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Introduction & Motivation
The Agent Tool-Selection Hallucination Problem

Large language models (LLMs) increasingly power AI agents
that decide how and when to call tools — invoking APIs,
querying data sources, and completing complex tasks (Brown
et al. 2020; Schick et al. 2023; Qin et al. 2024). How-
ever, these models exhibit tool-calling hallucinations, dis-
tinct from textual hallucinations:

• Function selection errors: invoking non-existent func-
tions

• Appropriateness errors: semantically inappropriate tool
choice

• Parameter errors: missing required arguments or incor-
rect types

• Tool bypass errors: responding without using any tool

Research Question: How can we accurately detect
hallucinations in AI agents in real-time with minimal
additional computation?

Key Contributions

1. Single-pass internal-state detection: Final-layer in-
ternal representations enable real-time detection of tool-
calling hallucinations without extra forward passes or ex-
ternal validators.

2. Unsupervised hallucination labeling pipeline: Masked-
call regeneration plus function and argument canonicaliza-
tion yields automatic labels without manual annotation.

3. Lightweight, model-specific classifiers: Simple MLPs
over compact features achieve up to 86.4% accuracy across
Qwen-7B, Llama-3.1-8B, and GPT-OSS-20B.

System Architecture

Key Innovation: Single-pass detection using internal
states—no multiple samplings required

Algorithm Overview

1. Data Generation: Mask ground-truth tool calls from
agent responses. Label the sample by agreement with ref-
erence (correct vs hallucinated)

2. Feature Extraction: Extract 3 token positions from final
transformer layer: tfunc: Initial function name token
Targs: All argument tokens (averaged)
tend: Closing delimiter token
Concatenate: zi = [htfunc||mean(hTargs)||htend]

3. Classifier Training: Train Lightweight 2-layer MLP (512
hidden units)

4. Use binary classifier to detect hallucinations: Use
MLP to predict hallucinations in real time

Experimental Setup

Dataset: Glaive Dataset (GlaiveAI 2024) used to create five special-
ized agents: Quick Calculator, Personal Finance Suite, Health
Assistant, Sustainability Assistant, and Digital Commerce As-
sistant

Results

1. The model’s internal representations contain
distributed hallucination signals

2. The performance ceiling appears inherent to the model’s
representations

Experimental Results

Baselines:

1. Non Contradiction Probability (NCP) (Hou et al. 2025) is
measured by prompting the agent multiple times (n=3) and mea-
suring consistency using agreement.

2. Semantic Similarity (Kuhn, Arakelyan, and Percha 2023) is
measured using cosine similarity of responses from the agent over
multiple invocations (n=3).

Achieves strong F1 scores while maintaining real-
time performance

Analysis & Insights

Why Last Layer Representations Matter:

• Simple aggregation methods are effective: Mean pool-
ing provides the best balance of performance and simplicity

• Diminishing returns of complexity: base transformer
representations already capture the essential information

• Sequence-level information is valuable: Methods that
aggregate information across the entire sequence consis-
tently outperform single-token approaches

• Robustness across methods: transformer representa-
tions are robust and that multiple aggregation strategies
can effectively capture hallucination patterns

Conclusion
This work shows that internal transformer representations
provide a practical basis for detecting tool-calling hallucina-
tions in LLM agents in real-time, using only a single for-
ward pass and lightweight classifiers. By combining an unsu-
pervised labeling pipeline with compact feature extraction
and per-model MLPs, the approach achieves strong accu-
racy across diverse architectures while avoiding the additional
computational overhead of multi-sample approaches or exter-
nal verification methods.
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