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Motivation Adaptive inference

- Small language models (SLMs) are increasingly used for financial  Factual hallucinations is incorporated in the SLMs’ reasoning, detected by
classification due to their inference speed and local deployability. diverse methods, as feedback to prompt SLMs to refine answers through a

« However, compared with large language models, SLMs are more prone tandem round of hallucination-aware reasoning.
to factual hallucinations in reasoning and exhibit weaker classification  The importance of feedback quality is underscored for adaptive inference
performance. This raises a natural question: Can mitigating factual of SLMs. Oracle feedback from human experts consistently enhances, or at
hallucinations improve SLMs’ financial classification? least does not reduce, SLMs’ performance.

» We propose a three-step pipeline named AAAI (Association identification, » Compared with self-reflection, verifiers yield better performance in Llama
Automated detection, and Adaptive [nference). and Gemma, highlighting the caution against overreliance on LMs.

« Compared with prior studies on model reflection, our work introduces e Self-reflection improves Gemma’s performance, demonstrating the potential
statistical analyses to quantify the relationship between erroneous reasoning of SLMs to correct their own generations without external feedback.
and misclassifications and to validate the discriminative power of » Phi exhibits the lowest steerability (the likelihood of adjusting its output

automated detectors in the context of SLMs for finance. behavior in response to external instructions), as feedback from either

AAAI: Association identification, Automated detection, Adaptive Inference sources does not induce any Change from its initial decision.
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Step 3: Adaptive inference

Table 1: Verifiers’ performance on SLMs’  Table 2: SLMs’ performance w/wo factual
reasoning w/wo factual hallucinations hallucination-aware reasoning

Model input Model output Detected errors Language models Refined output

Additional rounds
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BT ¢ PIDELHE TOL JARial CHOTAalt Trasbiiis » Additional rounds of self-reflection and adaptive inference do not always
improve SLMs’ performance compared with the initial generation without

Association identification feedback. SLMs overcriticize prior reasoning when its quality is high, but

rovide constructive criticism when its quality is low.
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