]anea

1 Janea Systems

Abstract

Modern LLM applications increasingly rely on
external tools, enabled by standards like the Model
Context Protocol (MCP), which describes tool
capabilities inside the prompt. However, as toolsets
grow, prompts bloat—raising token costs and latency
while reducing task success due to irrelevant tool
inclusion. We present JSPLIT, a taxonomy-driven
framework for scalable MCP tool use that organizes
tools hierarchically and selects only the most
relevant tools for a given user query. Beyond prompt
optimization, the taxonomy provides diagnostic
transparency, allowing developers to trace and
debug tool selection behavior. We describe JSPLIT's
taxonomy design, selection algorithm, and
evaluation dataset. Results show that JSPLIT
substantially reduces prompt size without degrading
response quality, and at larger tool scales, improves
tool selection accuracy—lowering cost while
iIncreasing task success in complex multi-tool agent

environments.

Introduction

(1) From chatbots to
autonomous agents — trust
becomes the core issue
Al is rapidly moving from
conversational LLMs to agents that
can autonomously execute actions
through external tools (APls,
databases, enterprise systems). | ool =Besaroton
This shift raises a key challenge: e

oy 2 Tool 2-Description O
trustability—agents must behave : 00 LLMis

Prompt Bloating:

A\ Use the following
tools

predictably, select appropriate N Tool N-Description confused

tools, and make correct decisions :

_ Translate English
without constant human control. %o Erenchs
(2) MCP enables tool-connected
agents, but scaling breaks l
reliability
The Model Context Protocol Output:
(MCP) standardizes how agents Guten Tag X
access tools via structured Wrong language
metadata. However, supporting
many tools often requires injecting
large tool descriptions into the

prompt, creating prompt bloating, which increases cost/latency
and reduces trust by making tool choice noisier and less reliable.
(3) JSPLIT reduces prompt bloating while improving
traceability

To address this, JSPLIT organizes MCP tools into a hierarchical
taxonomy and includes only tool categories relevant to the user
qguery. This not only shrinks prompts, but also improves
transparency and debuggability, allowing developers to trace
and audit tool selection decisions—strengthening agent
trustworthiness at scale.

Tool-Rich Agent Selection

JSPLIT: A Taxonomy-based Solution for Prompt Bloating in

Model Context Protocol

Emanuele Antonioni!, Stetan Markovic!, Anirudha Shankar!, Jaime Bernardo!, Lovro
Markovic!, Silvia Pareti4, Benedetto Proiettil

Methodology

(1) JSPLIT: tool-augmented agent execution

JSPLIT is a modular agent framework that solves user
queries by combining LLM reasoning with external tool
execution via MCP servers. It is designed for scalable,
multi-step task resolution in tool-rich environments.

(2) Key component: Taxonomy-MCPResolver for
selective tool access

At the core of JSPLIT is the Taxonomy-MCPResolver,
which reduces tool overload by classifying the user query
into a hierarchical taxonomy and exposing only the most
relevant MCP servers. This keeps the agent context smaller
and makes tool routing more controlled and explainable.

(3) Iterative call loop with filtered tools

After server selection, the LLM enters a call loop: it either
answers directly or invokes tools from the selected servers,
appending tool outputs to the context until a final answer is
produced or an iteration limit is reached. Outputs include the
final answer, used servers, and token statistics. A baseline
Passthrough resolver is also supported to compare
against unfiltered tool access.

(4) Resolver logic: classify — map/rank

Tool selection follows two phases:

Taxonomy classification: the LLM selects the most
specific leaf category for the query.

MCP selection: tools mapped to that category are chosen
directly or ranked by the LLM when multiple candidates
exist.

(5) Taxonomies + datasets for evaluation

JSPLIT is built on two taxonomy versions (v1 — v2) and
evaluated using:

a ~2,000 MCP server dataset labeled by expert + LLM-
assisted classification, and

a ~200 query dataset with ground-truth tool and taxonomy
labels for measuring selection accuracy and end-to-end
success.

Conclusion

(1) Contribution: JSPLIT reduces agent prompt bloating by
using a taxonomy to include only relevant MCP tools in context

(2) Results: It cuts token usage significantly while preserving
performance and improves tool selection at large tool scales
versus full-context baselines.

(3) Trust + next steps: The taxonomy increases traceability for
debugging, with future work on better category descriptions, real-
time onboarding, and a Taxonomy v3.

A
lt.si

2 BigFilter.ai

Results

(1) Setup and goal

We evaluate JSPLIT on tool-selection accuracy (did it call the
correct MCP server?) and LLM cost (token usage / estimated cost).
(2) Needle-in-a-haystack stress test

For each query, the correct tool is mixed with 1-1,000 irrelevant MCP
servers sampled from a ~2,000-tool pool, testing performance as tool
clutter scales.

(3) Compared systems

Passthrough: all tools injected into the prompt

JSPLIT + Taxonomy v1 / v2: taxonomy-based filtering before the
LLM call loop

(4) Key results

As the number of tools grows, Passthrough accuracy degrades
sharply (<40%), while JSPLIT stays stable (~69% with Taxonomy
v2) and reduces input-token cost by 100 X .

Cost of validation run - 200 data points

600

No. of noise MCPs

e Passthrough — e————Qwen/Qwen3-8B-AW(Q smmmmgpt-4.1-mini ee—cpt-4,1

Accuracy - Direct answer or call loop MCP selection

Accuracyin %

50 100
No. of noise MCPs

—Passthrough — ee——Qwen/Qwen3-8B-AW(Q ssmmopt-4.1-mini ee—cpt-4,1

(5) Ablation + error analysis

Using a local model for tool filtering is cheaper but significantly
less accurate; small APl models give the best cost/accuracy
trade-off. Confusion-matrix analysis shows most errors come
from overlapping taxonomy classes, especially over-predicting
“Search.”

| ATION RETRIEVAL 0
I TRATION - = 0

https://www.janeasystems.com/
https://bigfilter.ai/

	Slide 1

