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Ablation :
● Problem miscomprehension errors are mitigated with simple instruction prompting and error feedback.
● Open-source LLM performers moderately in identifying the conceptual mistake and retrieval thought generation.
● Using code-driven refinement significantly corrects the computational errors.

Motivation : 

While analyzing physics problems and their CoT solutions generated with LLMs (Llama-3-70B & 
Gemma-2-27B), we observed three key errors made by them :

Observation 1 : LLMs in few cases struggle to fully grasp the objective of the question, along with 
misinterpreting the values of variables and constants provided in the question. Although this issue has been 
identified in only a few cases, it is significant one because it leads to solutions that fails to address the correct 
interpretation of a given question resulting in problem miscomprehension.

Observation 2 : LLMs struggle to apply the correct concepts or formulae with respect to the context of the 
given problem.This issue is a more recurring one in LLMs, especially for problems requiring considering a 
specific case rather than relying on a generic formula. For instance, the formula for calculating the moment of 
inertia varies depending on the distribution of mass.

Observation 3 : Many physics problems involve mathematical reasoning and algebraic computation, areas 
where LLMs tend to struggle Computational errors account for the majority of errors in solutions generated by 
LLMs. LLMs struggles with accurate algebraic and arithmetic computations resulting in errors within the 
reasoning and final answer.

Dataset: PhysicsQA 
Benchmarks like MMLU, SciEval and ScienceQA  focus on foundational knowledge and general reasoning, 
while more challenging ones like OlympiadBench  and JEEBench  require advanced reasoning skills. To bridge 
the gap, we curated our own dataset PhysicsQA, containing set of 370 diverse, intermediate level high school 
physics problems that provide a balanced challenge, allowing a exhaustive evaluation and step by step solution 
analysis of open-source LLMs on physics problems. Table 1 illustrates the topic-wise distribution of the 
questions, providing a clear overview of the areas covered. 

Mixture of Refinement Agents : 
This introduces our mixture of refinement agents (MoRA) framework. We first discuss our motivation behind 
MoRA; then, we introduce the error identification stage and refinement agents. Finally, we discuss how these 
agents are routed iteratively to correct different errors in the solutions generated by the LLM.

Error Analysis : 
● LLMs demonstrate good problem comprehension ability for physics question.
● Open source LLMs sometimes struggles to retrieve correct physics concept and formulae while reasoning. 
● Open-source LLMs struggles with algebraic and arithmetic computation required while solving physics questions.

Setup : 
● Datasets : In our experiments, we use four datasets: SciEval-Static, PhysicsQA, MMLU High School and MMLU College. 

SciEval-Static is a subset of SciEVal , consisting 164 questions from physics divided into multiple sub-topics. MMLU , 
consists of a 118 College level and 173 high school multiple-choice questions from various disciplines.

● LLMs :  We utilize the API of a range of models with varying parameters and capabilities including LLaMa-3-70B, LLaMa 
3.1-405B, Gemma-2-27B, Gemini-1.5-Flash, GPT- 3.5 Turbo and GPT-4 as our LLMs for the evaluation. We use same 
prompts for all the datasets and LLMs during our Evaluation.

● Baselines : We employ an Answer-only approach (AO), where the model is given a question with four options and asked to 
select the correct answer without any explanation relying solely on its pre-existing knowledge . In contrast, few-shot 
prompting uses a few examples to help the model learn and apply that knowledge to similar tasks. Chain-of-Thought (CoT) 
prompting guides the model to generate intermediate reasoning steps, improving its performance on complex tasks by 
breaking them down into smaller, more manageable parts. These three approaches form our primary baselines.

● Evaluation :  Most of the existing works measure the mathematical reasoning quality of LLMs by directly comparing the 
final answer and calculating the overall accuracy on a given dataset. We choose to follow the same evaluation for physics 
reasoning as well.


