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How do AVs stay safe in
unpredictable conditions?
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(a) ID Scene (normal) (b) OOD Scene (perturbed)

Figure 1:Performance comparison of a trajectory
prediction model in ID and OOD scenes. In ID scenarios
(left), the ego vehicle accurately predicts neighboring
trajectories. In OOD scenarios (right), unexpected debris
causes a slight deviation in the target vehicle’s path,
leading to incorrect trajectory prediction and potentially
unsafe braking by the ego vehicle.
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How CUSUM works?

CUSUM monitor cumulative log-likelihood ratio Wt of AV
trajectory prediction errors and triggers an alarm
when Wt>b.
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507, yielding a 17-step detection delay.

ID scene: Prediction errors remain stable; Wt stays

below b, indicating no false alarms.
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Motivation

Reliable autonomous driving requires trajectory prediction models to remain
robust under real-world distribution shifts. Due to unavoidable sim-to-real
gaps between training and inference, even well-trained models may produce
unreliable predictions.

What challenges are involved?

= Deceptive OOD scenarios are difficult to detect by human intuition

= In OOD scene, non-trivial trajectory changes lead to significant
prediction errors

= Traditional OOD detection focuses on single-point anomalies,
overlooking sequential patterns

= Autonomous vehicles require real-time, sequential decision-making

Contribution

By formulating out-of-distribution detection as a quickest change-point
detection problem, our approach enables timely identification of subtle and
deceptive shifts in driving scenes. Our approach monitors only a scalar error
variable, handles OOD occurrence at any inference step, and remains
computationally efficient. We are the first to apply QCD methods for OOD
detection in trajectory prediction across multiple real-world datasets.
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Figure 3: Delay-MTFA performance comparing models (GRIP++, FQA)
across datasets (ApolloScape, NGSIM, NuScenes) and multiple metrics (ADE, FDE, RMSE).

Key Takeaways
= Lightweight QCD: Monitors a scalar prediction-error statistic.
= Real-world  evaluation: Validated  on ApolloScape,  NGSIM,
NuScenes with GRIP++ and FQA.
= Effective detection:
» Best performance: CUSUM Mix achieves lowest delay with minimal
false alarms across all settings.
= GMM benefit: GMM-based pre/post modeling improves robustness.
= Delay-MTFA trade-off: Consistent advantage across metrics (Fig. 3).

Future Work

and

= Tiered alarm system: Infroduce context-aware, mulfi-level alerts to
prioritize critical warnings and reduce computational overhead.
= Adaptive learning: Leverage imitation learningto adapt detection

behavior in OOD scenes.
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