
➢ A reflection-driven, closed-loop control framework. We integrate reflection as a first-class 

control circuit that spans planning, execution, and verification, with an auditable evidence trail 

rather than ad-hoc post-processing, and implemente it as the Reflect layer in a Plan–Reflect–

Verify agentic framework.

➢ A practical instantiation for secure code generation. We compose lightweight self-checks, 

dynamic memory/RAG, reflective prompting, and tool governance (compiler/tests/CodeQL) into 

an evidence-grounded generation pipeline that maintains autonomy while enforcing safety.

➢ Comprehensive evaluation and analysis. On public security-oriented code-generation 

benchmarks with strict compile/run/static-analysis validation, our framework delivers consistent 

improvements over agent baselines, alongside ablations and case studies that quantify each 

component’s impact and illuminate failure modes in high-risk settings.

Reflection-Driven Control for Trustworthy Code Agents

Abstruct
Contemporary large language model (LLM) agents are remarkably capable, but they still lack reliable safety controls and can produce

unconstrained, unpredictable, and even actively harmful outputs. To address this, we introduce Reflection-Driven Control, a standardized and

pluggable control module that can be seamlessly integrated into general agent architectures. Reflection-Driven Control elevates “self-reflection”

from a post hoc patch into an explicit step in the agent’s own reasoning process: during generation, the agent runs an internal reflection loop that

monitors and evaluates its own decision path. When potential risks are detected, the system retrieves relevant repair examples and secure coding

guidelines from an evolving reflective memory, injecting these evidence-based constraints directly into subsequent reasoning steps. We instantiate

Reflection-Driven Control in the setting of secure code generation and systematically evaluate it across eight classes of security-critical

programming tasks. Empirical results show that Reflection-Driven Control substantially improves the security and policy compliance of generated

code while largely preserving functional correctness, with minimal runtime and token overhead. Taken together, these findings indicate that

Reflection-Driven Control is a practical path toward trustworthy AI coding agents: it enables designs that are simultaneously autonomous, safer by

construction, and auditable.

Bin Wang1, Jiazheng Quan2, Xingrui Yu3, Hansen Hu1, Yuhao1, Ivor Tsang3

1School of Computer Science, Peking University, China
2Xiamen University, China

3Centre for Frontier AI Research (CFAR), Agency for Science, 

Technology and Research (A*STAR)

Main contributions: 

Framework Overview

Comprehensive Evaluation Metrics

Reflex Module:

We instantiate the REFLEX module as the Reflect layer of a 

agentic framework, where reflection functions as a first-class 

control circuit supervising planning, execution, and verification. This 

design realizes a closed loop of low-cost, frontloaded reflection, 

evidence-driven generation, and auditable knowledge accumulation, 

without fine-tuning the underlying models. Building on this design, 

we implement a standard REFLEX agent that plugs into the system 

with three core components.

Lightweight Self-Check and Routing Mechanism:

The lightweight self-checker serves as a front-end filtering layer for 

the Reflex module, responsible for performing an initial, trustworthy 

safety diagnosis of the input code.

Reflective Prompt Engine:

The Reflective Prompt Engine serves as the core driving module of 

the reflection process, enabling the agent to perform deep analysis 

and self-improvement on problematic code.

Reflective Memory Repository:

The Reflective Memory Repository is the central component 

enabling the system’s continual learning and experience reuse.

Evaluation Results

Qualitative Evaluation Metrics:

✓ Code Quality: We review readability, modularity, and maintainability. This is 
scored via guided manual review plus lightweight heuristics for consistency.

✓ Security Completeness: We check for input validation, error handling, 

privilege boundaries, sanitization, and coverage of common exploit classes. 
This reflects robustness under adversarial or unexpected inputs.

✓ Compliance: Whether the code respects privacy / data-handling / access-

control expectations. Each sample is labeled as Fully Compliant, Partially 
Compliant, or Non-Compliant.

Evaluation Metrics

Reflex module agent performance summary

Evolution of dynamic RAG retrieval performance

Plug-and-play

Std. Module

AAAI Workshop 2026


	Slide 1

