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Abstract

Large language model (LLM) agents are increasingly claimed
to handle complex, multi-step tasks, yet their trustworthiness
in real-world task remains under-examined. Recent work on
travel planning has already pointed out that constraint satis-
faction is a persistent bottleneck, especially when itineraries
must respect spatio-temporal feasibility, user-specific prefer-
ences, and budget or resource limits. However, these obser-
vations are mostly made in isolation: they are tied to a sin-
gle dataset or a particular agent design, which makes it hard
to tell whether the weakness is fundamental to current LLM
agents or accidental to the setup. This paper presents a sys-
tematic examination of travel planning. We present a com-
prehensive review of existing travel-planning benchmarks,
summarizing their design trends and highlighting the new
challenges arising from these developments. We also catego-
rize prevailing approaches into general-purpose agent, multi-
agent system, and neuro-symbolic approach, and analyze
their respective trade-offs between generalizability and do-
main adaptability. Modular ability analyses are introduced to
analyze model performance across them, enabling a deeper
investigation into the diverse capabilities required for suc-
cessful travel planning and revealing the limitations of cur-
rent methods. We find that significant challenges remain in
recognizing open constraints, extracting information under
constraints, and reasoning under constraints. Although these
complex problems are challenging to tackle as a whole, by
decomposing them into manageable sub-tasks, there remains
a promising path toward achieving trustworthy agents.

Introduction

In the pursuit of artificial general intelligence (AGI), au-
tonomous agents built upon large language models (LLMs)
have emerged as a promising direction (Wang et al. 2024;
Yu et al. 2025). In recent years, LLM-based agents equipped
with language models capable of perception, reasoning, and
decision-making have achieved remarkable progress across
diverse domains, including web navigation (Zhou et al.
2024; Deng et al. 2023; Pan et al. 2024), software engi-
neering (Jimenez et al. 2024; Jain et al. 2025), embodied
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robots (Shridhar et al. 2021; Puig et al. 2018; Srivastava et al.
2022), scientific simulation (Wang et al. 2022; Jansen et al.
2024; Li et al. 2025b). This raises a central question: are
current LLM agents actually trustworthy task executors that
can satisfy user-specified goals in real-world settings?

Recent studies have in fact shown that LLMs still per-
form poorly in terms of instruction following and meet-
ing user requirements (He et al. 2024; Zhang et al. 2025c;
Wen et al. 2024), with travel planning emerging as a par-
ticularly revealing domain. In travel planning, given a user
query, agents must integrate information from multiple tools
(e.g., searching for flights, restaurants, and hotels) to pro-
duce a feasible itinerary. Because the reasoning process must
jointly account for personal preferences, temporal and spa-
tial dependencies, hard constraints, and real-world factual
knowledge, even advanced LLM agents continue to strug-
gle, and their end-to-end success rates can drop close to zero
in these realistic settings (Zheng et al. 2024; Xie et al. 2024;
Singh et al. 2024; Shao et al. 2024; Valmeekam et al. 2024;
Ni et al. 2025; Wang et al. 2025; Chaudhuri et al. 2025; Deng
et al. 2025; Qu et al. 2025; Karmakar et al. 2025), which un-
derscores the need for further research to improve reasoning
and planning capabilities in complex, real-world scenarios.

In this paper, we revisit the development of the travel
planning task. We first review the majority of existing bench-
marks, outlining their evolution across three key dimensions,
Goal Interpretation, Information Integration and User-Need
Data Design, with a detailed discuss the corresponding chal-
lenges associated with each. Next, we outline the three main
types of solutions currently available. Although general-
purpose agents often exhibit suboptimal performance, their
broad applicability makes improving their overall capabil-
ity a worthwhile pursuit. In addition, modular multi-agent
systems, which rely on predefined agent workflows, strike
a balance between generalization and performance, while
neuro-symbolic methods demonstrate strong effectiveness in
specific, well-defined (non-open) scenarios. Beyond these,
automated agent design and training-based approaches have
also been explored. Finally, we conduct relevant experi-
ments and provide fine-grained modular ability analysis. De-
spite demonstrating strong constraint extraction capability,
the model remains limited in its reasoning and information
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Figure 1: Key Capabilities Required for LLM-Agents to Perform Travel Planning Tasks.

processing when operating under constraints. While there is
still no effective universal solution, we hope that by revis-
iting the performance of these methods on various datasets
and analyzing the reasons behind their successes or failures,
we can provide valuable insights for future research.

Related Work

LLM-Agents. Empowered by large language models, LLM-
Agents can decompose complex tasks and take appropri-
ate actions across diverse scenarios. Representative works
include AutoGPT (Yang, Yue, and He 2023), Hugging-
GPT (Shen et al. 2023), ReAct (Yao et al. 2023), and Reflex-
ion (Shinn et al. 2023). An agent typically consists of sev-
eral key components: planning, memory, and tool use (Weng
2023). Planning refers to the agent’s ability to break down
complex tasks and execute them step by step, often adjust-
ing plans in real time based on execution feedback. Exist-
ing frameworks have demonstrated strong performance in
scenarios. However, despite these successes, their planning
strategies remain limited when facing tasks with multiple,
interdependent constraints.

Real-World LLM Planning Tasks. Planning is widely
recognized as a key hallmark of human intelligence, gen-
erally referring to the process of formulating and execut-
ing a structured series of actions that lead from an ini-
tial to a desired goal state (Hayes-Roth and Hayes-Roth
1979; Grafman, Spector, and Rattermann 2004). Recent re-
search has explored the planning capabilities of LLM-based
agents across a wide range of domains (Wei et al. 2025).
In benchmarks such as BlocksWorld (Valmeekam et al.
2023), ALFRED (Shridhar et al. 2020), ALFWorld (Shrid-
har et al. 2021) and VirtualHome (Puig et al. 2018) in-
vestigate how agents perceive, reason, and act in interac-

tive environment or simulated physical spaces. In the con-
text of games, environments such as MineCraft, Smart-
Play (Wu et al. 2024), and AUCARENA (Chen et al. 2023)
provide challenging platforms for testing long-horizon rea-
soning and adaptive decision-making. For task decomposi-
tion, frameworks including TaskLAMA (Yuan et al. 2024)
and WORLDAPIS (Ou et al. 2025) examine how LLM
agents break down intricate problems into coherent, exe-
cutable subgoals. Collectively, these studies underscore the
rapid progress and continuing challenges in evaluating and
enhancing the planning competence of LLM-driven agents
across increasingly diverse and realistic settings.

Neuro-Symbolic AI. Neuro-Symbolic Learning seeks to
integrate traditional symbolic reasoning with data-driven
learning, aiming to enhance both interpretability and relia-
bility (Wang et al. 2019; Manhaeve et al. 2018; Dai et al.
2019; Yang et al. 2024; Shao et al. 2025a; Yang et al. 2025;
Shao et al. 2025b). In the era of large language models, (Pan
et al. 2023) introduced LogicLM, which combines LLMs
with external symbolic solvers to tackle various logical rea-
soning tasks. In their framework, the LLM first translates
a natural language problem into a symbolic representation,
after which a deterministic symbolic solver performs infer-
ence on the translated problem to ensure correctness. Build-
ing on this idea, (Deng, Dong, and Si 2024) augmented
LogicLM with a Self-Refinement Module, improving the
reliability of the LLM’s symbolic translation. In the do-
main of travel planning, (Hao et al. 2024) proposed a sim-
ilar neuro-symbolic framework. Their system first extracts
logical constraints from natural language queries, then for-
malizes them into SMT (Satisfiability Modulo Theories)
code. Leveraging the soundness and completeness of SMT
solvers, this approach guarantees the correctness of gener-



ated plans, achieving an impressive 97% success rate on the
TravelPlanner benchmark. Together, these efforts demon-
strate how neuro-symbolic Al can complement the gener-
ative power of LLMs with formal reasoning capabilities,
offering a promising direction for building trustworthy and
verifiable intelligent systems.

Benchmarks and Characteristics Analysis

The literature has witnessed an explosive proliferation of
travel-planning benchmarks in recent years (Xie et al. 2024;
Shao et al. 2024; Tang et al. 2024; Wang et al. 2025; Qu
et al. 2025; Esper et al. 2025). From a constraint-satisfaction
perspective on whether LLM agents meet user needs, we
focus on the widely adopted setting, itinerary generation,
and compile representative datasets in the Table 1. Specif-
ically, we analyze these benchmarks through three problem-
centric lenses: Goal Interpretation, Information Integra-
tion, and User-Need Data Design. We then compare how
different benchmarks advance these aspects and discuss con-
sequences for evaluation protocols and model design.

Goal Interpretation

Trustworthiness ultimately hinges on whether an agent can
interpret the user’s goal and deliver a plan that both satisfies
hard constraints and aligns with soft preferences.

Spatiotemporal and Resource Feasibility. On the feasi-
bility side, realistic planning requires spatiotemporal and re-
source consistency, e.g., calendar-aware scheduling, inter-
POI transitions with plausible durations, opening hours,
availability, and budgets. TripCraft requires schedules but
checks only limited constraints (e.g., safety gaps around
inter-city transport), with transportation information that
may not reflect actual travel durations; TripTide inherits
this design. RETAIL enforces a fixed 30-minute gap be-
tween activities, while TripScore adopts point-wise LLM-
as-a-Judge to penalize temporal/spatial violations. In con-
trast, ChinaTravel applies a rigorous rule-based validator to
ensure spatiotemporal continuity and non-conflict. Introduc-
ing full spatio-temporal constraints also brings additional
challenges. First, the spatial dimension requires quadratic-
scale transportation data among all POIs, leading to input
lengths that often exceed the maximum context window of
current LLMs. This is one of the main reasons why Chi-
naTravel cannot be directly applied to sole-planning tasks.
Moreover, from the perspective of a constraint solver, the
temporal granularity of variables and constraints shifts from
the day level to the hour or even minute level, ideally, the
minimal temporal unit, significantly increasing the compu-
tational complexity of reasoning.

Preference Modeling. Beyond hard feasibility, realistic
planning demands preference modeling and trade-off han-
dling. Benchmarks operationalize soft constraints differ-
ently: ChinaTravel formulates preference adherence as op-
timization over numerical indicators (e.g., total attractions
visited); TripCraft measures alignment between soft con-
straints and POI names via BERT scores; TripScore defines
tailored scoring rules per preference type. Several works

(e.g., TravelPlanner+, RealTravel, TripTailor) explore LLM-
as-a-Judge for preference assessment. These choices mate-
rially affect evaluation fidelity and comparability.

Information Integration

Evaluation settings that remove tool invocation implicitly
assume a closed, static world in which all travel facts
are pre-specified. Real travel planning, however, depends
on dynamic information, flight schedules, room availabil-
ity, prices, opening hours, and service disruptions—that an
agent must fetch, verify, and compose to satisfy user needs.
Tool use is therefore not an implementation convenience but
a core competency of LLM-based agents: accessing exter-
nal knowledge sources, executing API-level operations, and
integrating retrieved signals into reasoning and decision-
making (Weng 2023; Liu et al. 2024; Huang et al. 2024).
Benchmarks that exclude this dimension risk rewarding in-
context text synthesis while obscuring failure modes most
relevant to trustworthiness (e.g., availability checks, fact ver-
ification, update reconciliation).

To align evaluation with deployment, we adopt a sandbox
construction perspective: instrumented, reproducible envi-
ronments that expose realistic tools (search, booking, maps,
events) with observable inputs and outputs, so agents must
ground their plans through tool calls. Early work such as
TravelPlanner already included a two-stage, tool-using set-
ting, underscoring the role of grounded information inte-
gration for realistic planning; ChinaTravel extends this idea
with richer and more functionally detailed tools. As our
analysis shows, the presence or absence of such sandboxed
tools materially changes evaluation protocols and the feasi-
ble design space of planning agents.

User-Need Data Design

Early datasets often synthesized “human-like” queries by
sampling constraint sets and prompting LLMs to write
queries. While this improves formal validity, gaps re-
main relative to authentic queries, and feasibility is not
guaranteed. Subsequent work, e.g., TravelPlanner+ (Singh
et al. 2024), TripCraft (Chaudhuri et al. 2025) adopt role-
playing/user modeling to improve semantic coherence (e.g.,
avoiding conflicts between a large budget and consistently
low-cost choices). TripTailor (Wang et al. 2025) back-
synthesizes queries from structured real itineraries.

Open-World Intent Reasoning. Directly collecting
human-authored queries yields the most realistic evaluation
but also introduces open-world intent—unbounded, evolv-
ing, or implicitly stated requirements beyond a fixed schema
(e.g., “local dishes,” “kid-friendly,” or last-minute changes).
This shifts the challenge from template compliance to
intent understanding: agents must interpret previously
unseen constraints and use them to guide plan generation.
In ChinaTravel and TripScore, authentic user requests
bring such implicit and diverse expressions, substantially
increasing annotation and evaluation difficulty (Shao
et al. 2024; Qu et al. 2025). ChinaTravel addresses this
with a domain-specific language (DSL) and Python-based
annotation to cover arbitrary constraints, while TripScore



Goal Interpretation Information Integration User-Need Data Design

Benchmark Spatio-Temporal Preference Static Tool Human-Authored Open-World
Constraints Modeling Context Interection Queries Intent

NATURAL PLAN (Zheng et al. 2024) X X v X X X
TravelPlanner (Xie et al. 2024) X X v v X X
TravelPlanner+ (Singh et al. 2024) X 4 4 v X X
ChinaTravel (Shao et al. 2024) v v X v v v
TripCraft (Chaudhuri et al. 2025) 4 v X X X
TripTailor (Wang et al. 2025) X v v X X X
RETAIL (Deng et al. 2025) v v X X X
RealTravel (Shao et al. 2025¢) X v v v X X
TripTide (Karmakar et al. 2025) v v X X X
TripScore (Qu et al. 2025) v v X v v

v Supported

Partially supported X Not supported

Table 1: A summary of existing travel-planning benchmarks on constraint satisfaction.

employs LLM-as-a-Judge. The emprical studies from (Shao
et al. 2024; Qu et al. 2025) show that open-world intent
significantly degrades the performance, and methods relying
on explicit constraint extraction can fail catastrophically
under such openness. These observations further suggest
that evaluation should assess intent resolution (ambiguity
detection, targeted clarification, and consistent plan up-
dates) and uncertainty-aware behaviors (calibrated refusals,
confidence reporting, and hedged recommendations), rather
than only scoring final itineraries.

Miscellaneous

Apart from the above dimensions, several benchmarks ex-
plore additional aspects that are not yet systematically stud-
ied. TP-RAG (Ni et al. 2025) focuses on the generation of
plans under a retrieval-augmented framework, highlighting
the impact of external knowledge on planning quality. RE-
TAIL (Deng et al. 2025) investigates the use of simulated
user interactions to enhance the modeling of user require-
ments. TripTide, on the other hand, introduces the task of
replanning after interruptions, assessing the agent’s capacity
to adapt to unforeseen changes.

Methods

In this section, we introduce three distinct approaches to
solving the travel planning task: General-purpose agents,
Multi-Agent Systems for travel planning, and Neuro-
Symbolic approaches. These methods differ in their design
philosophies, reliance on human knowledge, and the com-
plexity of problem-solving they entail. Table 2 presents a
selection of travel planning methods and their corresponding
categories. Other approaches, such as training-based meth-
ods and automated agent design, will be discussed at the end
of this section.

General-Purpose Agent

General-Purpose agents are not tailored to specific tasks or
domains. Instead, they emphasize versatility and generaliza-
tion across a wide range of scenarios.

In the two-stage setting, agents such as ReAct (Yao et al.
2023) and Reflexion (Shinn et al. 2023) aim to minimize

restrictions on the LLM’s behavior, leveraging its intrinsic
planning and reasoning capabilities to complete tasks. Re-
flexion further utilizes the intrinsic capabilities of LLMs
to summarize errors and refine its experiences for contin-
uous improvement. While this method enables steady per-
formance improvements with repeated attempts across vari-
ous tasks, it fails to yield significant improvements in travel
planning and may even cause performance degradation.

These methods generally have low reliance on human
knowledge. They typically require only basic task descrip-
tion, enabling rapid adaptation and transfer across various
tasks and domains.

Multi-Agent System

Multi-agent systems in travel planning are typically de-
signed with multiple task-specific agents, which decompose
complex tasks into simpler subtasks to ultimately generate a
valid itinerary.

HLRF implements a human-like planning framework, de-
composing the task into three stages: Outline Generation,
Information Collection, and Plan Making, with multiple
agents collaborating within each stage to complete the cor-
responding subtasks. ISP introduces an approximation agent
to realize a hierarchical planning approach. PMC adopts a
relatively flexible framework, consisting of four types of
agents: Manager, Executors, Supervisor, and Deliverer. In
DPPM, different types of planning information are handled
by specialized agents and later merged into a final plan.
TGMA also employs a hierarchical planning strategy, where
multiple agents iteratively refine the plan.

Compared to general-purpose agents, these multi-agent
systems achieve absolute improvements in success rates on
travel planning tasks ranging from roughly 2-3% up to over
80%. The extent of improvement typically depends on the
degree to which human prior knowledge is incorporated
into the multi-agent design and the specific difficulty of the
benchmark. However, such methods are often designed for
specific benchmarks and tend to exhibit limited transferabil-
ity across different benchmarks.



Category Methods

General-Purpose Agent ReAct (Yao et al. 2023), Reflexion (Shinn et al. 2023) Tongyi-DeepResearch (Li

et al. 2025a)

Multi-Agent System

HLRF (Xie and Zou 2024), ISP (Hua et al. 2025), PMC (Zhang et al. 2025a),

DPPM (Lu et al. 2025), TGMA (Deng et al. 2025)

Neuro-Symbolic

LLM-Modulo (Kambhampati et al. 2024), PTS (Shao et al. 2025c¢),

ChinaTravel-NeSy (Shao et al. 2024), LLMFP (Hao et al. 2024), TTG (Ju et al. 2024)

Table 2: Representative methods for travel planning tasks.

Neuro-Symbolic Approach

Neuro-symbolic approaches combine LLMs with symbolic
systems, offering a potential pathway toward robust and
trustworthy planning methods. They typically achieve bet-
ter performance compared to the two aforementioned types
of methods.

LLM-Modulo is a relatively general approach that re-
quires a verifier capable of checking answers for a given task
and providing error feedback, with the LLM iteratively refin-
ing the plan based on this feedback. PTS consists of five se-
quential modules, Translation, Search, Preference, Re-rank,
and Planning, which work together to produce high-quality
final plans. The NeSy method in ChinaTravel is an LLM-
guided search approach designed to reduce the search space.
LLMFP and TTG are both LLM+Solver approaches, mod-
eling problems as SMT and MILP instances, respectively,
and leveraging existing solvers for solution. It is important
to note that these methods heavily rely on expert-crafted
prompts, which essentially amount to encoding the logic
of an expert system for problem solving. Nonetheless, they
achieve excellent efficiency and success rates during execu-
tion. To prevent the model from generating incorrect code,
solver-based approaches often require carefully designed
pipelines that provide step-by-step prompts and merge the
resulting code at the end.

Despite their strong performance, the generalizability
of neuro-symbolic methods remains a concern. Those
LLM-+Solver approaches that emphasize zero-shot general-
ization are evaluated on other relatively simpler tasks (Hao,
Zhang, and Fan 2025). Their robustness is limited when fac-
ing challenges such as open constraints (Qu et al. 2025),
and studies on ChinaTravel further indicate that their perfor-
mance degrades significantly as task complexity increases.

Miscellaneous

Additionally, some automatically designed agents can be
used in these tasks as well (Shang et al. 2025). Some
approaches have also modified the task setup of Trav-
elPlanner, using training-based methods to improve perfor-
mance (Zhang et al. 2025b).

Experiments and Results
Experimental Setup

Due to resource constraints and the complexity of the task,
we selected subsets from three benchmarks as our exper-

imental datasets. The methods we explored include direct
prompting of the model, LLM-modulo, ReAct, LLMFP, and
TTG. Moreover We adapted Tongyi’s DeepResearch, uti-
lizing its Tongyi-DeepResearch-30B-A3B model, aiming to
leverage the DeepResearch capabilities of the model for gen-
erating the final plans (Li et al. 2025a). For the results al-
ready available in the original benchmark or method pa-
pers, we directly reported the existing results. For TripCraft,
which does not fully support tool usage, we implemented a
full tool setup modeled after TravelPlanner.

Metrics

In all three benchmarks, we report: (1) Delivery Rate, the
rate at which valid responses are generated; (2) Micro/Macro
Commonsense Pass Rates, the extent to which outputs ad-
here to commonsense; (3) Micro/Macro Hard Constraint
Pass Rates, the extent to which plans satisfy task-specific,
user-defined, or domain-mandated requirements; and (4) Fi-
nal Pass Rate, the proportion of responses satisfying all cri-
teria simultaneously.

Main Results
The main experimental results are presented in Table 3.

Finding 1. In small-scale tasks, neuro-symbolic ap-
proaches outperform purely neural agent methods.
However, in large-scale tasks, even LLM+Solver meth-
ods suffer from significant performance degradation.

The experimental results reveal a pronounced perfor-
mance disparity across benchmarks. On TravelPlanner
and TripCraft-3days, neuro-symbolic approaches—such as
LLM-Modulo, TTG, and LLMFP—consistently outperform
purely neural agentic methods by a significant margin. This
divergence underscores a fundamental limitation of large
language models (LLMs) in handling structured, domain-
specific reasoning tasks, which can be effectively mitigated
through integration with formal symbolic reasoning mech-
anisms. In contrast, on the ChinaTravel benchmark, these
neuro-symbolic systems exhibit a marked decline in per-
formance. This indicates that in large-scale tasks, neuro-
symbolic methods also face considerable challenges.

Notably, despite achieving high scores on current eval-
uation metrics, LLM+Solver methods often produce travel
plans that are technically valid yet practically implausible
or unrealistic (e.g., exhibiting poor spatial and temporal co-
herence or being too strict in format). This discrepancy sug-



Method Model DR  Micro-Env Macro-Env  Micro-Log Macro-Log FPR
TravelPlanner-Val
ReAct GPT-4-Turbo 89.4 61.1 2.8 15.2 10.6 0.6
DeepResearch ~ Tongyi 95.0 49.6 0.0 6.19 5.56 0.0
DPPM DeepSeek-V3 100 96.9 77.8 82.6 73.3 64.4
LLM-Modulo  GPT-4-Turbo 100 89.2 40.6 62.1 394 20.6
LLMFP GPT-4 95.0 95.0 95.0 95.7 98.9 93.3
TTG GPT-40 100 85.4 91.7 87.9 91.7 91.7
ChinaTravel-Val
ReAct GPT-40 96.1 50.5 0.0 72.4 325 0.0
DeepResearch  Tongyi 24.7 32.5 0.0 57.9 26.6 0.0
LLM-Modulo  GPT-4o 91.5 87.2 3.24 92.9 66.2 3.24
TTG DeepSeek-V3 9.09 12.8 2.59 7.65 5.19 1.29
TripCraft-Agentic-3-days
DeepResearch  Tongyi 86.9 55.6 0.0 33.2 21.8 0.0
LLM-Modulo  GPT-4o 100 76.4 0.0 48.0 427 0.0
LLMFP GPT-40 100 99.3 94.5 99.1 98.8 93.6
TTG GPT-40 100 99.0 90.7 94.1 86.6 81.1

Table 3: Comparison of Methods across Different Benchmarks.

gests that existing benchmarks without spatial and tempo-
ral constraints are insufficiently equipped to assess the real-
world feasibility, contextual appropriateness, and overall co-
herence of generated itineraries.

Moreover, prevailing evaluation protocols tend to assess
planning capability through coarse-grained, aggregate met-
rics, such as adherence to commonsense norms and satis-
faction of hard constraints, thereby conflating distinct cog-
nitive and operational competencies essential to effective
travel planning. These include, but are not limited to: precise
tool invocation, multi-step causal and temporal reasoning,
dynamic coordination across activities, and adaptive replan-
ning in response to perturbations. To enable more diagnos-
tic and meaningful model comparisons, future benchmarks
should adopt a fine-grained evaluation framework that ex-
plicitly disentangles and independently measures these con-
stituent planning skills. Such a framework would provide
a more accurate and interpretable assessment of a system’s
true planning proficiency.

Fine-Grained Modular Ability Analysis

In travel planning, we conduct a comprehensive evaluation
of the model’s capabilities in constraint understanding, long-
horizon reasoning, tool use, and related skills. However,
agentic approaches perform unexpectedly poorly on this
task, making it difficult to determine which specific chal-
lenges limit the language model’s performance. We can fur-
ther decompose the travel planning task into a set of ability
modules to investigate why agents struggle to handle such
tasks effectively. We investigate the following two tasks:

Constraint Extraction

Constraint extraction requires models to identify and output
the corresponding constraints purely from natural language.
This is considered a key component of the travel planning

task. Only when a model can accurately extract such con-
straints can it subsequently generate plans that adhere to
them.

Finding 2. Existing SOTA LLMs have little prob-
lem extracting predefined constraints, while it struggles
with diverse expressions and open-ended constraints.

Experimental results show that language models can al-
most perfectly extract these predefined constraints on Trav-
elPlanner: GPT-40 and DeepSeek-V3.2-Exp achieve accu-
racies of 99.89% and 99.78%, respectively, which essen-
tially indicates that the models are fully capable of extracting
all predefined constraints, with only a few ambiguous cases
leading to mismatches with the annotations.

Both models failed on a query containing the confus-
ing expression “We require accommodations that are neither
shared nor subject to visitor restrictions and should be pri-
vate rooms.”, which redundantly specifies both “not shared
room” and “private room.” Additionally, DeepSeek-V3.2-
Exp produced a result differing from the annotation for the
query “should ideally be non-shared rooms,” where the an-
notated constraint was “private room.”

Notably, ChinaTravel conducted a similar analysis on its
POI Reasoning task, which can be seen as a simplified form
of constraint extraction. In this task, the model is required
to fill in the corresponding values for constraints where spe-
cific values have been removed. The results indicate that ex-
tracting constraints from ChinaTravel’s open-ended queries
is extremely challenging.

Constraint-based Information Extraction

According to the constraint-based information extraction
setting, the model is required to extract useful information
from the tool’s returned results, reflecting its ability to rea-
son under constraints. We designed a simple experiment
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where the model was asked to select feasible accommo-
dations only based on the room type and house rule con-
straints, without considering budget or minimum stay dura-
tion. Specifically, for each query that includes a room type
or house rule, we retrieve accommodations from all possible
cities related to the query’s destination, and ask the model
to select those that meet both requirements. In real-world
tasks, however, each selected POI must not only satisfy its
own constraints but also maintain consistency with others,
making the reasoning process much more complex.

Setting F1 Prec Rec EM
GPT-40

w/o Const. Ann. 0.27/0.36 0.43/0.73 0.22/0.24 0.09
w/ Const. Ann. 0.32/0.43 0.41/0.76 0.29/0.30 0.18

DeepSeek-V3.2-Exp

w/o Const. Ann. 0.28/0.40 0.34/0.65 0.27/0.29 0.10
w/ Const. Ann.  0.46/0.64 0.50/0.76 0.46/0.55 0.24

Table 4: Results on Constraint-based Info. Extraction (Ac-
commodation Selection). EM = Exact Match Ratio. Macro /
Micro metrics are shown as ‘Macro / Micro’.

Finding 3. Even with ground-truth constraints, SOTA
LLMs still struggle to apply them during the reasoning.

As shown in Table 4, neither model was able to select all
candidates that fully met the given requirements, indicating
that in the full task, potentially correct plans may be prema-
turely discarded. Conversely, both models also failed to ex-
clude all unsuitable options, suggesting that erroneous items
might be incorporated into the final plan. LLMs showed a
clear improvement when constraint annotations were avail-
able, implying that even with a strong capability for con-
straint extraction, they still tend to overlook constraint infor-
mation expressed in natural language when explicit annota-
tions are absent during reasoning.

Finding 4. The SOTA LLMs tend to adopt a conserva-
tive strategy, yet they still struggle to fully satisfy all
constraints, often leading to false positives despite its
cautious approach.

Based on Figure 2, we can make an interesting observa-
tion: the model tends to adopt a conservative strategy, typi-
cally selecting fewer hotels. This tendency is also reflected
in the noticeably higher precision compared to recall. How-
ever, the large gap between the macro and micro versions
of precision further indicates that such a conservative strat-
egy does not necessarily lead to better accuracy; instead, it
results in a higher proportion of false positives among the
smaller set of candidate hotels.

Reasoning under Constraints

Finding 5. Even for Large Reasoning Models (LRMs),
reasoning under constraints remains challenging.

Reasoning under constraints requires models to directly
infer the final plan given the available information. We col-
lected results from LLM-Modulo and TravelPlanner, and ob-
served that while performance slightly improves as model
reasoning ability increases, it remains relatively low overall,
indicating that there is still substantial room for improve-
ment in models’ reasoning capabilities under constraints.

Model LRM | Pass Rate
GPT-3.5-Turbo X 0
GPT-4-Turbo X 4.40
ol-mini v 1.67
ol-preview v 10.0

Table 5: Final pass rate on TravelPlanner in direct setting.

Conclusion

Our findings highlight a persistent gap between current
LLM-based agents and trustworthy autonomous planning
systems. While neuro-symbolic hybrids demonstrate clear
advantages in structured reasoning and constraint satisfac-
tion, their reliance on human-engineered priors limits adapt-
ability. Conversely, general-purpose agents exhibit broader
transferability but lack precision in handling complex, in-
terdependent constraints. The divergence across benchmarks
suggests that progress toward reliable travel planning agents
requires both methodological innovation and evaluative re-
form. Promising future directions include (1) developing
modular frameworks that combine structured reasoning with
adaptive language models, (2) constructing large-scale, real-
istic benchmarks that better reflect user interaction and spa-
tiotemporal complexity, and (3) designing fine-grained and
interpretable evaluation protocols to diagnose specific rea-
soning and planning capabilities. Collectively, these direc-
tions may foster more reliable, transparent, and trustworthy
LLM-based agents capable of robust real-world planning.
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