Blue Teaming Function-Calling Agents

@ he. Greta Dolcettil’, Giulio Zizzo?, Sergio Maffeis? @ he.
®* ® @ ®* ® @

LA LA

l arXiv: . l Xi
2601.00292 ® 2IBM Research Europe, Dublin, Ireland L 2

3Imperial College London, London, UK
"Work done while at IBM Research

1Ca’ Foscari University of Venice, Venice, Italy

Corresponding author: greta.dolcetti@unive.it
AAAI 2026 - Trustworthy Agentic Al Workshop

ot § e

Function-calling LLMs enable agentic systems to perform actions and interact MCP SYSTEM
with the environment via external tool execution -
* Their adoption is rapidly increasing | @ |
e Security of open-source function-calling agents is still underexplored MCP
* Function-calling alone does not prevent misuse or harmful behavior, even if A\ Luery Protocol
{System
defences are enforced =] orompt, user

query, tool list,
tool selection,
tool call}

The goal of this work is threefold:

(i) to systematically evaluate the robustness of open-source function-calling

LLMs against multiple classes of attacks; The weather in
.. ) L. o ] ] Dublin now is @
(i) to assess the effectiveness and limitations of existing preventive and active cloudy. S

defences;

(iii) to introduce and evaluate a new attack and a new defence.

Experimental Setup _ Amacks

e 172 query-answer pairs The attacks we tested in our experimental evaluation have a single objective: to

Creation of Input Attack from the BFCL dataset  induce the function-calling agent to call a malicious target function. The three
Benchmark + generated function available attacks differ in terms of the target against which the attack vector is
implementation appended, the attack vector itself, and the scope of modifications that can be
performed.
* 4 open source LLMs
« Qwen3:8B e Direct Prompt Injection (DPI): embeds malicious instructions directly in the
« Llama-3.2:3B user query to override the agent’s tool-selection behavior
- Granite3.2:8B  Simple Tool Poisoning (STP): injects adversarial payloads into tool
« Granite3.3:8B descriptions to mislead the agent into selecting a malicious function
: .  Renaming Tool Poisoning (RTP): manipulates both tool descriptions and
e Ollama + DSPY for implementations to confuse the agent by exploiting the visibility of tool code
No Attack Attack + Defence constrained output
generation

Experimental Results Without Defences

The baseline (no attack performed) is shown in the first row of the table below, = We evaluate preventive and active defences across all attacks:
exhibiting how the accuracy (i.e., the percentage of correct tool calls for each - Preventive defences: reduce attack surface without detection
scenario out of the 172 instances of the experimental dataset) varies from 92% - Active defences: detect attacks and trigger refusal

to 66% according to the model.

* Cosine Similarity: selects tools based on query—tool embedding similarity.
The results for all the models with no defences are shown in the table below, * Tool Obfuscation: removes exploitable cues from tool names and

showing the accuracy and the Attack Success Rate (ASR) for each model and implementations
attack combination without the application of any defence. * Description Rewriting: aligns tool descriptions with their actual
From these results, it is clear that function-calling models are not robust by implementations

default, even though the effectiveness of each attack depends on the model.
 Watermarking: verifies tool authenticity via cryptographic signatures

Attack Type Qwen3:8B Llama3.2:3B  Granite3.2:8B Granite3.3:8B  * Query Jailbreak Detector: detects prompt injection in user queries
ACC ASR ACC ASR ACC ASR ACC ASR * Query Answer Consistency: checks whether the selected function matches

No attack 092 0 066 0  0.84 0 0.78 0 the query

DPI 006 094 020 058 0.34 0.56 0.80 0 * Tools Jailbreak Detector: detects malicious content in tools

STP 004 095 050 023 0.72 0.12 0.39 0.51 * Query Tools Consistency: validates coherence between the query and
RTP 024 074 0.69 0.02 0.84 0.01 0.83 0 available tools

Experimental Results With Defences Conclusions and Future Work

We evaluated preventive and active defences across all models and attacks. Function-calling models are not safe by default
Dedicated defences are required
Description Rewriting and Tool Obfuscation reduced tool poisoning while
preserving accuracy, whereas Cosine Similarity showed mixed performance. Key findings:
Among active defences, Watermarking reliably blocked malicious tool calls, * No silver-bullet defence exists for function-calling agents
while query-based detectors performed well against prompt injections but ¢ Description Rewriting and Watermarking are the most promising
showed variable false positives. * LLM-based guardians are ineffective due to limited generality or high FPR

Overall, no single defence secures function-calling agents, highlighting the need Future work:
for combined and context-aware strategies. * Develop specialized models for function-calling scenarios
* Create dedicated datasets for training and evaluation


http://arxiv.org/abs/2601.09292
http://arxiv.org/abs/2601.09292

	Sezione senza titolo
	Slide 1


