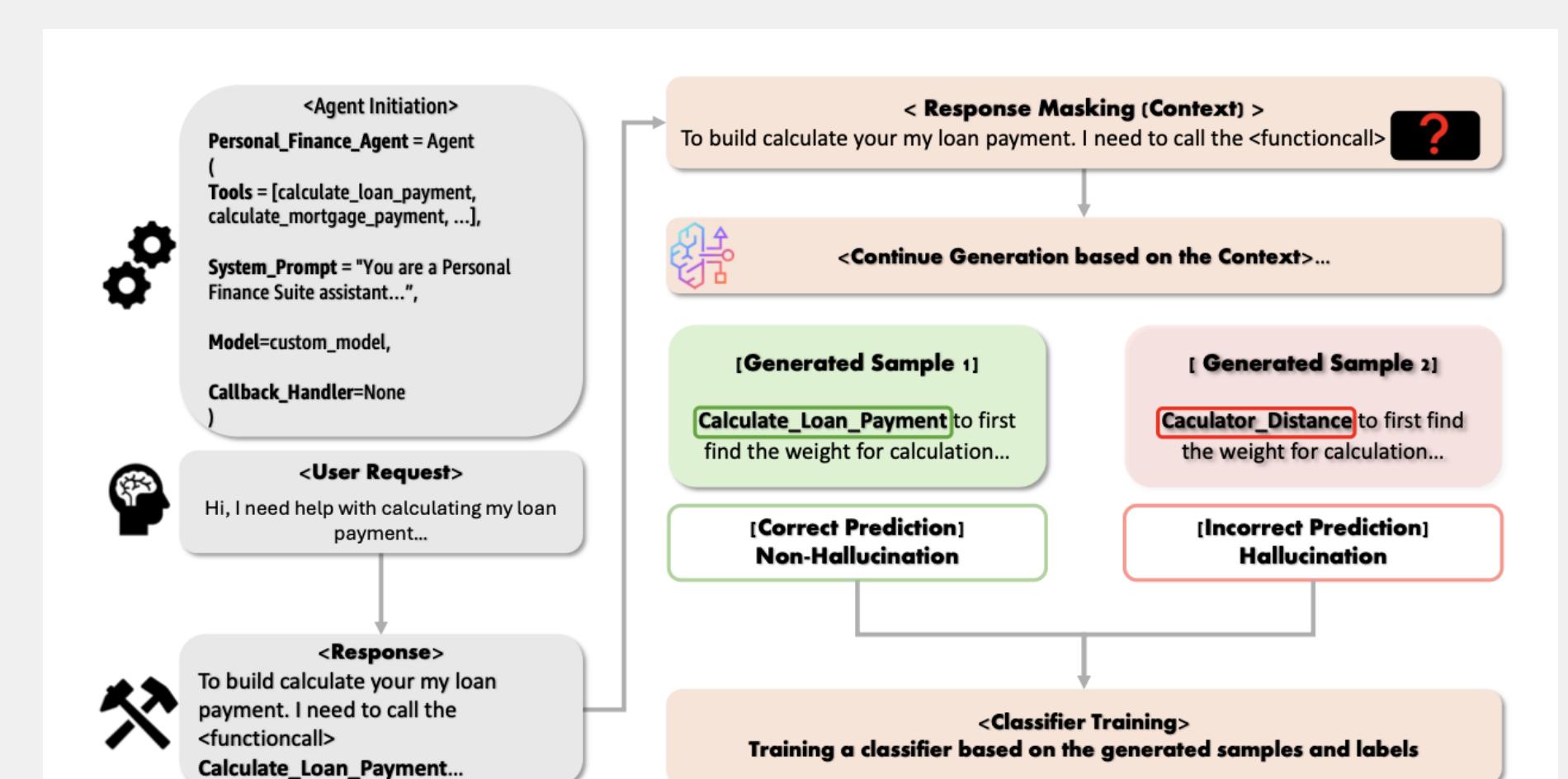
- **Function selection errors:** invoking non-existent functions
- **Appropriateness errors:** semantically inappropriate tool choice
- **Parameter errors:** missing required arguments or incorrect types
- **Tool bypass errors:** responding without using any tool

Research Question: How can we accurately detect hallucinations in AI agents in real-time with minimal additional computation?

Key Contributions

1. **Single-pass internal-state detection:** Final-layer internal representations enable real-time detection of tool-calling hallucinations without extra forward passes or external validators.
2. **Unsupervised hallucination labeling pipeline:** Masked-call regeneration plus function and argument canonicalization yields automatic labels without manual annotation.
3. **Lightweight, model-specific classifiers:** Simple MLPs over compact features achieve up to 86.4% accuracy across Qwen-7B, Llama-3.1-8B, and GPT-OSS-20B.

System Architecture



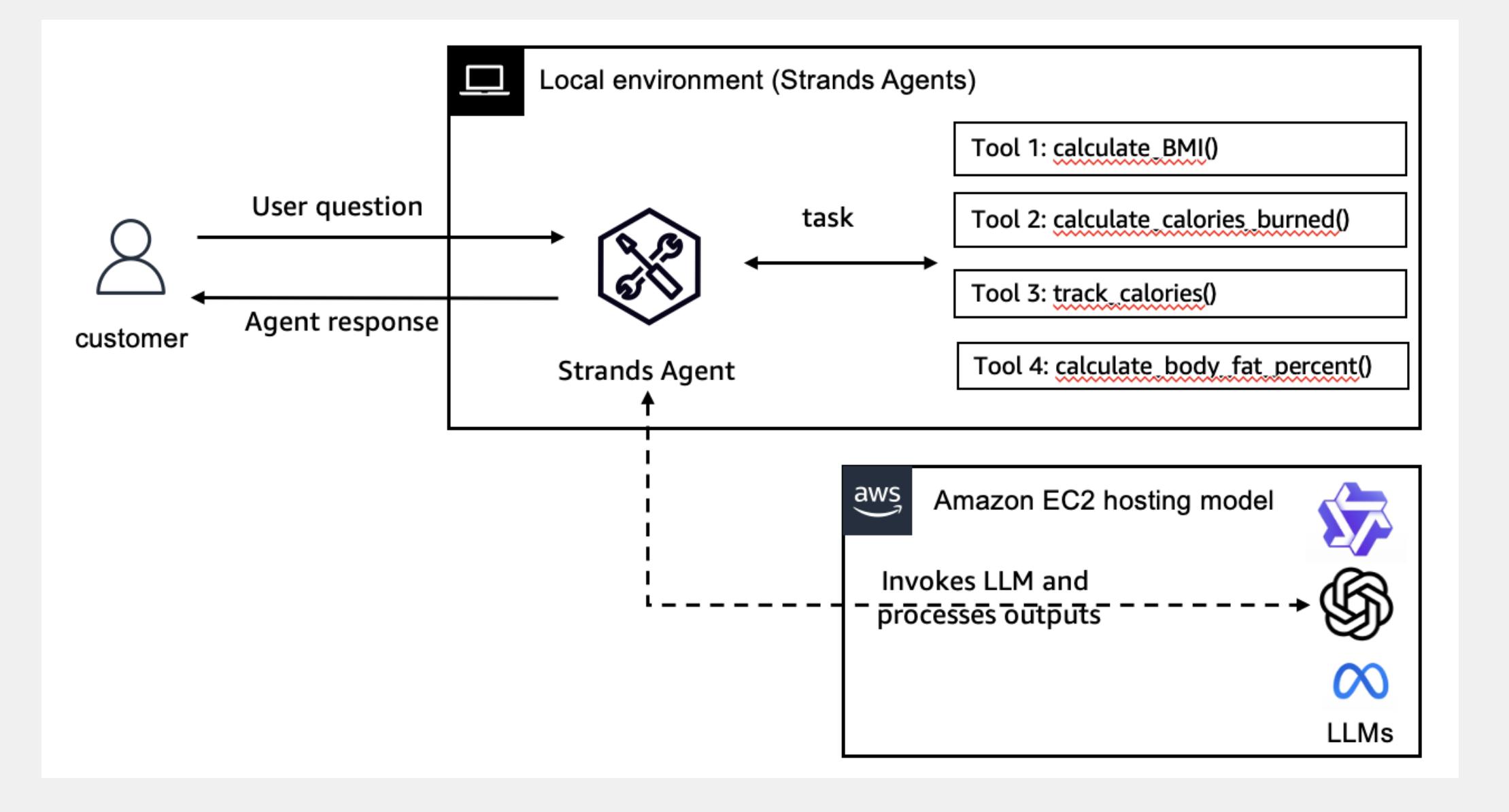
Key Innovation: Single-pass detection using internal states—no multiple samplings required

Algorithm Overview

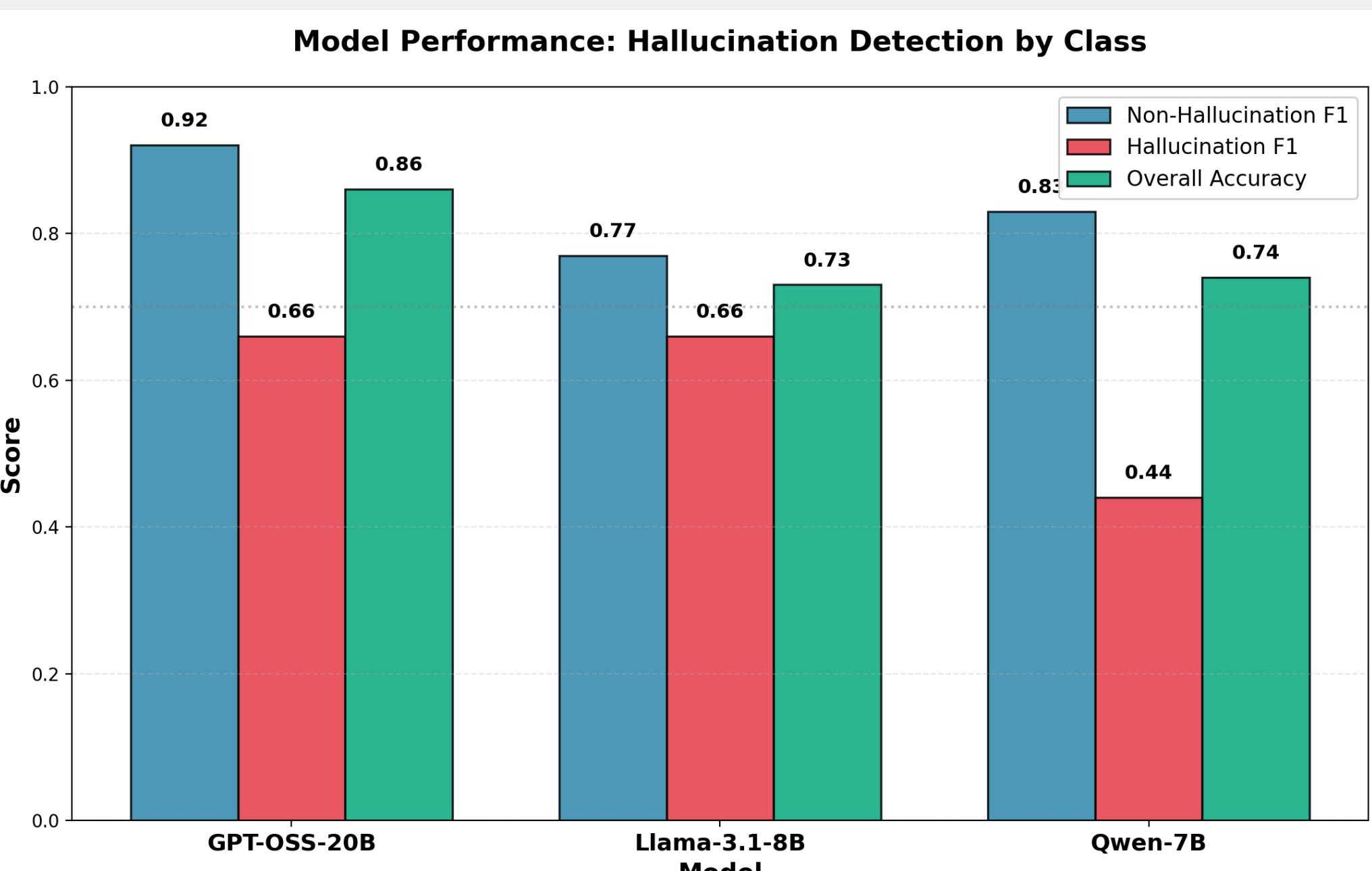
1. **Data Generation:** Mask ground-truth tool calls from agent responses. Label the sample by agreement with reference (correct vs hallucinated)
2. **Feature Extraction:** Extract 3 token positions from final transformer layer: t_{func} : Initial function name token T_{args} : All argument tokens (averaged) t_{end} : Closing delimiter token Concatenate: $z_i = [h_{func} || mean(h_{args}) || h_{end}]$
3. **Classifier Training:** Train Lightweight 2-layer MLP (512 hidden units)
4. **Use binary classifier to detect hallucinations:** Use MLP to predict hallucinations in real time

Experimental Setup

Dataset: Glaive Dataset (GlaiveAI 2024) used to create five specialized agents: **Quick Calculator, Personal Finance Suite, Health Assistant, Sustainability Assistant, and Digital Commerce Assistant**



Results

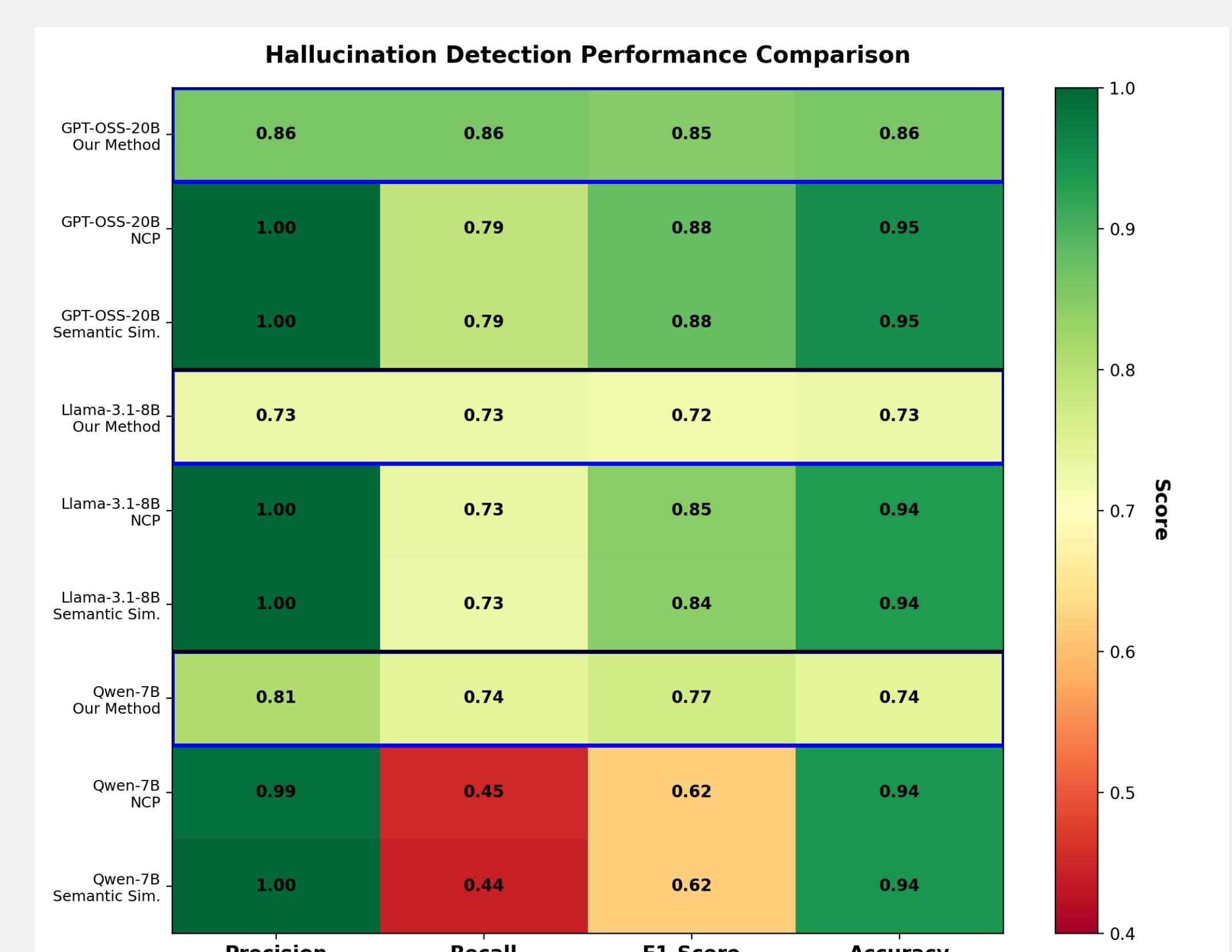


1. The model's **internal representations contain distributed hallucination signals**
2. The performance ceiling appears **inherent to the model's representations**

Experimental Results

Baselines:

1. **Non Contradiction Probability (NCP)** (Hou et al. 2025) is measured by prompting the agent multiple times ($n=3$) and measuring consistency using agreement.
2. **Semantic Similarity** (Kuhn, Arakelyan, and Percha 2023) is measured using cosine similarity of responses from the agent over multiple invocations ($n=3$).

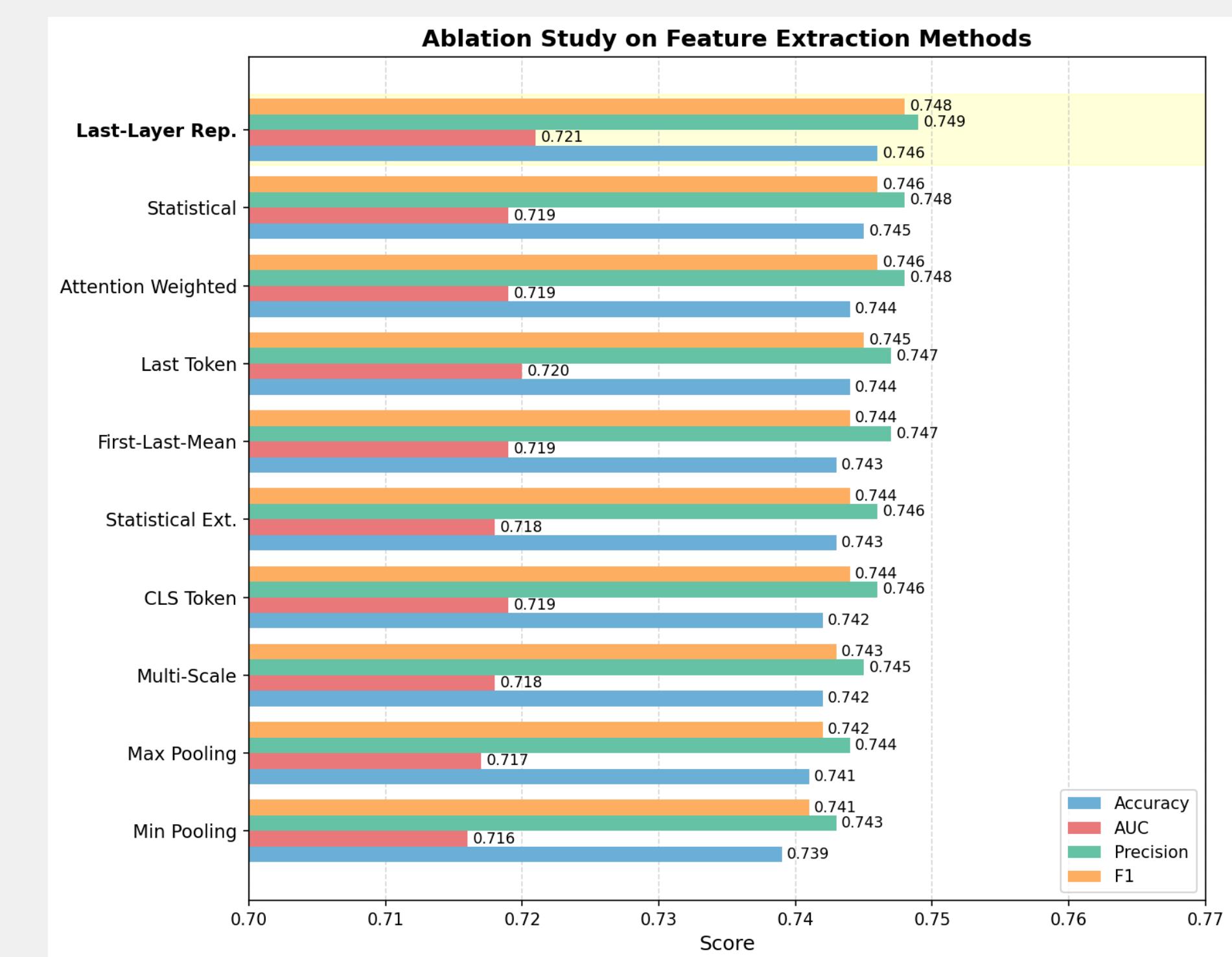


Achieves strong F1 scores while maintaining real-time performance

Analysis & Insights

Why Last Layer Representations Matter:

- **Simple aggregation methods are effective:** Mean pooling provides the best balance of performance and simplicity
- **Diminishing returns of complexity:** base transformer representations already capture the essential information
- **Sequence-level information is valuable:** Methods that aggregate information across the entire sequence consistently outperform single-token approaches
- **Robustness across methods:** transformer representations are robust and that multiple aggregation strategies can effectively capture hallucination patterns



Conclusion

This work shows that internal transformer representations provide a practical basis for detecting tool-calling hallucinations in LLM agents in real-time, using only a single forward pass and lightweight classifiers. By combining an unsupervised labeling pipeline with compact feature extraction and per-model MLPs, the approach achieves strong accuracy across diverse architectures while avoiding the additional computational overhead of multi-sample approaches or external verification methods.

References

2024. Glaive Function Calling Dataset v2. <https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2>. Accessed: 2025-09-30.

Bigeard et al. (2025). Finance Agent Benchmark. *arXiv:2508.00828*

Islam et al. (2023). FinanceBench: A New Benchmark for Financial QA.

Bayless et al. (2025). Neurosymbolic Approach to NL Formalization.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. 2020. Language models are few-shot learners. *Advances in neural information processing systems*, 33: 1877–1901.

Chen et al. (2022). ConvFinQA: Conversational Finance QA. *EMNLP*.

Hou, B.; Zhang, Y.; Andreas, J.; and Chang, S. 2025. A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation. In *Proceedings of the 2025 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)*, 3076–3099.

Kuhn, F.; Arakelyan, K.; and Percha, B. 2023. Semantic INconsistency Index for Hallucination Detection in LLMs. *arXiv preprint arXiv:2503.05980*.

Lewis et al. (2020). RAG for Knowledge-Intensive NLP Tasks. *NeurIPS*.

Schick, T.; Dwivedi-Yu, J.; Dess'i, R.; Raileanu, R.; Lomeli, M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023. Toolformer: Language models can teach themselves to use tools. In *Advances in Neural Information Processing Systems*, volume 36.