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Abstract

Verifiable geometric reasoning is a critical component for
trustworthy and controllable agentic Al. Despite impressive
capabilities, Vision-Language Models (VLMs) often fail un-
der realistic scene changes. We present Tri-Bench, a compact
benchmark of planar triangle problems that isolates relative
geometric reasoning while stressing two deployment-critical
factors: camera pose (planar vs. tilted) and scene context via
object interference (10 everyday objects). To test verifiabil-
ity and control, we evaluate four recent VLMs using a single,
fixed prompt whose guardrail explicitly describes a surround-
ing square border, enabling correct answers via homography.
We evaluate six simple tasks over binary and continuous tar-
gets, and observe that the overall accuracy with respect to
3D ground truth is modest, ~69% on average (best ~75%,
worst ~64%). The same responses align even more closely
with 2D projections in the image plane, where mean accu-
racy is ~72%. All four VLMs consistently fail, with accuracy
falling to ~0%, on recognizing minority shape classes (equi-
lateral, isosceles, right-angled triangles). Additionally, over-
all VLM accuracy degrades by ~4.1% under camera tilt. This
demonstrates that models fail to correctly utilize the explicit
frame-of-reference hint provided in the prompt and default to
2D image plane cues. Finally, we find that object interference
has no significant effect on VLM accuracy.

Introduction

Recent advancements in agentic Al have made Vision-
Language Models (VLMs) an integral part of real-world ap-
plications. Trustworthy and controllable agentic Al for robot
navigation, AR/VR measurement tools, 3D reconstruction,
Al-based 3D geometry teaching, and medical assistance
depends heavily upon verifiable spatial reasoning. Though
VLMs have shown impressive general visual reasoning ca-
pacities, their robustness in realistic geometric tasks remains
a critical unverified barrier to deployment. Current bench-
marks for spatial reasoning often focus either on estimating
absolute distances, angles, orientation, etc. or on problem-
solving in abstract diagrams or scenes. However, severe gaps
exist to stress test against deployment-critical factors like
camera pose invariance and object interference.

To address this fundamental gap, we present Tri-Bench,
a compact benchmark of 400 images built on camera cap-
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tured planar triangle problems. We use the most fundamen-
tal closed geometric structures, namely triangles, for evalu-
ating relative spatial reasoning instead of absolute values.
Unlike absolute spatial reasoning, where identifying dis-
tances and angles matter, we focus on ratios of distances and
differences of angles, which capture deeper spatial reason-
ing attributes in geometry. We provide a frame-of-reference
guardrail to establish a pathway toward accurate geomet-
ric estimation using homography. Our results reveal signif-
icant robustness failures. Our primary contributions are: (i)
A novel controlled benchmark, Tri-Bench, for diagnosing
VLM spatial reasoning robustness to camera pose and ob-
ject interference. (ii) A stress-test with comprehensive anal-
ysis of four leading VLMs, revealing a critical failure mode
where models misinterpret the 3D real world as 2D projec-
tions in the image plane even when provided with sufficient
guardrails. (iii) Identifying majority class bias in precision
tasks (near-zero accuracy on minority shapes) with clear per-
formance gaps across triangle shapes.

Background and Related Work

The evaluation of spatial reasoning in VLMs is a rapidly
growing field. There exists significant work such as Mind
the Gap (Stogiannidis, McDonagh, and Tsaftaris 2025) and
OmniSpatial (Jia et al. 2025) on evaluation of broad, human-
like cognitive skills. These test mental rotation, spatial visu-
alization and navigation. Other works like iVISPAR (Mayer,
Ballout, and Jassim 2025) and "What’s Up?” (Kamath, Hes-
sel et al. 2023) probe the understanding of relative spatial
relations (e.g., left/right, above/below). These benchmarks,
even though foundational, often test broad cognitive logic
rather than isolating robustness of fundamental geometric
measurements. Tri-Bench complements this work by instead
providing a narrow, deep, diagnostic probe for angles and
distances under specific physical perturbations.

Another major research area focuses on geometric reason-
ing from clean, symbolic inputs like text and diagrams, often
in context of mathematical problem solving. Benchmarks
such as MathBench (Liu et al. 2024) and VisioMath (Li et al.
2025) evaluate VLMs on Olympiad-style geometry prob-
lems. NeSyGeo (Wu et al. 2025) and AutoGPS (Ping et al.
2025) are also powerful neuro-symbolic frameworks for data
generation and deductive reasoning. Tri-Bench addresses the
complementary challenge of reasoning from noisy, photore-
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Figure 1: Four capture conditions for triangle 037. Top row
displays the four captures PO, P1, TO, and T1; bottom row
displays the corresponding marked images. The triangle is
obtuse in PO_marked but appears right-angled in TO_marked.

alistic images, bridging the gap between abstract logic and
embodied real-world perception.

Our work is most closely related to benchmarks that test
VLM robustness and specific spatial skills. DynaMath (Zou
et al. 2025) tests robustness by introducing dynamic variants
to math problems. Spatial VLM (Chen et al. 2024) focuses on
improving spatial reasoning capabilities of VLMs and other
works evaluate top-view reasoning (Li et al. 2024) using spa-
tial frames of reference (Zheng et al. 2025). Tri-Bench builds
directly on this as the first benchmark to systematically con-
trol and isolate the effects of camera pose and object interfer-
ence on relative spatial reasoning in a controlled photorealis-
tic setting. We therefore contribute a compact, reproducible
benchmark where specific failure modes are interpretable.

Dataset
Composition and Capture Conditions

We use a 1 meter x 1 meter square and construct 100 la-
beled triangles inside of it. This set of triangles is diverse
with respect to shape and spatial orientation. There are 38
acute triangles, 32 obtuse triangles and, 30 right triangles,
with side types: 64 scalene, 26 isosceles, 10 equilateral. No
two triangles share the exact combination of shape, vertex
labels and placement relative to the square.

We captured 4 views for each labeled triangle, as shown in
Figure 1. We refer to these capture conditions as PO (planar,
no object), P1 (planar, with object), TO (tilted, no object),
and T1 (tilted, with object). For every captured image, we
manually mark the pixel coordinates of points A, B, and C
for measurements in the image plane. The dataset includes
95 uniquely shaped triangles and S repetitions to perturb
labels and positions. Table 1 quantifies how often these 3D
shapes change type after 2D projection, for both side and an-
gle classes. Across the 400 images, about 27% of triangles
change side type and 34% change angle type between 3D
and 2D labels. For side type, only ~7% of scalene images
change class, versus 62.5% for both isosceles and equilat-
eral. For angle type, about 26% of acute, 9% of obtuse, and
~70% of right triangles change class in the image plane.

2D\3D Scal. Isos. Equi. 2D\3D Acute Obtuse Right

Scal. 237 65 20 Acute 113 8 35
Isos. 17 39 5 Obtuse 34 116 49
Equi. 2 0 15 Right 5 4 36

(a) Side type (b) Angle type

Table 1: 3D-2D shape label mismatch. Each cell gives
the number of images whose triangle has a true 3D class
(columns) and an apparent 2D class in the image plane
(rows). For example, there are 65 images with real-world
isosceles triangles that appear scalene in the image plane.

Pose and Context Factors

Pose. The planar view approximates orthographic capture;
the tilted view introduces in-plane rotation and mild per-
spective (implicit scale change), with camera tilt angles var-
ied by hand across a realistic range.

Objects. We use ten everyday objects, each with 10 place-
ments: Rubik’s cube, glass vase, electric steam iron press,
non-fiction book, water kettle, apple, make-up box, plastic
stool, 15.6” laptop, and a medium pillow. Objects are al-
ways placed inside the square border. Occlusions are anno-
tated (25 images with partial occlusion of at least one trian-
gle edge and exactly 1 image with a fully occluded triangle
vertex); further capture details are given in Appendix B.

Labeling Rules and Tolerances
Let (a, b, c) be side lengths sorted by magnitude. We define:

* Isosceles: . )
mm( o=t fb-d Ja—d ) <3%.
max(a,b)’ max(b,c)’ max(a,c)
* Equilateral:
all pairwise relative side ratios lie within 3%.
* Right:
30 € {LA, /B, /C}s.t. 16 —90°| < 2°.
All code, data, and scripts are available on GitHub.'. Ad-
ditional construction details are provided in Appendix B.

Tasks and Metrics

We evaluate six well-rounded specific geometric reasoning
tasks relative to the triangle formed by joining the points A,
B and C in a given image, as below:

* QL. Is triangle ABC equilateral, isosceles, or scalene?

* Q2. Is triangle ABC acute, right, or obtuse?

* Q3. Estimate AB/AC.

* Q4. Estimate |/ABC — LACB|°.
max{AB, BC,CA}
min{AB, BC,CA}"
* Q6. Estimate max{|/A — /B|, |/B — /C|, |/C —

LAl}e.

¢ Q5. Estimate

"https://github.com/Amiton7/Tri-Bench



Intuition: Solving Q1 requires identifying if two planar line
segments are equal without absolute measurements. Simi-
larly, Q2 requires identifying the largest angle and compar-
ing it with a right-angle. Solving Q3 and Q4 requires first
point location, then comparing the ’factor” by which one ge-
ometric entity (distance or angle) differs from the other. Q5
and Q6 require identifying the maximum and minimum geo-
metric entities and computing the differentiating "factor”. In
all six questions, we do not provide exact distances, angles,
or an absolute coordinate system. This forces the VLMs to
use qualitative and quantitative reasoning for precise com-
parisons. Testing without such explicit measurements brings
out the true capacity for geometric reasoning.

Unified Evaluation: Accuracy and Error

For each task ¢ € {1,...,6}, the metrics are defined for a
single image instance. We report accuracy ~; and error &,
where k; = 1 — &;. The errors ¢; are defined as below.
Notation: § = prediction made by VLM; y = ground truth;
Omaz = 180°.

Categorical (Q1, Q2). The error is 1 if the prediction is
wrong, 0 otherwise.

ee=1-1g=y}
Relative Ratio (Q3, Q5). This is a relative error.
19— yl)
Y

Normalized Angle (Q4, Q6). The error is the absolute dif-
ference normalized by 6,,,,, = 180°.

Iz)—yl).

om ax

€t = min(l,

€t = min(l7

We use categorical error for tasks Q1 and Q2, to evaluate the
precision of reasoning in shape classification. The relative
errors for Q3 and QS5 are due to the fact that distance ratios
are scale invariant (e.g. an error of 0.5 is more significant for
true ratio of 1.5 than for true ratio of 5.0). Finally, for the
angle tasks Q4 and Q6, normalized error bounds the metric
to a range, allowing unified comparison across six tasks.

Experimental Protocol

Models. We evaluated four recent VLMs: Gemini 2.5 Pro,
Gemini 2.5 Flash, GPT-5, and Qwen2.5-VL-32B. Prompts
and parsing templates were identical for all models; sam-
pling used API defaults. No chain-of-thought or structured
rationales were used.

Conditions. We report accuracy (k) separately for the
four capture conditions PO, P1, TO, and T1. In the Results
section, we also summarize brittleness by comparing planar
vs. tilted (PO/P1 vs. TO/T1) and no object vs. with object
(PO/TO vs. P1/T1) accuracies.

Prompting. We evaluated all models using a single,
fixed zero-shot prompt. The prompt defines the scene (e.g.,
A=RED), including the explicit “guardrail” hint of the
“light-brown masking-tape square border.” It then lists the
six evaluation tasks and strictly enforces a JSON-only out-
put with six pre-defined keys to ensure parsable responses.
The full prompt is provided in Appendix A.

Model K3D K2D
Gemini 2.5 Pro 75.30 80.89
Gemini 2.5 Flash 71.58 77.14

GPT-5 64.32  65.04
Qwen2.5-VL-32B  64.70  66.22
AVERAGE 68.98 72.32

Table 2: Overall accuracy (%) of VLMs w.r.t. 3D Ground
Truth (k3p) and 2D projections in the Image Plane (x2p)

Results

Our results reveal several critical failure modes in lead-
ing VLMs. First, we find that VLM estimates align
more closely with the 2D projections in the image plane
than the 3D ground truth, proving they fail to use the
prompt’s ’guardrail’ hint. Second, accuracy on precision
tasks (Q1/Q2) drops to almost 0% for non-majority classes.
Third, camera tilt consistently degrades performance, while
object interference has a negligible effect. Across tasks,
Gemini 2.5 Pro and Gemini 2.5 Flash consistently outper-
form GPT-5 and Qwen2.5-VL-32B. Additionally, relative
comparison tasks (Q4, Q6) are much easier for all models
than absolute angle identification (Q2) and specific ratio es-
timation (Q3).

3D vs. 2D Misinterpretation

A core finding of our work is that VLMs are not perform-
ing true 3D-aware reasoning. As shown in Table 2, when we
re-compute accuracy with respect to the 2D projections in
the image plane, the Gemini models gain roughly 5-6 %,
and the overall mean accuracy rises from 68.98% (3D) to
72.32% (2D). GPT-5 and Qwen2.5-VL-32B improve only
slightly (by about 1-2%). This strongly suggests that, on av-
erage, models default to 2D image-plane cues rather than
using the 3D homography information provided by the sur-
rounding square “guardrail.”

Precision Tasks and Majority Class Bias

We find that VLMs are overconfident and fail dramati-
cally at precision tasks. Table 3 shows the breakdown of
the accuracy of Q1 and Q2 by the frue shape. While ac-
curacy for ’Scalene’ (99.51%) and ’Acute’ (85.69%) ap-
pears high, this is deceptive. These are the majority classes
in our dataset (64% and 38% respectively). For the rarer,
precision-critical classes, accuracy plummets to 1.88%
(Right-angled), 1.44% (Isosceles), and 0.00% (Equilat-
eral). This suggests VLMs are not performing fine-grained
reasoning but are exhibiting a strong majority class bias,
defaulting to ’Scalene” or ”Acute” regardless of the image’s
true geometry. Qwen2.5-VL-32B shows a total failure, scor-
ing 0% on all non-majority shape classes.

Effect of Tilt and Object Interference

Figure 2 shows average accuracy across all four models for
each task and capture condition.

1. Camera tilt degrades performance. Across all mod-
els and questions, planar views (PO/P1) reach 71.0% accu-
racy, while tilted views (T0/T1) drop to 66.9%, i.e. about



Model Scal. Isos. Equi. Acute Obtuse Right
QD @QH @QH Q) (@Q2) Q2

Gemini 2.5 Pro 99.61 288 0.00 7829 8828 0.00
Gemini 2.5 Flash  98.83 1.92 0.00 72.37 8047 5.83
GPT-5 99.61 096 0.00 92.11 3091 1.67
Qwen2.5-VL-32B 100.00 0.00 0.00 100.00 0.00 0.00

AVERAGE 99.51 1.44 0.00 85.69 43.16 1.88

Table 3: Accuracy (%) on precision tasks (Q1, Q2) drops
significantly to near-zero for all non-majority shape classes,
revealing a strong majority class bias.

WP mP O mT

100

Q1 Q2 Q3 Q4 Q5 Q6

Figure 2: Average accuracy across all models for each task
(Q1-Q6) under the four capture conditions PO, P1, TO, and
T1. Tilted views (TO/T1) are consistently less accurate than
planar views (PO/P1), while the presence of an object (P1/T1
vs. PO/T0) has only a minor effect.

4% . For Q2, and Q5, tilt reduces accuracy by roughly 6-7
% , and for Q3 by about 5% indicating a clear lack of pose
invariance.

2. Object interference is negligible. Aggregating over
pose and question, ‘“no-object” images (PO/T0) achieve
69.2% accuracy versus 68.8% for “with-object” images
(P1/T1), i.e., a difference of less than 1%. This suggests that
VLMs are relatively robust to this form of contextual clutter.

Overall Model and Task Performance

Across the benchmark, Gemini 2.5 Pro is the strongest
model, with Gemini 2.5 Flash close behind; GPT-5 and
Qwen2.5-VL-32B consistently achieve lower accuracy (Ta-
ble 2). For Q1, overall accuracy is 64.06%, almost identical
to the proportion of scalene triangles in the dataset (64%),
and remains near 64% across all four capture conditions
(PO-T1), indicating a strong, pose- and context-independent
majority class bias (Table 3). Figure 2 reveals a clear per-
formance gap between task types: within angular reason-
ing, absolute angle-type identification (Q2) is much harder
than relative angle comparison (Q4, Q6), and the max/min
side ratio task QS is also noticeably easier than the absolute
ratio estimation task Q3.

Limitations and Future Work

Our study is subject to several key limitations. The bench-
mark’s construction is controlled, with all triangles always
co-planar with the square border and fixed lighting, which
might not capture the full variance of real-world captures.

Our evaluation is also based on a single image. Infer-
ence through multi-view geometry seems a natural exten-
sion, with minimal guardrails.

While we test ’tilt” as a binary factor (planar vs. tilted), a
more granular study could measure the precise relationship
between specific tilt angles and accuracy degradation.

We deliberately use a single fixed guardrail prompt to test
whether VLMs can follow an explicit frame-of-reference.
More advanced prompting can be done in the future.

Though our metrics address a significant gap in existing
literature, there still exist other gaps, where different evalu-
ation metrics can be followed on our dataset.

It is possible that the majority class bias shown in Table
3 is inherited from real-world training data, where scalene
and acute triangles are more common, but we do not analyze
training distributions and leave this to future work.

Finally, our work is limited to triangles. A necessary ex-
tension will be to apply this methodology to more complex
shapes, such as other polygons, self-intersecting curves, and
smooth differentiable surfaces.

Conclusion and Broader Impact

We introduced Tri-Bench, a compact benchmark for VLM
spatial reasoning that isolates the effects of camera pose
and object interference. We identified critical failure modes,
finding that VLLMs default to 2D image plane reasoning and
fail to use explicit 3D “guardrail” prompts. This 2D bias
leads to a strong majority class bias, with precision accu-
racy on non-majority shapes dropping to near-zero, and a
consistent performance degradation under camera tilt.

These findings are significant for the “Trustworthy Agen-
tic AI” community. They demonstrate that verifiability and
control are not guaranteed by simple prompting. If an agent
cannot be trusted to perform basic 3D reasoning on a sim-
ple triangle, it cannot be deployed in safety-critical robotics
or autonomous navigation tasks where such reasoning is
paramount. Tri-Bench offers a minimal, reproducible di-
agnostic for this critical capability gap, marking a neces-
sary step toward building genuinely robust, controllable, and
trustworthy agentic Al
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Prompt and Model Details
Exact Text Prompt

The image shows triangle ABC whose vertices are
the centres of three small coloured square stickers:
A=RED, B=YELLOW, C=BLUE. A light-brown masking-
tape square border surrounds the scene in the same plane as
triangle ABC. All questions refer to triangle ABC. Angles
are in DEGREES. £/ ABC denotes the interior angle at ver-
tex B. Round all numeric answers to EXACTLY 4 decimals.

Q1. Is triangle ABC equilateral, isosceles, or scalene?

Q2. Is triangle ABC acute, right, or obtuse?

Q3. In triangle ABC, by what factor is the length AB greater
than length AC? (i.e., estimate AB / AC.)

Q4. In triangle ABC, by how much do angles ZABC' and
LACB differ? (i.e., estimate |[ZABC — LACB]| in de-
grees.)

Q5. In triangle ABC, what is (longest side) / (shortest side)?
Q6. In triangle ABC, what is (largest interior angle — small-
est interior angle) in degrees?

Return STRICT JSON ONLY - no prose, markdown, code
fences, or extra keys. Use EXACTLY these keys; numbers
must have exactly 4 decimals:

"side_type": one of “equilateral”, “isosceles”, “sca-
lene”.

"angle_type": one of “acute”, “right”, “obtuse”.
"ab_over_ac": number with 4 decimals.
"abs_b_minus_c_deg": number with 4 decimals.
"max_over min_side": number with 4 decimals.
"angle_range_deg": number with 4 decimals.

Output only the JSON object with these six keys and the
computed values for THIS image.

VLM API identifier

Gemini 2.5 Pro gemini-2.5-pro-preview-03-25
Gemini 2.5 Flash gemini-2.5-flash

GPT-5 gpt-5-2025-08-07
Qwen2.5-VL-32B  gwen2p5-v1-32b-instruct

Table 4: VLMs and API identifiers used in all experiments.

Evaluated VLMs and API Identifiers

Table 4 lists the exact API names used in our experi-
ments. The open-source model Qwen2.5-VL-32B was ac-
cessed through an API on fireworks.ai. For GPT-5 (vision),
we query via OpenAI’'s gpt-5-chat-latest endpoint,
which at the time of our experiments resolved to snapshot
gpt—-5-2025-08-07.

Dataset Construction

We built the dataset manually in a realistic indoor setting. All
side lengths were measured with a regular measuring tape.
We ensured that the interior square border is exactly 100 cm
x 100 cm (width of tape = 4.8 cm). Three square-shaped (3
cm X 3 cm) thin coloured paper cut-outs were used for la-
beling points A, B, and C. Before taking any photos, we first
fixed the target triangle shapes to cover a diverse set of side—
angle patterns, and then varied the position of each triangle
on the flat surface so that shape and location are not tied
together. For equilateral and right-angled triangles we used
a protractor with fine markings. For isosceles triangles we
first placed two vertices and then positioned the third so that
one of the new sides matched in length. Obtuse and acute
triangles were constructed using our own simple geometric
insights.

We aimed for a 4 : 3 : 3 split of acute/obtuse/right and
a 6:3:1 split of scalene/isosceles/equilateral. Because final
labels are assigned from precise measurements, a few manu-
ally placed triangles that were intended to be acute ended up
just inside the obtuse or right categories, and a few intended
isosceles triangles moved into the scalene class by a very
small margin. We also pre-planned the pairing of objects
and triangles so that each object interferes with exactly 10
triangles (20 images across P1 and T1) and appears across
different shape and angle types (for example, the “apple”
object is used with acute, obtuse, and right triangles).

Lighting came from 9 ceiling lights with curtains closed
to avoid daylight. We tried our best to keep any object shad-
ows outside the taped square border. Images were captured
using the default camera app on an iPad Air (M1, 2022); the
original . HEIC files were converted to . JPG at a fixed res-
olution using a simple Python script. Camera tilt was varied
by hand to mimic realistic usage, matching practical scenar-
ios where VLM-powered agents might be used for every-
day measurement tasks. Partial occlusion of the square bor-
der or a triangle edge was sometimes unavoidable for larger
objects, especially when we varied camera tilt. Even count-
ing very small or tangential overlaps, this affects only about
6.25% of all images. We intentionally kept exactly 1 image



Figure 3: The ten everyday objects used in Tri-Bench.

in which a triangle vertex is completely occluded. These oc-
clusion cases add an extra robustness factor to the dataset.

The choice of objects was meant to probe different
kinds of interference. We selected ten everyday items vary-
ing in rectilinearity (flat-sided objects versus more organic
shapes), familiarity (how easy it is to guess their size), and
scale (small items such as a Rubik’s cube versus larger items
such as a pillow). Figure 3 shows all ten objects in a single
image (captured under slightly different lighting).

Homography-Based Estimation

Because every triangle in Tri-Bench lies in the same plane
as the taped square border, a single homography per image
is enough to recover the triangle geometry (up to a global
similarity). Conceptually, one simple procedure is:

1. Extract the image-plane pixel coordinates of the four tape
corners and sticker centres of A, B, and C.

2. Estimate the 3 x 3 homography matrix H that maps the
tape’s corners to a canonical unit square with vertices
(0,0), (1,0), (1,1), and (0, 1) (in clockwise order).

3. Apply H to the image-plane coordinates of A, B, and C
to obtain their coordinates in this normalized space.

4. In the normalized space, compute side lengths and inte-
rior angles of triangle ABC, and the answers to Q1-Q6.

Since H is determined up to a global similarity transform
(rotation, translation, and uniform scale), all angle measure-
ments and all ratios of side lengths are preserved. This is
sufficient for our evaluation tasks, which depend only on
shape types, length ratios, and angle differences rather than
on absolute metric units. A short script implementing this
procedure for triangle 037 (TO) is included in our GitHub
repository.”

*https://github.com/Amiton7/Tri-Bench



