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1. Abstract 4. DATASETS & SETUP 7. ROBUSTNESS ANALYSIS

Attribution methods aim to explain language Benchmark Datasets:
model predictions by scoring how much each I II
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input token contributes to a generated output, but - LongRA: Long-range agreement task Y@ @ e ,‘%Zf@aéeﬁ ‘f e ::\h@egeaée“ *f @@&o ;‘k@ef@abeo
many existing approaches rely on linear - TellMeWhy: Narrative reasoning (causal QA) e e P
approximations and are not well-suited to the _ WikiBio: Biography generation

causal and semantic structure of autoregressive SR ol ok

decoder-only LMs. We propose HEAT, which 1. Input Perturbations

unifies target-conditioned semantic transition Curated Dataset (NEW): Sensitivity: 0.025 (lowest among all methods)

influence, Hessian-based sensitivity, and 2. Syntactic Rephrasings

] . : - 2,000 mixed paragraphs - - - -
KL-divergence information loss under token paragrap Active/Passive Robustness: 0.91 (highest)

masking to produce context-aware and causally - NarrativeQA + SciQ combined 3. Decoding Hyperparameters
faithful attributions. Across multiple models and lax variation across tempy/top-p/top-ic < 1%
' P - Gold annotations from GPT-40 & GPT-5 (Baselines vary 2-5%)
datasets (and a new curated benchmark), HEAT . e
. . . . . _ _ - — — . Alignment with Human Annotations
consistently improves attribution faithfulness and Inter-annotator agreement: F1=0.91, K=0.85 F1 Score: 0.89 vs 0.82 for best baseline
alignment with human annotations.

Models Tested:

- GPT-J 6B

- Phi-3-Medium 14B 8. QUALITATIVE EXAMPLES
2. WHY CURRENT METHODS FAIL - Laalhisghs J0E HEAT Identifies Semantically Relevant Tokens

Qwen2.5 3B
Gradient-Based Methods Fail: Example 1: Predicting "slice"
- Vanish in flat regions (ReLU saturation) Context: "ordered pizza...did not cut...knife to cut”
- Miss second-order effects HEAT hlghllghts pizza, cut, knife v/
- Example: df/oxi = 0 but f(x+g) # f(x) 5. MAIN RESULTS
Example 2: Predicting "friends"
Attention Weights # Causal Influence: ECEZtTe;:JiC: hlziocr)]:c.;oci):ts |rc;tsu rs,ehsaizj SZP;E:)re‘c/i e
- Show "where model attends" not "what affects GPT-] 68 Results: JIENER L ’ /
| LongRA TellMeWhy

output | | o HEAT (Ours)  10.3/231 9.2/2.04 Example 3: Predicting "bush"
- Can be perturbed without changing predictions ReAgent (best) 1.68/0.37 1.45/0.36 Context: "lost my hat at the park...stuck in a"
- Ignore multi-hop influence through residual T 2x better T 2x better HEAT highlights: hat, park, stuck ¢’
connections o

Key Findings:

v 8-13% improvement in AUROC (Soft-NC)
First-Order Methods (IG, InputxGradient): v 10-15% improvement in correlation (Soft-NS)
- Capture only local linear sensitivity “; g‘;;sg“e”t ZC;‘(’)SE A;Lg(“)‘}de'; a:d d‘:‘)tasets

core: 4. VS o. or heAagen

- Baseline-dependent and path-dependent © 9. COMPUTATIONAL EFFICIENCY
- Underestimate influence near sharp transitions Gradient-based methods often yield Efficiency vs. Accuracy Trade-offs

NEGATIVE Soft-NS — unstable!

HEAT is slower but more accurate:
- Full HEAT: 455s per 1,000 examples

3. HEAT METHOD OVERVIEW - Baselines: 2-10s per 1,000 examples
Approximation Strategies:

'LLM I 6. ABLATION STUDIES v Low-Rank Hessian (rank=64): 330s, -2% AOPC
| i :emantic Ir;ﬂuenc: HCurvatul:es:nsitivity lnfo:Ln:tion Gain +:inal$core / Layer Sampllng ( 6 Iayers): 3 055’ _ 4% AOP C
nput Context arget-conditione essian-based estimates ivergence between . ’ .
ey > omiovlerslot  cpurenonlnenand oigralvemdedtager | All Three Components Are Essential v, Jvincowing (512 tokens): 2955, -6% OPC
attribute to) gpaths to the:,arg:t. token. ’ gated by caus:l;::y, yieldsuthe’ v LR+WIN (recommended): 245s, -3% AOPC

score.

Removing ANY component degrades performance:
Long Context (2048 tokens):

Full HEAT: 9.78 /2.31/4.70 - Full HEAT: 1,230s

Transition Only: 3.12/1.52/2.21 - LR+WIN: 580s (2x faster, -1% AOPC)
H EAT Hessian Only: 2.89/1.45/2.97

KL Only: 2.23/1.21/2.74

Hessian-Enhanced Attribution

No Transition Gating: 4.31/1.84/1.68
Uniform Transition: 3.89/1.76/1.54

o Semantic Flow (M _T) Why Each Component Matters:
- Transition: Routes semantic paths
Traces causal attention paths to target token - Hessian: Captures curvature effects 10- CONCLUSIONS

 Target-conditioned - KL: Measures information impact
* Enforces causality

* Layer-wise rollout

Key Contributions:

v/ HEAT: First attribution method integrating
semantic flow, Hessian curvature, and KL divergence

\. v

€) Hessian sensitivity (s_i)
v’ Superior Performance: 2x better than state-of-the-art

Captures nonlinear curvature via 2nd-order
across all benchmarks and model scales

e Second-order effects
e Scalable HVP

v Theoretical Guarantees: Formal faithfulness bounds

S eEET A o Eladielils The quick brown fox jumps over the lazy dog and convergence analysis
; > ne quick brown fox jumps over the lazy dog
o KL Information (1) quick brown fox jumps over the lazy dog v .Cura.ted.Benchmark: 2,000 annotated instances
. ' with high inter-annotator agreement (F1=0.91)
Measures distribution change when masked quick brown fox 'umps over the azy dog
:?O-:el‘n(PiF:;E’rtIL:E;naSked) quick k fox jumps over the lazy dog v Scalable: Efficient approximations for 70B models
* Info-theoretic fox "umps over the azy dOg and 100K token contexts
the lazy dog Advantages:
ATTRIBUTION FORMULA the lazy dog —Model.-a.gnostic (.works on any decoder-only LLM)
the lazy dog - No training required

r(x 1 - xT) =MT[1] - (BS1+vylI

- Interpretable multi-view decomposition
- Robust to decoding hyperparameters
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