
Trustworthy AI in the Agentic Lakehouse: from Concurrency to Governance
Jacopo Tagliabue, Federico Bianchi, Ciro Greco

Read the paper

Q1: How can we trust agents in the lakehouse?
We shouldn’t need trust at all.

abstractions data versioning

⏐ Correctness under
concurrency is the hard
problem for lakehouse
agents.

⏐ Good APIs encourage
correct behavior and
prevent unsafe actions.

⏐ Once correctness is
enforced, governance
reduces to API access
control.

CONCERN MODE ABSTRACTION

Trust Data Declarative I/O

Trust Code FaaS

Correctness Data Transactions

Correctness Code PRs

@bauplan.model(materialize=True)
@bauplan.python(pip={'polars': '0.8.0'})
def parent(
 input='nyc_taxi',
 filter="date='2022-12-15'"
):
 # some code here
 return parent_table

@bauplan.model(materialize=True)
@bauplan.python(pip={'polars': '1.3.0'})
def child(input='parent'):
 # some code here
 return child_table

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

FaaS

Declarative I/O

Select A as it
was yesterday

time travel

Q2: How do we build one that doesn’t require trust?
Two lessons from the databases literature.

run_1

C’

A’

run_2

main

run_4 run_3

A’’

AI #1

AI #2

AI #3AI #4

A
B
C

A
B
C’

C’’

A’
B’
C’’

A’
B’
C’

B’

Failure at B’’
prevents A’’
from reaching

main!

transactions

B’’

AI SAFETY
WITHOUT SAFETY!

