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Read the paper

Q1: How can we trust agents in the lakehouse?
We shouldn’t need trust at all.

abstractions data versioning

⏐ Correctness under 
concurrency is the hard 
problem for lakehouse 
agents.

⏐ Good APIs encourage 
correct behavior and 
prevent unsafe actions.

⏐ Once correctness is 
enforced, governance 
reduces to API access 
control.
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Trust Data Declarative I/O

Trust Code FaaS

Correctness Data Transactions

Correctness Code PRs

@bauplan.model(materialize=True)
@bauplan.python(pip={'polars': '0.8.0'})
def parent(
    input='nyc_taxi', 
    filter="date='2022-12-15'"
):
    # some code here
    return parent_table

@bauplan.model(materialize=True)
@bauplan.python(pip={'polars': '1.3.0'})
def child(input='parent'):
    # some code here
    return child_table
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Select A as it 
was yesterday

time travel

Q2: How do we build one that doesn’t require trust?
Two lessons from the databases literature.
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