

Motivation

- **Behavior Trees (BTs)** are interpretable, but traditional BTs rely on hand-crafted symbolic conditions, struggling with visual and textual inputs.
- **Vision-Language Models (VLMs)** enable to process high-dimensional perceptual inputs, but they are too slow and expensive for real-time use.
- To build lightweight alternatives, **Imitation Learning (IL)** can be used but requires large amounts of expert labels, while **Reinforcement Learning (RL)** avoids expert supervision but often causes semantic drift and poor credit assignment in BTs.

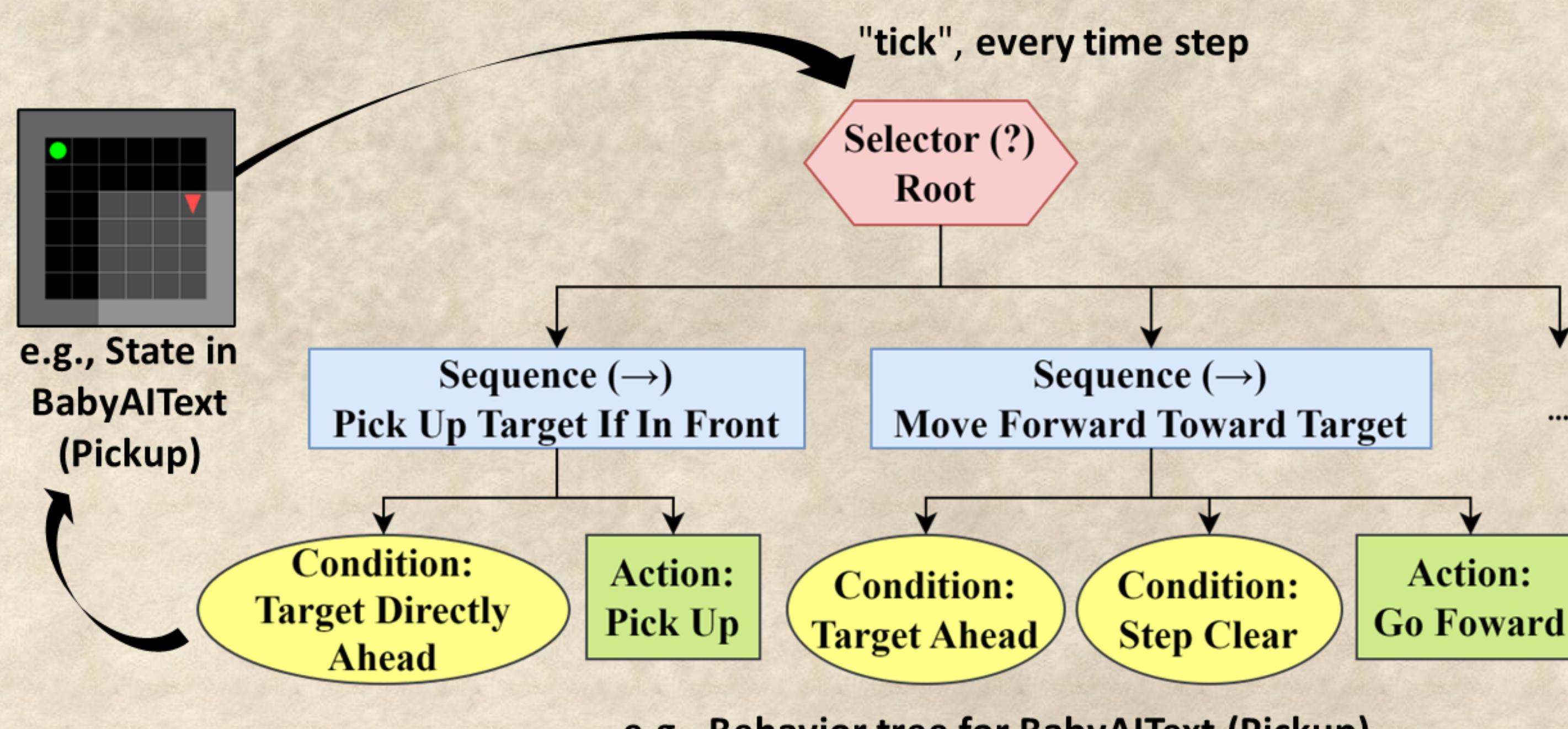
We need a **lightweight and faithful way to check conditions from perceptual inputs in BTs.**

Contribution

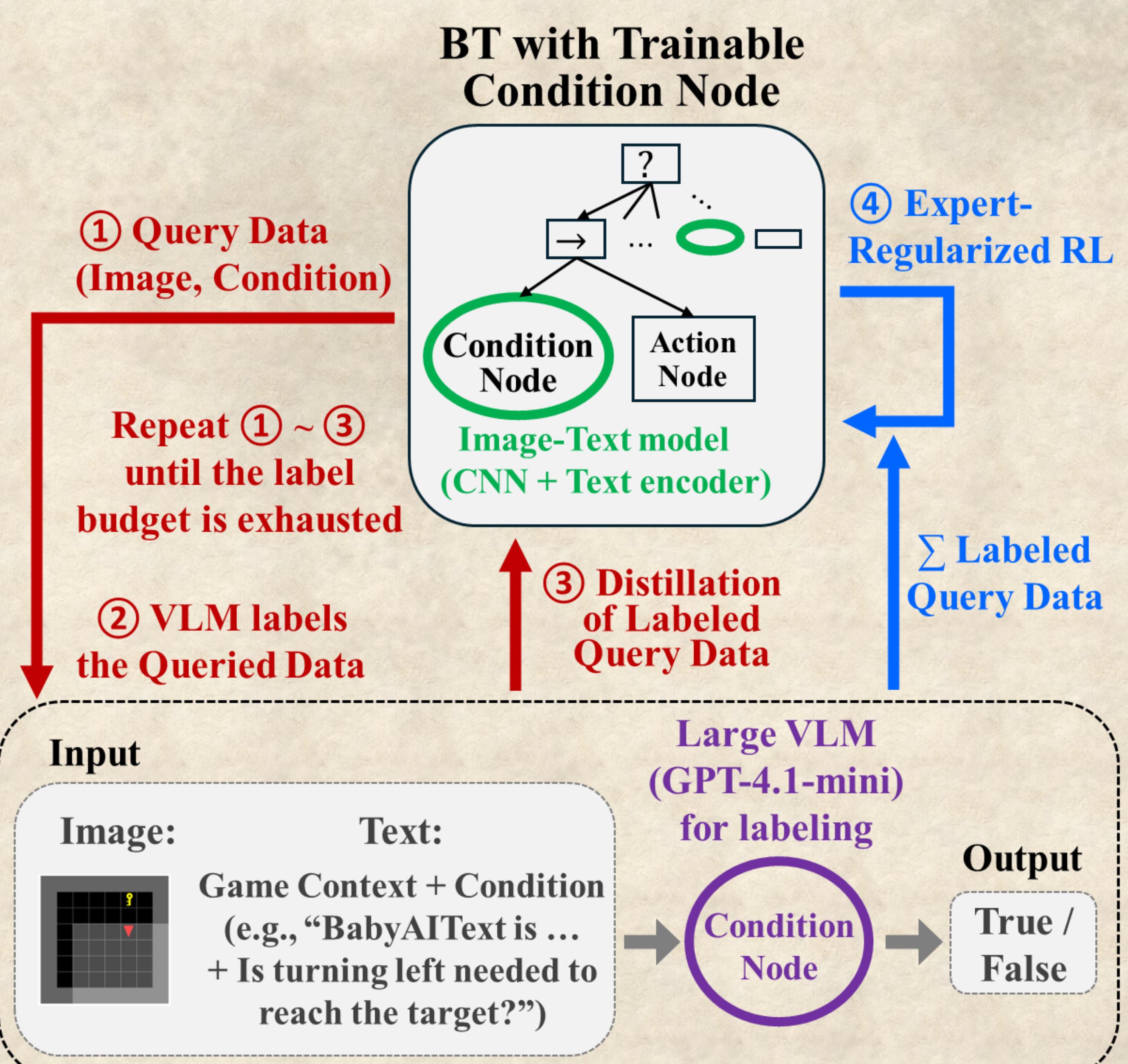
- A unified framework **integrating IL and RL** via expert regularization and **sampling-based policy gradients** for BT-driven policies from perceptual inputs.
- **Factorized formulation** that aggregates a sequence of condition-node decisions into a single decision unit to improve credit assignment.
- Achieves high success rates over IL or RL alone, strong agreement with expert decisions, and orders-of-magnitude faster inference than VLM experts.

Behavior Tree

- Behavior Tree (BT) is a **hierarchical control structure** that is human-readable, modular, reusable, and reactive, making it well-suited for interpretable decision-making.
- **Control Nodes** such as Sequence (→) or Fallback (?) manage the logic flow, while **Leaf Nodes** perform Actions (rectangles) or check Conditions (ellipses).
- A "tick" signal pulses from the root to leaf, allowing the tree to be reactive by constantly updating node statuses as Running, Success, or Failure.



Methodology



- **Expert Labeling (①, ②):** A VLM (GPT-4.1-mini) evaluates natural-language condition queries on image inputs.
- **Warm Start (③):** The lightweight condition node is initialized using Behavior Cloning or DAgger.
- **Expert-Regularized RL (④):** PPO is used to optimize task reward while maintaining semantic alignment via cross-entropy regularization with the expert labels used during initialization.

Experiment Results

Metrics	Model	Success Rate	Accuracy
Expert (GPT-4.1-mini)		84.89	100.00
IL	BC	59.75	90.35
	DA	50.32	89.53
Avg (%) ↑	RL _b	19.14	63.10
	RL _f (ours)	47.29	67.51
IL + RL (ours)	init _{BC} + RL _f w/ ER _{1.0}	77.96	91.89
	init _{BC} + RL _f w/ ER _{0.1}	79.89	89.50
Ablation	RL _f w/ ER _{0.1}	52.75	83.44
	init _{BC} + RL _f	77.21	83.34
	init _{DA} + RL _f w/ ER _{0.1}	74.04	90.22

- Evaluated on **7 tasks** from GymCards, FrozenLake, and BabyAIText over 4 random seeds.
- **Performance:** IL+RL achieves ~80% success rate, outperforming IL (~60%) and RL (~47%) baselines.
- **Accuracy:** Maintains ~90% agreement with expert
- **Efficiency:** Inference time, ~0.09s/episode vs ~63s/episode; Model size, 6.6M vs ~7B parameters for IL+RL models and VLM respectively.
- **Cost:** ~208k expert queries (~\$97 total).