Bin Wang, Jiazheng Quan?, Xingrui Yu3, Hansen Hu, Yuhaol, Ivor Tsang? 5 Centrefor
1School of Computer Science, Peking University, China w Research

A*STAR CFAR

2Xiamen University, China
3Centre for Frontier Al Research (CFAR), Agency for Science,
Technology and Research (A*STAR)

Abstruct

Contemporary large language model (LLM) agents are remarkably capable, but they still lack reliable safety controls and can produce
unconstrained, unpredictable, and even actively harmful outputs. To address this, we introduce Reflection-Driven Control, a standardized and
pluggable control module that can be seamlessly integrated into general agent architectures. Reflection-Driven Control elevates “self-reflection”
from a post hoc patch into an explicit step in the agent’s own reasoning process: during generation, the agent runs an internal reflection loop that
monitors and evaluates its own decision path. When potential risks are detected, the system retrieves relevant repair examples and secure coding
guidelines from an evolving reflective memory, injecting these evidence-based constraints directly into subsequent reasoning steps. We instantiate
Reflection-Driven Control in the setting of secure code generation and systematically evaluate it across eight classes of security-critical
programming tasks. Empirical results show that Reflection-Driven Control substantially improves the security and policy compliance of generated
code while largely preserving functional correctness, with minimal runtime and token overhead. Taken together, these findings indicate that
Reflection-Driven Control is a practical path toward trustworthy Al coding agents: it enables designs that are simultaneously autonomous, safer by
construction, and auditable.

Main contributions:

How to securely copy

strings te buffers ?

» A reflection-driven, closed-loop control framework. We integrate reflection as a first-class

Plug-and-play 2\ The Human Developer control circuit that spans planning, execution, and verification, with an auditable evidence trail
Std. Module @ rather than ad-hoc post-processing, and implemente it as the Reflect layer in a Plan—Reflect—
BEE Planmer Agent Verify agentic framework.
» A practical instantiation for secure code generation. We compose lightweight self-checks,
- dynamic memory/RAG, reflective prompting, and tool governance (compiler/tests/CodeQL) into
Reflex Agent (Std. Module) - . .
an evidence-grounded generation pipeline that maintains autonomy while enforcing safety.
L'g"i""gh* Se”*““':») Coe Generation Aoert » Comprehensive evaluation and analysis. On public security-oriented code-generation
SAFE UNSAFE Composition Generate
o o N { |i] L el } benchmarks with strict compile/run/static-analysis validation, our framework delivers consistent
emor'y Vi ence—gm el , ——— =
Repository repair improvements over agent baselines, alongside ablations and case studies that quantify each
sare s Extract Agent component’s impact and illuminate failure modes in high-risk settings.
Verification and dePOSiﬁon Elesuh‘ Extr‘ucﬂon] [Code Vaffu'nﬂon]
o / g /
Framework Overview Evaluation Metrics
4 Reflex Agent Framework A Metric Definition / Interpretation
. .) Security Rate (Sec. Rate) Portion of compilable samples that are also security-clean.
Lightweight Self-Check Sec. Rate = % x 100%. This reflects the model’s ability to generate executable code with no
---------- _ o “, F T -;‘;r-d-i(-. — _;'Q-L-_ﬁ-/[- o " o -: 7 -;C-) -,- v “, detected CWE-class vulnerabilities.
S;:::LS::;T : : ,’E _______ { ?fi_hi’y T?Jﬂ_‘ I_rl}_(}_) = _[_:fl °) . Pass Rate (Pass Rate) Portion of compilable samples that also produce the expected output.
E : istricpy(buffer, message, : ' Pass Rate = 2| x 100%. This captures functional correctness under the task’s /O spec.
code r contextc isizeof(buffer) - 1); + SAFE 1 el
D r:> :b £t eof(buff 1= "\0" ‘ ! Total Efficiency (Eff. Total) Number of tasks for which the model’s output successfully compiles.
- | E E Binary Verdict "_f____‘f r_[_fl_z_lf?_ __(___u_ tr_‘f_':}_:__ _J__' ______ s E Eff. Total = |C|. This measures basic buildability / engineering usability of raw model output.
l@' ' SEE R P _ : ._ Security Count (Sec. Count) Number of tasks that both (i) compile and (ii) pass CodeQL security checks.
prompt Dse EPTH(O/,OS\n - buffer): : =i C) Sec. Count = |S|. This is the numerator of Sec. Rate, shown as an absolute count.
B 4 e DL E eSS S 4) Unresolved Count (Unres. Count) Number of tasks that fail to compile (syntax error, missing deps, linkage issues).
Unres. Count = |7 | — |C|. This highlights early failure cases where code is not even buildable.
Preflect = {P1,P2; - Pn} Reflective Prompt Engine
Round 3: Secure Code Revision Round 2: Cause and Mitigation Round 1: Vul. Identification
Prompt 3(ps): Prompt 2(pz): Prompt 1(p1): Qualltatlve Evaluatlon MetrICS:
Rewrite the code to eliminate Explain the cause and suggest a '+ Identify potential security risks
the risk. safe alternative. in the code. J
(| Mo‘:el RespoTn:e 3(r=)=d | Model Response 2(r=): Model Response 1(r1): v' Code Quality: We review readability, modularity, and maintainability. This is
enasuf,;:f:mo:,:i‘::fy e :::y:j;“i::’zf::;jg unchecked IZ‘:S‘;‘;”E;";’T:EE:TTG ny scored via guided manual review plus lightweight heuristics for consistency.
limiting copy length and snprintf() to limit copied bytes ' cause a buffer overflow because v' Security Completeness: We check for input validation, error handling,
Eﬁlf':rﬂy null-terminating the ' and prevent overflow. it lacks boundary checks. privilege boundaries, sanitization, and coverage of common exploit classes.
This reflects robustness under adversarial or unexpected inputs.
Reflective Memory Repository v' Compliance: Whether the code respects privacy / data-handling / access-
L Memory Repository Hierarchical R(e*rfevar Pricess ---- L TRET SRR control expectations. Each sample is labeled as Fully Compliant, Partially
A £ = Retrieve(Mp, Mg 4 A 3 - P Compliant, or Non-Compliant.
B = &g S8 e i p
Memory M 1 ”iﬁr:;:‘m“ Return to Agent Orchestration “’“'aiw k";:?:dgz Maf;?-:liu s
. J
Reflex Module: Evaluation Results

We instantiate the REFLEX module as the Reflect layer of a

agentic framework, where reflection functions as a first-class Reflex module agent performance summary

control circuit supervisin lanning, execution, and verification. This . gpt-3.5-turbo gpt-do qwen3-coder-plus gemini-2.5-pro
Metric
design realizes a closed |OOp of low-cost, frontloaded reﬂeCtion, Base Base+Reflex Base Base+Reflex Base Base+Reflex Base Base+Reflex
evidence-driven generation, and auditable knowledge accumulation, Sec. Rate 93.7 96.6(12.9) 857 950(19.3) 837 949(f1L2) 880 97.1(19.1)
. . . . _ . . Pass Rate 88.0 92.4 (14.4) 95.2 949 (0.3) 86.7 80.1 (16.6) 914 949 (13.5)
Wlth.OUt flne-tunlng the Underlylng models. BUlIdlng O.n this deSIQn’ Eft. Total 220 23.1(1L.1) 238 237(¢l0.1) 216 20214 229 237(10.8)
we implement a standard REFLEX agent that plugs into the system Sec. Count 234 241(10.7) 214 238(124) 179 237(15.8) 220 243(123)
Unres. Count 3.0 1.9 (L1.1) 1.2 1.3 (10.1) 3.3 4.8 (TL.5) 2.1 1.3 (]0.8)

with three core components.
nght.welgh't Self-Check and Routing Mechanlsm: _ Evolution of dynamic RAG retrieval performance
The lightweight self-checker serves as a front-end filtering layer for (a) Similarity Band (b) Success & Fallback

the Reflex module, responsible for performing an initial, trustworthy

= 1F— =¥ ~ 100
safety diagnosis of the input code. 5 091 /9 = S -0
. - o= . 8
Reflective Prompt Engine: g 0.8 ks
. . . . “ 0.7l 1 1 1 1 0
The Reflective Prompt Engine serves as the core driving module of R1R2R3 R4R5 RI R2 R3 R4 R5
the reflection process, enabling the agent to perform deep analysis _ (©) Cost=Quality Trade-off (d) Retrieval Depth
and self-improvement on problematic code. = 0.05 =
. . = . — @)
Reflective Memory Repository: = 4ok 2 o5
The Reflective Memory Repository is the central component s 0.85 L Z 2l 0 4y
< R2 R3 R1 R2 R3 R4 R5

enabling the system’s continual learning and experience reuse.
Avg. Number of Docs Iteration

	Slide 1

