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1. Abstract
Attribution methods aim to explain language 
model predictions by scoring how much each 
input token contributes to a generated output, but 
many existing approaches rely on linear 
approximations and are not well-suited to the 
causal and semantic structure of autoregressive 
decoder-only LMs. We propose HEAT, which 
unifies target-conditioned semantic transition 
influence, Hessian-based sensitivity, and 
KL-divergence information loss under token 
masking to produce context-aware and causally 
faithful attributions. Across multiple models and 
datasets (and a new curated benchmark), HEAT 
consistently improves attribution faithfulness and 
alignment with human annotations.

2. WHY CURRENT METHODS FAIL

Gradient-Based Methods Fail:
- Vanish in flat regions (ReLU saturation)
- Miss second-order effects
- Example: ∂f/∂xi = 0 but f(x+ε) ≠ f(x)

Attention Weights ≠ Causal Influence:
- Show "where model attends" not "what affects 
output"
- Can be perturbed without changing predictions
- Ignore multi-hop influence through residual 
connections

First-Order Methods (IG, Input×Gradient):
- Capture only local linear sensitivity
- Baseline-dependent and path-dependent
- Underestimate influence near sharp transitions

4. DATASETS & SETUP

Benchmark Datasets:

- LongRA: Long-range agreement task

- TellMeWhy: Narrative reasoning (causal QA)

- WikiBio: Biography generation

Curated Dataset (NEW):

- 2,000 mixed paragraphs

- NarrativeQA + SciQ combined

- Gold annotations from GPT-4o & GPT-5

- Inter-annotator agreement: F1=0.91, κ=0.89

Models Tested:

- GPT-J 6B

- Phi-3-Medium 14B

- LLaMA-3.1 70B

- Qwen2.5 3B

Baselines (9 methods):

ContextCite, Integrated Gradients, Peering (PML), 

TDD-backward, Attention Rollout, fAML, 

Progressive Inference, SEA-CoT, ReAgent

5. MAIN RESULTS

GPT-J 6B Results:
                              LongRA          TellMeWhy
HEAT (Ours)       10.3 / 2.31       9.2 / 2.04
ReAgent (best)   1.68 / 0.37     1.45 / 0.36
                             ↑ 2× better     ↑ 2× better

Key Findings:
✓ 8-13% improvement in AUROC (Soft-NC)
✓ 10-15% improvement in correlation (Soft-NS)
✓ Consistent across ALL models and datasets
✓ DSA Score: 4.80 (vs 3.60 for ReAgent)

Gradient-based methods often yield 
NEGATIVE Soft-NS → unstable!

6. ABLATION STUDIES

All Three Components Are Essential

Removing ANY component degrades performance:

Full HEAT:               9.78 / 2.31 / 4.70
Transition Only:         3.12 / 1.52 / 2.21
Hessian Only:            2.89 / 1.45 / 2.97
KL Only:                 2.23 / 1.21 / 2.74
No Transition Gating:    4.31 / 1.84 / 1.68
Uniform Transition:      3.89 / 1.76 / 1.54

Why Each Component Matters:
- Transition: Routes semantic paths
- Hessian: Captures curvature effects
- KL: Measures information impact

7. ROBUSTNESS ANALYSIS

HEAT is Robust to:

1. Input Perturbations
   Sensitivity: 0.025 (lowest among all methods)

2. Syntactic Rephrasings  
   Active/Passive Robustness: 0.91 (highest)

3. Decoding Hyperparameters
   Max variation across temp/top-p/top-k: < 1%
   (Baselines vary 2-5%)

4. Alignment with Human Annotations
   F1 Score: 0.89 vs 0.82 for best baseline

8. QUALITATIVE EXAMPLES

HEAT Identifies Semantically Relevant Tokens

Example 1: Predicting "slice"
Context: "ordered pizza...did not cut...knife to cut"
HEAT highlights: pizza, cut, knife ✓

Example 2: Predicting "friends"
Context: "zoo...took pictures and shared them"
HEAT highlights: pictures, shared, zoo ✓

Example 3: Predicting "bush"
Context: "lost my hat at the park...stuck in a"
HEAT highlights: hat, park, stuck ✓

9. COMPUTATIONAL EFFICIENCY
Efficiency vs. Accuracy Trade-offs

HEAT is slower but more accurate:
- Full HEAT: 455s per 1,000 examples
- Baselines: 2-10s per 1,000 examples

Approximation Strategies:
✓ Low-Rank Hessian (rank=64): 330s, -2% AOPC
✓ Layer Sampling (6 layers): 305s, -4% AOPC  
✓ Windowing (512 tokens): 295s, -6% AOPC
✓ LR+WIN (recommended): 245s, -3% AOPC

Long Context (2048 tokens):
- Full HEAT: 1,230s
- LR+WIN: 580s (2× faster, -1% AOPC)

10. CONCLUSIONS
Key Contributions:

✓ HEAT: First attribution method integrating 
  semantic flow, Hessian curvature, and KL divergence

✓ Superior Performance: 2× better than state-of-the-art
  across all benchmarks and model scales

✓ Theoretical Guarantees: Formal faithfulness bounds
  and convergence analysis

✓ Curated Benchmark: 2,000 annotated instances
  with high inter-annotator agreement (F1=0.91)

✓ Scalable: Efficient approximations for 70B models
  and 100K token contexts

Advantages:
- Model-agnostic (works on any decoder-only LLM)
- No training required
- Interpretable multi-view decomposition
- Robust to decoding hyperparameters
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