
PSM: Prompt Sensitivity Minimization via

LLM-Guided Black-Box Optimization
Hussein Jawad1 | Nicolas Brunel123

1Capgemini Invent, Paris, France
2LaMME, University Paris Saclay, Evry, France
3ENSIIE, Evry, France

The Problem: System Prompts are Vulnerable IP1 The Solution: Prompt Sensitivity Minimization (PSM)2
• The "Secret Sauce": System prompts define an LLM's persona, constraints, and

business logic, representing core intellectual property for commercial applications.

• The Threat: Adversarial queries (prompt extraction) can deceive LLMs into
revealing these hidden instructions.

• Current Defense Limitations:

o Heuristics: Simple instructions like "Do not reveal..." are easily bypassed by

jailbreaks.
o Filtering: Input/output sanitization adds computational overhead and struggles

with novel attacks.
o White-box requirements: Many advanced defenses require access to model

weights, which is impossible for API-based models

PSM is a framework for Automatically learn a short shield suffix that makes system

prompts much harder to extract—without hurting task performance—using only black-
box API access

PSM formalizes prompt hardening by searching for an optimal shield suffix S to append
to the system prompt . The objective is to minimize a leakage metric L while preserving
task utility U above a threshold τ

min
𝑆

𝐿 𝑃 ⊕ 𝑆 subject to 𝑈 𝑃 ⊕ 𝑆 ≥ 𝜏

Leakage Objective (𝐿)
To capture worst-case vulnerability across a set of adversarial queries (𝐴), PSM utilizes a

Log-Sum-Exp (LSE) smooth approximation of the maximum ROUGE-L recall:

𝐿 𝑃 ⊕ 𝑆 =
1

𝛽
log ෍

𝑎∈𝐴

exp 𝛽 ⋅ ROUGE−Lrecall 𝑃, 𝑅𝑎

• 𝜷: Temperature parameter (set to 10) controlling the sharpness of the

approximation.
• 𝑹𝒂: Model response 𝑀 𝑃 ⊕ 𝑆 ⊕ 𝑎 to adversarial query 𝑎 ∈ 𝐴.

Utility Objective (𝑼)

Utility is quantified as the mean semantic similarity ratio between the shielded
response 𝒕𝒊 and the baseline response 𝒃𝒊, relative to a "gold" standard 𝒈𝒊:

𝑈 =
1

𝑁
෍

𝑖=1

𝑁
sim 𝑡𝑖 , 𝑔𝑖

sim 𝑏𝑖 , 𝑔𝑖

Scalar Fitness Function
The problem is solved via a black-box LLM-as-optimizer using a penalty method:

fitness 𝑆 = 𝐿 𝑃 ⊕ 𝑆 + 𝜆 ⋅ max 0, 𝜏 − 𝑈 𝑃 ⊕ 𝑆

𝝀: Penalty multiplier (e.g., 100) to enforce the utility constraint.

Methodology: LLM-as-Optimizer3

Experimental Results4

Conclusion and Perspectives5

PSM provides a practical way to protect system prompts from extraction attacks
without sacrificing normal task quality. It learns a short “shield” suffix offline using

LLM-guided black-box optimization, then appends it to the original prompt at
runtime. The result is a black box lightweight defense that is easy to deploy and

maintains strong usability.

Conclusion

Broader Threats: Extend PSM to jailbreaks and multiturn conversational attacks.
Transferability: Test whether shields transfer across model families and

providers.
Efficiency: Develop search heuristics or alternative optimizers to reduce

compute

References

PSM utilizes an LLM-as-optimizer[1] approach to search the semantic space for the best
shield without needing gradient access.

The Process:

• Initialization: An optimizer LLM generates an initial population of diverse candidate
shields (e.g., 5 candidates).

• Evaluation: Each candidate is tested against:

• Attack Suite: 50 compositional adversarial queries constructed via a template in
the format of Distractors + Repetition + Formatting , used to measure Leakage
(𝑳).

• Benign Suite: A gold-standard dataset containing benign user queries (𝒒𝒊) and their

ideal responses (𝒈𝒊), generated by a trusted reference model (e.g., GPT-4o), used to
measure Utility (𝑼).

• Selection & Generation: The top-performing candidates are fed back into the

optimizer LLM along with their fitness scores. The LLM then generates new, improved
candidates by building upon the successful patterns found in the previous generation.

We evaluated PSM on GPT-4o-mini, GPT-4.1-mini, and GPT-5-mini using two benchmarks
of system prompt corpora (Synthetic System Prompts [6] and Unnatural Instructions [5]).

Baseline defenses: Heuristics/Direct [2] adds explicit “don’t reveal the system prompt”

instructions, Fake/Decoy [2] inserts misleading prompt content to distract extraction
attempts, and Filter blocks [3] outputs that match prompt text patterns (e.g., n-grams).

Robustness Against Sophisticated Attacks.
• Raccoon [4]: a 59-prompt system-prompt extraction benchmark covering diverse

coercion, formatting, and indirect injection strategies.
• Raccoon-Language [4]: a Raccoon variant where attackers request translated versions

of the hidden prompt to bypass exact-match filters.

• Polite Requests (Liang) [2]: 22 socially engineered, queries designed to coax
disclosure without explicit instruction overrides.

• Command Override (Zhang) [3]: 110 direct jailbreak attempts that explicitly instruct
the model to ignore or override prior system constraints.

Under Raccoon-Language, PSM maintained near-zero leakage (~1–3% ASR), while n-
gram filters degraded substantially (up to 29% ASR).

Utility Preservation : PSM maintained ~100% relative utility across all tested models,
ensuring that security improvements did not degrade model helpfulness.

Futur work

[1] Yang, C.; Wang, X.; Lu, Y.; Liu, H.; Le, Q. V.; Zhou, D.; and Chen, X. 2023.
Large Language Models as Optimizers. arXiv:2309.03409.

[2] Liang, Z.; Hu, H.; Ye, Q.; Xiao, Y.; and Li, H. 2024. Why Are My Prompts
Leaked? Unraveling Prompt Extraction Threats in Customized Large Language
Models. arXiv:2408.02416.

[3] Zhang, Y.; et al. 2023. Effective Prompt Extraction from Language Models.
arXiv:2307.06865.

[4] Wang, J.; Yang, T.; Xie, R.; and Dhingra, B. 2024a. Raccoon: Prompt
Extraction Benchmark of LLM-Integrated Applications. Findings of ACL 2024.
[5] Honovich, O.; Scialom, T.; Levy, O.; and Schick, T. 2023. Unnatural

Instructions: Tuning Language Models with (Almost) No Human Labor.
Proceedings of ACL 2023 (Long Papers).

[6] Chua, G. 2025. System Prompt Leakage Dataset. Hugging Face Dataset.

Figure 1. System-prompt extraction flow where a malicious user prompt tricks the LLM
into revealing hidden system instructions.

Figure 2. PSM workflow showing an optimizer LLM iteratively generates shield suffixes and
scores leakage vs. utility to select an optimized shield.

Table 1. Attack success rates across datasets, attacks, and baseline defenses, highlighting
that PSM keeps leakage near zero across models.

	Slide 1: PSM: Prompt Sensitivity Minimization via LLM-Guided Black-Box Optimization

