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Contemporary large language model (LLM) agents are remarkably capable, but they still lack reliable safety controls and can produce
unconstrained, unpredictable, and even actively harmful outputs. To address this, we introduce Reflection-Driven Control, a standardized and
pluggable control module that can be seamlessly integrated into general agent architectures. Reflection-Driven Control elevates “self-reflection”
from a post hoc patch into an explicit step in the agent’s own reasoning process: during generation, the agent runs an internal reflection loop that
monitors and evaluates its own decision path. When potential risks are detected, the system retrieves relevant repair examples and secure coding
guidelines from an evolving reflective memory, injecting these evidence-based constraints directly into subsequent reasoning steps. We instantiate
Reflection-Driven Control in the setting of secure code generation and systematically evaluate it across eight classes of security-critical
programming tasks. Empirical results show that Reflection-Driven Control substantially improves the security and policy compliance of generated
code while largely preserving functional correctness, with minimal runtime and token overhead. Taken together, these findings indicate that
Reflection-Driven Control is a practical path toward trustworthy Al coding agents: it enables designs that are simultaneously autonomous, safer by
construction, and auditable.
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. . ) Security Rate (Sec. Rate) Portion of compilable samples that are also security-clean.
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Reflex Module: Evaluation Results

We instantiate the REFLEX module as the Reflect layer of a

agentic framework, where reflection functions as a first-class Reflex module agent performance summary

control circuit supervisin lanning, execution, and verification. This . gpt-3.5-turbo gpt-do qwen3-coder-plus gemini-2.5-pro
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design realizes a closed |OOp of low-cost, frontloaded reﬂeCtion, Base Base+Reflex Base Base+Reflex Base Base+Reflex Base Base+Reflex
evidence-driven generation, and auditable knowledge accumulation, Sec. Rate 93.7  96.6(12.9) 857 950(19.3) 837 949(f1L2) 880  97.1(19.1)
. . . . _ . . Pass Rate 88.0  92.4 (14.4) 95.2 949 (0.3) 86.7 80.1 (16.6) 914 949 (13.5)
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we implement a standard REFLEX agent that plugs into the system Sec. Count 234 241(10.7) 214  238(124) 179 237(15.8) 220 243(123)
Unres. Count 3.0 1.9 (L1.1) 1.2 1.3 (10.1) 3.3 4.8 (TL.5) 2.1 1.3 (]0.8)

with three core components.
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enabling the system’s continual learning and experience reuse.
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