
Blue Teaming Function-Calling Agents
Greta Dolcetti1†, Giulio Zizzo2, Sergio Maffeis3

1Ca’ Foscari University of Venice, Venice, Italy
2IBM Research Europe, Dublin, Ireland
3Imperial College London, London, UK

†Work done while at IBM Research

Corresponding author: greta.dolcetti@unive.it
AAAI 2026 - Trustworthy Agentic AI Workshop

Motivation

• Function-calling LLMs enable agentic systems to perform actions and interact 
with the environment via external tool execution

• Their adoption is rapidly increasing

• Security of open-source function-calling agents is still underexplored

• Function-calling alone does not prevent misuse or harmful behavior, even if 
defences are enforced

The goal of this work is threefold: 

(i) to systematically evaluate the robustness of open-source function-calling 
LLMs against multiple classes of attacks; 

(ii) to assess the effectiveness and limitations of existing preventive and active 
defences; 

(iii) to introduce and evaluate a new attack and a new defence.

Function-calling models are not safe by default
Dedicated defences are required

Key findings:
• No silver-bullet defence exists for function-calling agents
• Description Rewriting and Watermarking are the most promising
• LLM-based guardians are ineffective due to limited generality or high FPR

Future work:
• Develop specialized models for function-calling scenarios
• Create dedicated datasets for training and evaluation

Experimental Setup

Experimental Results Without Defences

Experimental Results With Defences

• 172 query-answer pairs 
from the BFCL dataset 
+ generated function 
implementation

• 4 open source LLMs
• Qwen3:8B
• Llama-3.2:3B
• Granite3.2:8B
• Granite3.3:8B

• Ollama + DSPY for 
constrained output 
generation

Conclusions and Future Work

What's the weather 
like in Dublin?

MCP SYSTEM

C

L

I

E

N

THOST
SERVER

Query

MCP 
Protocol

{System 
prompt, user 

query, tool list, 
tool selection, 

tool call}

The weather in 
Dublin now is 
cloudy.

Direct 
Prompt 

Injection

Tool
Poisoning

LLM
based

Prompt
based

LLM
based

Watermark

Tool 
sanitization

An attack has been 
detected.
Refusal state.

Context

Attack + Defence

Attack

No Attack

Creation of Input
Benchmark 

Attacks
The attacks we tested in our experimental evaluation have a single objective: to 
induce the function-calling agent to call a malicious target function. The three 
available attacks differ in terms of the target against which the attack vector is 
appended, the attack vector itself, and the scope of modifications that can be 
performed.

• Direct Prompt Injection (DPI): embeds malicious instructions directly in the 
user query to override the agent’s tool-selection behavior

• Simple Tool Poisoning (STP): injects adversarial payloads into tool 
descriptions to mislead the agent into selecting a malicious function

• Renaming Tool Poisoning (RTP): manipulates both tool descriptions and 
implementations to confuse the agent by exploiting the visibility of tool code

We evaluate preventive and active defences across all attacks:
 - Preventive defences: reduce attack surface without detection
 - Active defences: detect attacks and trigger refusal

• Cosine Similarity: selects tools based on query–tool embedding similarity.
• Tool Obfuscation: removes exploitable cues from tool names and 

implementations
• Description Rewriting: aligns tool descriptions with their actual 

implementations

• Watermarking: verifies tool authenticity via cryptographic signatures
• Query Jailbreak Detector: detects prompt injection in user queries
• Query Answer Consistency: checks whether the selected function matches 

the query
• Tools Jailbreak Detector: detects malicious content in tools
• Query Tools Consistency: validates coherence between the query and 

available tools

Defences
The baseline (no attack performed) is shown in the first row of the table below, 
exhibiting how the accuracy (i.e., the percentage of correct tool calls for each 
scenario out of the 172 instances of the experimental dataset) varies from 92% 
to 66% according to the model.

The results for all the models with no defences are shown in the table below, 
showing the accuracy and the Attack Success Rate (ASR) for each model and 
attack combination without the application of any defence.
From these results, it is clear that function-calling models are not robust by 
default, even though the effectiveness of each attack depends on the model.

We evaluated preventive and active defences across all models and attacks.

Description Rewriting and Tool Obfuscation reduced tool poisoning while 
preserving accuracy, whereas Cosine Similarity showed mixed performance. 
Among active defences, Watermarking reliably blocked malicious tool calls, 
while query-based detectors performed well against prompt injections but 
showed variable false positives.

Overall, no single defence secures function-calling agents, highlighting the need 
for combined and context-aware strategies.

A qr code with red circles

AI-generated content may be incorrect.

A qr code with red circles

AI-generated content may be incorrect.

http://arxiv.org/abs/2601.09292
http://arxiv.org/abs/2601.09292

	Sezione senza titolo
	Slide 1


