
Optimizing Importance Sampling Methods for Rare Output Estimation in
Language Models

Amanda Cao1, 2*, Ivan Betancourt1, 3*, Manish Rangan1, 4, Yuqi Sun5

1Algoverse AI Research Program
2Yale University, Department of Statistics & Data Science, New Haven, USA

3Amherst College, Department of Computer Science, Amherst, USA
4Georgia Institute of Technology, Department of Computer Science, Atlanta, USA

5Mindoverflow Co.

Abstract

Large language models (LLMs) have the ability to produce
rare but potentially catastrophic outputs, especially in deploy-
ment settings where models may experience distribution shift.
Understanding a model’s worst-case performance is neces-
sary to ensuring the safety and reliability of artificial intelli-
gence systems. However, because rare outputs have true prob-
abilities as low as 10−9, standard sampling methods are com-
putationally unfeasible. To reliably quantify rare output prob-
abilities, it is essential to develop algorithms that are both
computationally efficient and scalable to the agentic setting.
Previous works have introduced Metropolis-Hastings Impor-
tant Sampling (MHIS), an algorithm that samples from a
Boltzmann-weighted distribution to better explore rare-event
regions in the input space. In the following paper, we in-
troduce Delayed-Acceptance Metropolis–Hastings Impor-
tance Sampling (DA-MHIS), an algorithm that optimizes
MHIS for efficiency by filtering out poor-quality proposals.
We also mention Multiple-Try Metropolis Hastings Impor-
tance Sampling as an additional variant, which attempts to
improve serialized runtime. It is particularly important to de-
velop efficient sampling algorithms to work toward a longer-
term goal of eliciting and understanding rare behaviors in
large-scale, agentic settings. In order to validate our methods,
we compare the performance of our algorithms against the
original MHIS as a baseline, and find that DA-MHIS reduces
runtime by 16.4% on the GELU 1-layer model. Our Github
repository and code will be shared upon publication.

1. Introduction
Modern machine learning systems are typically optimized
to perform well on average across a training distribution.
However, even when the overall accuracy or loss metrics
are strong, these models can still produce highly undesirable
outputs on extremely rare inputs. Such low-probability be-
haviors can become far more likely under distribution shift,
especially when inputs are chosen adversarially, as in the
case of large language model jailbreaks. Accurately estimat-
ing the probabilities of these rare but potentially catastrophic
behaviors is therefore a prerequisite for achieving robust and
trustworthy AI systems.

*These authors contributed equally.

The task of low probability estimation, i.e. quantifying the
chance that a formally specified undesirable behavior occurs
under a given input distribution, poses a unique challenge.

When the true probability of the target behavior is exceed-
ingly small (e.g., 10−9 or lower), naive random sampling is
essentially useless: under realistic compute budgets, one is
unlikely to observe a single positive instance. This limita-
tion mirrors the fundamental problem of safety evaluation
for frontier models: if catastrophic behaviors are rare, then
detecting and mitigating them requires specialized methods
that can efficiently explore regions of the input space where
these behaviors are more likely to occur.

Recent work by Wu and Hilton (2025) introduced sev-
eral importance-sampling and activation-extrapolation tech-
niques that dramatically improved the accuracy of probabil-
ity estimation for rare events in small language models. In
particular, their Metropolis–Hastings Importance Sampling
(MHIS) algorithm provided a principled and unbiased esti-
mator by drawing samples from a Boltzmann-weighted dis-
tribution that up-weights inputs associated with higher target
logits. However, MHIS and related approaches remain com-
putationally intensive, as each proposed move requires a full
forward and backward pass through the model to evaluate
the acceptance ratio. This cost severely limits their scalabil-
ity to larger architectures or broader token distributions.

In this work, we pursue the same goal of reliable low-
probability estimation, but focus on improving its effi-
ciency. We introduce the Delayed-Acceptance Metropolis–
Hastings Importance Sampling (DA-MHIS) algorithm in-
spired by Banterle et al. (2015), which maintains the unbi-
asedness and theoretical guarantees of MHIS while substan-
tially reducing its computational overhead. DA-MHIS ac-
complishes this by introducing a lightweight, gradient-based
surrogate test that screens proposals before expensive model
evaluations are performed. This two-stage mechanism al-
lows the estimator to concentrate computation on high-
value proposals, yielding faster convergence without sacri-
ficing accuracy. We also introduce Multiple-Try Metropo-
lis Hastings (MT-MHIS), which proposes multiple candi-
dates for a random walk step at each iteration, instead of
proposing only one next-candidate. By selecting the best
candidate among multiple proposed candidates, MT-MHIS
seeks to decrease runtime by reducing the steps required for

Copyright © 2026, Trustworthy Agentic AI Workshop@
Association for the Advancement of Artificial Intelligence (www.
aaai.org). All rights reserved.

convergence to an up-weighted target distribution.
Beyond the direct gains in runtime, efficient estimators

can meaningfully expand the scope of rare-event analysis.
They make it feasible to evaluate larger models, longer con-
texts, or more complex output properties within a fixed com-
pute budget. Ultimately, improving the speed of estimation
is not merely a matter of engineering efficiency: it is essen-
tial for the practical detection and mitigation of rare failures
in large-scale machine learning systems.

Problem Setting Here, we’d like to formally define the
problem of low probability estimation. For consistency, we
retain the same notation as Wu and Hilton (2025).

Given vocabulary V , let M : V∗ → V be a predictive
language model that outputs the next token based on a se-
quence of previous tokens over the vocabulary. We take a
distribution D over the sequence of previous tokens V∗. In
low probability estimation, we want to evaluate the proba-
bility of predicting a target token, t ∈ V . Hence, given input
x, the problem can be written as:

P
x∼D

[M(x) = t] (1)

We can also express this equation using the following no-
tation. Let Mi(x) be the logit that the model predicts for
token i ∈ V . We can write the probability that the model
predicts target token t as:

P
x∼D

[Mx(t) > Mi(x),∀i ̸= t] (2)

In Wu and Hilton’s methodology, distribution D is con-
strained to be only distributions with independent tokens.

2. Related Works
Understanding and mitigating undesirable model outputs
has arisen as an emergent field within deep learning. Exist-
ing methods include adversarial training (Zhao et al. 2024),
which is the process of systematically integrating adversar-
ial examples into the training data. Adversarial training has
seen success across variety of deep learning architectures,
including diffusion models, Convolutional Neural Networks
(CNNs), Graph Neural Networks (GNNs), Recurrent Neu-
ral Networks (RNNs), and LLMs (Bai et al. 2021). In the
context of language models, recent work has explored areas
including adversarial pre-training for improving generaliza-
tion and robustness in natural language processing (NLP)
tasks (Liu et al. 2020), exploring alternate generation strate-
gies to elicit harmful behavior (Huang et al. 2023), and con-
ducting attacks in a LLM’s continuous embedding space
rather than performing discrete attacks over training itera-
tions (Xhonneux et al. 2024).

The purpose of such techniques is to reduce the impact
of distribution shift (Wu and Hilton 2025), which refers to
the phenomenon by which models exhibit unintended be-
haviors after ingesting inputs which are outside the high-
density regions of their training distribution. While adver-
sarial training attempts to address the distribution shift prob-
lem through incorporating small, targeted perturbations, a

related challenge lies in attempting to understand and quan-
tify a model’s rare behaviors. This body of work is known
as low-probability estimation.

Recent work by Webb et al. (2019) has explored the
low-probability estimation space by developing a frame-
work which measures neural network robustness based on
the probability that a particular property is violated under
a given input distribution. This work addresses the low-
probability estimation problem in the context of computer
vision. In the region of LLMs, work conducted by Phuong
et al. (2024) and Højmark et al. (2024) evaluate the capabili-
ties of frontier models and LLM-based agents. In particular,
Højmark et. al use Monte-Carlo based methods in order to
estimate the probabilities of an agent successfully complet-
ing a given task.

However, in this paper, we build on the methodology de-
veloped by Wu and Hilton (2025), specifically their impor-
tance sampling methods for estimating low-probability lan-
guage model outputs. Importance sampling offers a remedy
to naive sampling, in which low-probability events take far
too many samples to observe consistently. In contrast, im-
portance sampling allows for a more frequent elicitation of
low-probability outputs because it requires defining a new
input distribution. This input distribution narrows the in-
put space such that it up-weights regions in which the low-
probability outputs occur more frequently. After sampling
from this up-weighted distribution, the weights of the sam-
ples must be readjusted in order to ensure that this sam-
pling process is an unbiased estimator for the true proba-
bility. We can formalize the importance sampling process in
accordance with Wu and Hilton’s notation.

First, we take p(x) to be the probability mass function
(PMF) of token distribution D. Then, we also take q(x) to be
the PMF of another distribution. The concept of importance
sampling can be expressed as such:

P
x∼p

[M(x) = t] = Ex∼p[1[M(x) = t]]

= Ex∼q

[
p(x)

q(x)
1[M(x) = t]

]
Here, the importance sampling equation states that the

probability of the model predicting rare event t can be
treated as an indicator variable, taking the expected value
over original distribution p(x). However, once we create a
surrogate distribution, q(x), that up-weights the desired ar-
eas, we must re-weight the probability of achieving the rare
event by p(x)

q(x) so that the remaining probability is an unbi-
ased estimator of the original distribution. The idea is that
our surrogate distribution q(x) has a smaller variance, such
that fewer samples are required to observe the rare event t.

Wu and Hilton previously propose two importance sam-
pling methods: Independent Token Gradient Importance
Sampling (ITGIS) and Metropolis-Hastings Importance
Sampling (MHIS).

Independent Token Gradient Importance Sampling
The ITGIS method takes a Boltzmann posterior q(x) with a
given prior p(x). However, as its name suggests, this method

treats each of the input tokens as independent. Each token’s
probability is changed based on its average linear contri-
bution to the logit of rare token t, and a score function is
calculated based on . For example, given a string of input
tokens x = (x1, x2, ...xk), we could factor the input distri-
bution into the product of the individual input tokens xi, as
in p(x) = p1(x1)p2(x2)...pk(xk). Up-weighted distribution
q can be similarly parameterized as q(x) = q1(x1)...qk(xk).
We calculate a score function si based on the gradient calcu-
lated from each input sequence, hence distribution q(x) can
be expressed with the following equation:

qi(xi)αpi(xi) · exp
(
si(xi)

T

)
(3)

where

si(xi) = Ex’∼q[∇x’Mt(x′)]i,xi
(4)

Here, the parameter T is the temperature of the model.
For consistency, we follow Wu and Hilton and sample with
temperature 0 to obtain deterministic results. The gradient
∇x′Mt(x′)i,xi at the one-hot vector x′ can be interpreted as
the change in logit of t given that the i-th token of x′ were
replaced by xi. The result of the ITGIS algorithm is an im-
portance sampling estimate taken from our up-weighted dis-
tribution.

However, in our work, we do not focus on ITGIS given its
constraint that the input tokens are treated as independent.
The next method, Metropolis-Hastings Importance Sam-
pling (MHIS) will serve as the baseline to our experiments.

Metropolis-Hastings Importance Sampling In contrast
to ITGIS, the Metropolis-Hastings Importance Sampling
(MHIS) algorithm is more robust to dependencies between
input tokens. Because ITGIS only takes into account the lin-
ear contribution of each token to the target logit, it may fail
to consider cases where the model relies on inter-token inter-
actions that affect the target logit. Hence, the score function
must depend on the entire input, as it cannot be factored into
independent token interactions. The score function can then
be taken to be the target logit, which is written as

q(x) α p(x) · exp
(
Mt(x)
T

)
First, the Metropolis-Hastings algorithm is used to gen-

erate a random walk in the input space which converges to
a stationary distribution of q. Each next step of the random
walk is generated by a proposal distribution, ϕ(x′|x).

The proposal distribution is inspired by the Greedy Co-
ordinate Gradient (GCG) method (Zou et al. 2023), an
gradient-based algorithm which optimizes an adversarial
suffix for creating jailbreak prompts. Similarly, our opti-
mization methods are also inspired by methods for optimiz-
ing GCG (Zou et al. 2023). In this original paper, the Greedy
Coordinate Gradient algorithm combines both greedy and
gradient-based methods for optimizing over discrete tokens.
The authors calculate the gradients with respect to the one-
hot token indicators to identify a subset of candidates for
replacement. This gradient is an approximation of the effect

of replacing the ith token in the adversarial suffix prompt.
Then, in order to identify the single-token replacement can-
didates, the top-k values with the largest negative gradient
are selected. A candidate token set is calculated for all iden-
tified tokens, and the token replacement is selected such that
it maximally decreases the loss.

Wu and Hilton adapt the GCG algorithm into a
Metropolis-Hastings proposal function through the follow-
ing steps: first, randomly sample a token position i to re-
place, then, take the gradient of the score function s(x) as
defined above with respect to xi, treating xi as a one-hot vec-
tor. We can denote this gradient as g. Finally, a replacement
token x′

i from a distribution proportional to the gradient. The
distribution from which a replacement token is sampled can
be given by

pi(xi) · exp(
gxi

T
)

After the replacement token is inserted into the correct
position, the result can be expressed as a new input which
contains the replaced token x′ = (x1, ..., x

′
i, ..., xk). The

overall result of the MHIS algorithm is similar to ITGIS,
i.e. the average importance sampling estimate taken after a
burn-in period. The burn-in period is an initial phase where
the first n samples are not counted in order for the algorithm
to have enough samples to fully converge towards its sta-
tionary distribution. In their work, Wu and Hilton utilize a
burn-in period of 210 batches.

In this paper, we explore methods of optimizing the
MHIS algorithm for efficiency. In the following section,
we will introduce two optimization methods: Delayed-
Acceptance Metropolis-Hastings (DA-MHIS) and Multi-
ple Try Metropolis-Hastings (MT-MHIS). In particular,
the Multiple-Try Metropolis-Hastings algorithm applies the
work of Doig and Wang (2025), which outlines the neces-
sity for multi-candidate proposals and reviews several im-
plementations of the Multiple-Try Metropolis as a general-
ized algorithm. In brief, instead of proposing one token for
the next step of the random walk, Multiple-Try Metropolis
suggests altering the proposal distribution such that it pro-
poses several candidates.

3. Methodology
The following section provides a detailed description of the
two optimization algorithms to improve upon the efficiency
of the original Metropolis-Hastings Importance Sampling
algorithm.

Delayed-Acceptance Metropolis–Hastings
Importance Sampling (DA-MHIS)
The Metropolis–Hastings Importance Sampling (MHIS) al-
gorithm samples from a Boltzmann-weighted distribution

q(x) ∝ p(x) exp
(
Mt(x)/T

)
,

where p(x) is the probability mass function (PMF) of the
input distribution, Mt(x) is the scalar logit assigned by the

Figure 1: DA-MHIS Flow Diagram. The yellow token marks the proposed replacement. Stage 1 uses the local gradient to
predict its effect on the target logit and quickly rejects weak proposals. Only promising ones move to Stage 2, where the model
is re-evaluated exactly before acceptance or rejection.

model to the target token t, and T > 0 is a temperature hy-
perparameter controlling exploration. Although MHIS pro-
vides unbiased importance-sampling estimates, each pro-
posed move requires a full forward and backward pass
through the model, making the method computationally ex-
pensive for large networks or long sequences.

Notation. Let x = (x1, . . . , xL) denote the current se-
quence of discrete input tokens of length L, and let x′ =
(x1, . . . , x

′
i, . . . , xL) be a proposed sequence that differs

from x at exactly one position i. Each token xi belongs to the
vocabulary V of size |V |, and has an associated embedding
vector vi = E(xi) ∈ Rd, where E(·) is the model’s embed-
ding lookup matrix of dimension |V |×d. The full embedded
input is therefore v = E(x) ∈ RL×d, and the embedding of
the proposed sequence is v′ = E(x′) ∈ RL×d. The model’s
forward computation produces the target logit Mt(x) and a
corresponding gradient

g = ∇vMt(x) ∈ RL×|V |,

where gi,j measures the sensitivity of the target logit to re-
placing the token at position i with vocabulary item j.

Stage 1: Linearized Surrogate Screening. To avoid the
cost of evaluating Mt(x

′) for every proposed sequence, DA-
MHIS introduces a cheap surrogate test based on the lo-
cal linearization of Mt(x) around the current state. For a
proposed token replacement at position i, the approximate
change in the target logit is estimated as

∆̃Mt = gi,x′
i
− gi,xi

,

where gi,xi
and gi,x′

i
denote the gradient components cor-

responding to the current and proposed tokens, respectively.
This term quantifies the predicted increase in the target logit
if the model were to replace xi with x′

i. Combining this sur-
rogate with the prior ratio log p(x′) − log p(x), the Stage 1
log acceptance ratio is defined as

log r1 =
[
log p(x′)− log p(x)

]
+

∆̃Mt

T
.

The proposal passes the surrogate screen if either log r1 ≥ 0
or log u1 ≤ log r1, where u1 ∼ Uniform(0, 1). Proposals
that fail this criterion are immediately rejected without run-
ning a forward pass at x′.

Stage 2: Exact Correction. For proposals that pass the
surrogate stage, the algorithm performs a full forward and
backward pass to evaluate the exact change in the target logit

∆Mt = Mt(x
′)−Mt(x),

and computes the reverse-proposal probability ϕ(x | x′) and
forward-proposal probability ϕ(x′ | x),

each defined by the same gradient-based Boltzmann sam-
pler used in MHIS. The corrected log acceptance ratio is
then

log r2 =
[
log p(x′)−log p(x)

]
+
∆Mt

T
+log

ϕ(x | x′)

ϕ(x′ | x)
−log r1.

A new uniform random variable u2 ∼ Uniform(0, 1) is
drawn, and the proposal is accepted if log r2 ≥ 0 or log u2 ≤
log r2. If accepted, the Markov chain transitions to x′; oth-
erwise it remains at x.

Properties and Efficiency. By construction, the two-stage
procedure preserves detailed balance with respect to the tar-
get distribution q(x), ensuring that DA-MHIS yields an un-
biased importance-sampling estimator identical in expecta-
tion to MHIS. However, because the majority of proposals
are filtered out during Stage 1, the algorithm requires far
fewer full forward passes. The gradient g computed at the
current state can be reused across many proposals, amortiz-
ing its cost across multiple surrogate tests. See Figure 1 for
a visual representation of the algorithm.

Multiple-Try Metropolis Hastings Importance
Sampling (MT-MHIS)
Wu & Hilton’s original MHIS algorithm is limited by uti-
lizing only one proposed token change at each iteration. If
the proposal distribution ϕ(x′|x) suggests an unsatisfactory

next step toward the target distribution, many iterations may
be required by the Markov Chain to converge to a consistent
target distribution. To address this, we introduce a Multiple–
Try Metropolis variant of MHIS (MT-MHIS), which evalu-
ates many candidates in parallel and selects the most appro-
priate candidate for proposal. Although the number of cal-
culations in MT-MHIS versus MHIS is not reduced at each
step, the MT-MHIS method attempts to reduce the num-
ber of steps required for convergence. MT-MHIS also takes
advantage of parallel GPU computation, thereby improving
practical efficiency.

In MTM–MHIS, given a current input x, the algorithm
draws a set of K candidate proposals {x′

1, x
′
2, . . . , x

′
k} from

the proposal distribution ϕ(x′|x). Each candidate is assigned
a weight proportional to its Boltzmann-weighted likelihood
under the target distribution:

wj = p(x′
j) exp

(
Mt(x

′
j)

T

)
.

One candidate x′ is then selected with probability pro-
portional to its weight, wj/

∑K
i=1 wi, and is chosen as

the tentative move. For the preservation of detailed bal-
ance, MT-MHIS draws a reverse set of K − 1 proposals
{x1, x2, . . . , xk−1} from ϕ(x|x′) and includes the current
state x in this reverse pool. The acceptance probability for
transitioning from x to x′ is given by:

α(x, x′) = min

(
1,

∑k
j=1 wj(x

′
j)ϕ(x

′
j |x)∑k

j=1 wj(xj)ϕ(xj |x′)

)
.

This acceptance rule ensures detailed balance is main-
tained as per the distribution of MHIS, q(x) ∝
p(x) exp(Mt(x)/T), ensuring the estimator is unbiased.

4. Results

Method Runtime (sec) MSE
MHIS 13559 5.71× 10−11

MT-MHIS (n=2) 13669 1.02× 10−09

MT-MHIS (n=4) 13608 3.41× 10−08

MT-MHIS (n=8) 13727 1.17× 10−10

DA-MHIS 11170 7.91× 10−12

Table 1: Runtime and accuracy of baseline MHIS vs our op-
timization methods on GELU-1l

To evaluate the effectiveness of the proposed algorithms, we
tested DA-MHIS and MT-MHIS against the original MHIS
algorithm. Initial experiments were conducted on a GELU
1-layer model for proof of concept. To ensure a represen-
tative sample, we tested on n = 350 ground truths. Our
experiments utilized a compute budget of 216 model calls,
and we maintained the burn-in period of 210 batches from
Wu and Hilton’s methodology. Model temperature was also
set to 0 to maintain deterministic results. Experiments were
performed on an NVIDIA RTX 4090 24GB GPU. To evalu-
ate accuracy, the mean squared error (MSE) was calculated

against ground-truth probabilities. The resulting runtime and
accuracy is reported in Table 1.

We find that on the GELU 1-layer model reduces runtime
by 16.4% as compared to the baseline. Hence, we repeated
our experiments on incrementally larger models: GELU 2-
layer, GELU 4-layer, and GPT-2. The results from these ex-
periments can be seen in Figure 2. Figure 2 also demon-
strates that DA-MHIS maintained comparable accuracy as
compared to original MHIS on the GELU 1-layer and GELU
2-layer models. However, when scaling up to GPT-2, the
performance of both methods deviated significantly from the
ground truth. We speculate that the GPT-2 estimates skew
low because in the 10−9 regime and with a fixed 216-call
budget, effective sample sizes are tiny and the chain rarely
visits the rare-event region. Self-normalized MHIS yields
zero or near-zero in most runs, pulling estimates below the
ground truth. Small proposal–target mismatch and chain cor-
relation further reduce hit rates; any log-prob precision/clip-
ping can accentuate the downward skew. With more com-
pute or a better-matched proposal, the estimates rise toward
the ground truth.

To test MT-MHIS, we repeated initial experiments on a
GELU 1-layer model, varying the number of candidates pro-
posed by MT-MHIS for each experiment. Henceforth, the
number of candidates will be referred to as n. MT-MHIS
was tested on a sweep of n = [1, 2, 4, 8], and the results can
be observed in Figure 3. We can verify the faithfulness of
our algorithm by observing the results on MT-MHIS where
n = 1. With one proposed candidate, the accuracy is on par
with the original MHIS. However, we observe that as the
number of proposals per iteration increases, MT-MHIS esti-
mates experience an upward drift. This can be attributed to
the phenomenon where increasing n increases the probabil-
ity of selecting over-weighted proposals, leading to a small
positive bias in accepted samples.

Additionally, as indicated in Table 1, MT-MHIS did not
offer significant runtime improvements at any n.

5. Discussion
Our results highlight two optimization methods for improv-
ing the efficiency of the MHIS algorithm. It is important to
introduce highly-efficient, scalable algorithms so that rare
behavior elicitation can be extended to large-scale LLM-
based agents with a more flexible range of capabilities.

Delayed-Acceptance Metropolis Hastings Importance
Sampling (DA-MHIS) introduces a two-stage screening pro-
cess which immediately discards unsatisfactory proposals.
This method has demonstrated significant runtime improve-
ments without sacrificing accuracy.

On the other hand, Multiple-Try Metropolis Hastings
Importance Sampling (MT-MHIS) relies on selecting the
”best” proposed next token from multiple candidates at each
step. However, the theoretical parallel runtime advantages
of MT-MHIS are only actualized when there is an under-
utilization of GPU resources. When GPU capacity is under-
utilized, batching is able to amortize the cost of evaluating
multiple proposals. However, in the case where the hardware
capacity is fully utilized, extra candidates proposed by MT-
MHIS are queued rather than executed in parallel.

Figure 2: Performance of MHIS versus DA-MHIS. We test both methods on the gelu-1l, gelu-2l, gelu-4l, and gpt-2 models,
plotting the estimates against the ground truth diagonal—estimates closer to the main diagonal are more accurate. The plot also
includes the mean squared error across 350 trials, as well as the runtime across the various models.

Figure 3: Performance of MHIS versus MT-MHIS. Here, we test MHIS versus MT-MHIS on the gelu-1l model, varying the
number of candidates generated by MT-MHIS. We utilize a sweep of n = [1, 2, 4, 8] candidates.

Upon examining the Streaming Multiprocessor (SM) uti-
lization of our original experiments, we find that the origi-
nal MHIS exhibits on average 98% SM utilization, revealing
that the GPU is already saturated to nearly full capabilities.
The SM utilization from MT-MHIS attained similar levels,
hence runtime improvements were not observed. In order
to examine this further, we repeated our experiments on a
48GB GPU. In these experiments, we continued to observe
no clear runtime improvement exhibited by MT-MHIS as
well as similar average rates of SM utilization. Our exper-
iments are constrained by hardware access, but MT-MHIS
may exhibit potential for large, multi-GPU setups.

Hence, we identify DA-MHIS as a promising method for
optimizing the efficiency of the Metropolis Hastings Im-
portance Sampling algorithm. DA-MHIS delivers substan-
tial improvements upon runtime without sacrificing low-
probability estimation accuracy.

We would be excited about further research on scaling
such optimization methods to larger models, through meth-
ods such as examining the gradient descent processes to de-
termine whether current efficiency gains scale consistently
with model size.

6. Acknowledgements
We are grateful to Jacob Hilton at the Alignment Research
Center and Gabriel Wu at OpenAI for their feedback on our
work, and Kevin Zhu and the organizers of the Algoverse
AI Research Program for the computing and mentorship re-
sources.

References
Bai, T.; Luo, J.; Zhao, J.; Wen, B.; and Wang, Q. 2021. Re-
cent Advances in Adversarial Training for Adversarial Ro-
bustness. arXiv:2102.01356.
Banterle, M.; Grazian, C.; Lee, A.; and Robert, C. P. 2015.
Accelerating Metropolis-Hastings algorithms by Delayed
Acceptance. arXiv:1503.00996.
Doig, R.; and Wang, L. 2025. A unified framework for
multiple-try Metropolis algorithms. arXiv:2503.11583.
Huang, Y.; Gupta, S.; Xia, M.; Li, K.; and Chen, D. 2023.
Catastrophic Jailbreak of Open-source LLMs via Exploiting
Generation. arXiv:2310.06987.
Højmark, A.; Pimpale, G.; Panickssery, A.; Hobbhahn, M.;
and Scheurer, J. 2024. Analyzing Probabilistic Methods for
Evaluating Agent Capabilities. arXiv:2409.16125.
Liu, X.; Cheng, H.; He, P.; Chen, W.; Wang, Y.; Poon, H.;
and Gao, J. 2020. Adversarial Training for Large Neural
Language Models. arXiv:2004.08994.
Phuong, M.; Aitchison, M.; Catt, E.; Cogan, S.; Kaska-
soli, A.; Krakovna, V.; Lindner, D.; Rahtz, M.; Assael,
Y.; Hodkinson, S.; Howard, H.; Lieberum, T.; Kumar, R.;
Raad, M. A.; Webson, A.; Ho, L.; Lin, S.; Farquhar, S.;
Hutter, M.; Deletang, G.; Ruoss, A.; El-Sayed, S.; Brown,
S.; Dragan, A.; Shah, R.; Dafoe, A.; and Shevlane, T.
2024. Evaluating Frontier Models for Dangerous Capabili-
ties. arXiv:2403.13793.

Webb, S.; Rainforth, T.; Teh, Y. W.; and Kumar, M. P. 2019.
A Statistical Approach to Assessing Neural Network Ro-
bustness. arXiv:1811.07209.
Wu, G.; and Hilton, J. 2025. Estimating the Probabilities
of Rare Outputs in Language Models. https://arxiv.org/abs/
2410.13211. arXiv:2410.13211.
Xhonneux, S.; Sordoni, A.; Günnemann, S.; Gidel, G.; and
Schwinn, L. 2024. Efficient Adversarial Training in LLMs
with Continuous Attacks. arXiv:2405.15589.
Zhao, M.; Zhang, L.; Ye, J.; Lu, H.; Yin, B.; and Wang, X.
2024. Adversarial Training: A Survey. arXiv:2410.15042.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.;
and Fredrikson, M. 2023. Universal and Transfer-
able Adversarial Attacks on Aligned Language Models.
arXiv:2307.15043.

