AgentTrace: A Structured Logging Framework for Agent System Observability

Adam AlSayyad®, Kelvin Yuxiang Huang®, Richik Pal*

University of California, Berkeley
alsayyad @berkeley.edu, yxkelvinhuang @berkeley.edu, richik.pal @berkeley.edu

Abstract

Despite the growing capabilities of autonomous agents pow-
ered by large language models (LLMs), their adoption in
high-stakes domains remains limited. A key barrier is secu-
rity: the inherently nondeterministic behavior of LLM agents
defies static auditing approaches that have historically under-
pinned software assurance. Existing security methods, such
as proxy-level input filtering and model glassboxing, fail
to provide sufficient transparency or traceability into agent
reasoning, state changes, or environmental interactions. In
this work, we introduce AgentTrace, a dynamic observabil-
ity and telemetry framework designed to fill this gap. Agent-
Trace instruments agents at runtime with minimal overhead,
capturing a rich stream of structured logs across three sur-
faces: operational, cognitive, and contextual. Unlike tradi-
tional logging systems, AgentTrace emphasizes continuous,
introspectable trace capture, designed not just for debugging
or benchmarking, but as a foundational layer for agent secu-
rity, accountability, and real-time monitoring. Our research
highlights how AgentTrace can enable more reliable agent
deployment, fine-grained risk analysis, and informed trust
calibration, thereby addressing critical concerns that have so
far limited the use of LLM agents in sensitive environments.

Introduction

The deployment of autonomous agents built on large lan-
guage models (LLMs) has shown early promise across a
wide spectrum of domains, including software engineering,
scientific analysis, and complex decision-making workflows
(Schick et al. 2023; Weng 2023). However, despite the func-
tional competence of these systems in isolated tasks, their
adoption in safety-critical or high-integrity environments re-
mains severely limited. A primary constraint is the absence
of structured and dynamic observability frameworks that
can account for the stochastic reasoning behaviors of LLM
agents and enable reliable diagnosis, security assessment,
and governance.

Conventional methods for securing Al systems, such as
static input filtering, prompt hardening, and API bound-
ary control, are insufficient for LLM-based agents that act
through long-running, multi-step reasoning cycles in open-
ended environments. These agents dynamically compose

“Equal contribution.
Copyright © 2026, Trustworthy Agentic Al Workshop@
Association for the Advancement of Artificial Intelligence (www.
aaai.org). All rights reserved.

tool invocations, retrieve external knowledge, and revise
goals during execution, producing behaviors that are diffi-
cult to trace or explain post hoc. Current security and au-
diting tools remain constrained by assumptions of determin-
ism, procedural transparency, or bounded action space, as-
sumptions that do not hold in LLM-based settings. As a
result, the dominant paradigm has centered on proxy-level
defenses (e.g., PromptArmor) and glassbox introspection
of static prompts and outputs (Zou et al. 2023). These ap-
proaches offer limited insight into agent intent, decision
provenance, or operational context, especially in the pres-
ence of tool-use chaining, memory operations, or multi-
agent collaboration.

Crucially, the undeterministic nature of agentic reasoning
introduces a novel challenge for security and governance:
threats and failures can emerge not merely from malicious
inputs or faulty tools, but from the emergent behavior of
the agent’s cognitive trajectory. As observed in recent red-
teaming and adversarial prompting research (Liu et al. 2024;
Zou et al. 2023), even well-scoped agents may deviate from
expectations when their reasoning states are not explicitly
monitored. To address this, a shift is required from static,
perimeter-oriented security architectures toward dynamic,
semantic observability of the agent’s internal execution pro-
cess.

Our contributions are as follows. We present AgentTrace,
a structured, schema-based logging framework that instru-
ments LLM agents at runtime without requiring code modi-
fications. We introduce a three-surface taxonomy: cognitive,
operational, and contextual, that enables multi-level intro-
spection into an agent’s reasoning, execution, and environ-
ment. Finally, we demonstrate how AgentTrace integrates
with existing telemetry infrastructures such as OpenTeleme-
try to provide scalable, real-time observability. Through this
design, AgentTrace establishes a foundation for transparent,
accountable, and reproducible agentic systems, paving the
way for future research in alignment, evaluation, and safety.

Related Work

Agent Observability and Tracing Frameworks. Re-
cent agent-oriented observability tools instrument execution
flows to support debugging and monitoring. AgentOps in-
troduces a hierarchical span taxonomy that organizes rea-
soning, planning, workflow, task, tool, and LLM spans to

trace artifacts and processes throughout the agent lifecycle
(Dong, Lu, and Zhu 2024). LADYBUG complements this
with post-hoc debugging that combines execution tracing
and LLM-aided self-reflection (Rorseth et al. 2025). How-
ever, these systems primarily target single-surface traces and
lack a schema that unifies cognitive artifacts with opera-
tional and contextual signals. In contrast, AgentTrace in-
troduces a schema-based, multi-surface observability model
linking operational, cognitive, and contextual traces under a
unified envelope, realized at runtime via lightweight instru-
mentation.

System-Level Telemetry and Distributed Tracing.
System-centric approaches provide horizontal visibility into
API calls and service dependencies, often via kernel/OS
boundary tracing and OpenTelemetry-style pipelines.
AgentSight, for example, correlates LLM prompts with
kernel events using eBPF to bridge intent and execution
at system boundaries, and has been applied to boundary
tracing and anomaly detection (Zheng et al. 2025). Yet
these methods are largely semantics-agnostic to agent intent
and internal reasoning, offering limited causal linkage be-
tween what the agent infers and what the system executes.
AgentTrace complements them by embedding cognitive
semantics into the telemetry stream: cognitive spans are
nested within operational and contextual spans and exported
through standard backends, preserving interoperability
while enabling reasoning-aware, end-to-end traces.

Cognitive Interpretability and Textual Traceability.
Work on cognitive observability and agentic interpretabil-
ity models reasoning traces and human—agent alignment.
Watson surfaces implicit reasoning errors in LLM-powered
agents without altering agent architecture (Rombaut et al.
2024), while concurrent work frames explanation as interac-
tive mental-model building with LLM-driven proactive clar-
ification (Kim et al. 2025). These efforts enhance under-
standing of internal reasoning but remain decoupled from
runtime observability and structured, composable teleme-
try. AgentTrace bridges this gap by treating cognition as
a first-class telemetry surface: reasoning steps, plans, and
reflections are captured in a machine-readable schema and
causally linked to operational actions and contextual I/O at
runtime, enabling unified, schema-consistent analysis across
surfaces.”

Methodology
Schema

We present a principled, schema-based methodology for
capturing rich, interpretable traces of autonomous LLM-
agent behavior. At the core of our logging framework is a
formalized representation of logs as transformations of run-
time events into structured records:

L(S:E:C) — R,

where S denotes the surface (cognitive, operational, or con-
textual), E is the event content, C represents metadata con-
text, and R is a structured record that satisfies four crit-
ical properties: consistency (schema-compliant representa-
tion), causality (temporal fidelity), fidelity (faithful to the

agent’s internal and external behavior), and interoperabil-
ity (analysis-ready, framework-agnostic). This schema de-
sign builds on recent efforts in Al observability frameworks
(Goyal et al. 2024) and structured introspection mechanisms
for LLM agents (Rombaut et al. 2024), extending them with
a formal schema for high-fidelity, surface-level trace cap-
ture. However, our schema uniquely emphasizes semanti-
cally enriched introspection in LLM agents, encompassing
not just control flow and system I/O, but also the agent’s
cognitive deliberations and interactions with external APIs
and data stores.

Surface Taxonomy and Extraction Procedure

We operationalize the schema across three disjoint but
composable surfaces of agent execution, each instrumented
through techniques designed for transparent, non-intrusive

logging.

Operational Surface: Method-Level Execution
Tracing

The operational surface captures all explicit agent method
calls, argument structures, return values, and execution tim-
ing. Through Python introspection and function wrapping,
we automatically intercept all public methods on the agent
class. Each method invocation produces a pair of events
- start and complete - enriched with span-level metadata
such as argument count, result type, and execution duration.
Events are written to both structured JSONL logs and Open-
Telemetry spans, preserving trace and span relationships for
end-to-end visibility.

This approach is functionally equivalent to distributed
tracing as used in service-oriented architectures (Sigelman
et al. 2010), but adapted for fine-grained agent-level ob-
servability. All logs conform to a fixed schema to enable
downstream consumption, and trace linkage ensures coher-
ent propagation across multiple layers of abstraction.

Cognitive Surface: LLM Interaction Introspection

The cognitive surface is designed to capture the internal de-
liberations of the agent’s reasoning engine, primarily inter-
actions with LLMs. These include raw prompts, comple-
tions, extracted reasoning chains (e.g., Chain-of-Thought),
and confidence estimates. When supported by the LLM API
(e.g., OpenAl or Anthropic), this surface also parses semi-
structured outputs to extract <thinking> segments, step-
by-step reasoning, and structured JSON fields such as plan
or reflection.

Span metadata is derived from instrumented LLM API
calls, and cognitive spans are nested within operational
traces to maintain full trace context.

Extraction relies on a set of generalizable strategies:
marker-based pattern detection, XML tag parsing, and JSON
field extraction. This design supports multiple reasoning
formats and enables comparative analysis across different
model outputs and prompt templates.

Contextual Surface: External System 1/O

The contextual surface tracks all outbound agent inter-
actions with external systems, including HTTP APIs,

Config logger/tracer

Trace/span ID

Runtime Instrumentation

Operational

Events Encoding

|

Enable Telemetry

|

Before Call

¢33 Initialization/Setup @
[
[

Register auto- U —
Cognitive Extraction

instrumentation hooks

n Error

Surface routing
Cognitive

Events
Streaming / Persistence

@ Storage @

File Sinks (JSONL)
OpenTelemetry Exporter
Index / Retention (future)

Privacy / Redaction (future)

Visualization

Step Log Timeline
Dashboard

Error Chain Graph (future) Reports

(future)

Trace Viewer (Jaeger)

Figure 1: AgentTrace system flow. End-to-end runtime architecture showing initialization (logger setup, OpenTelemetry en-
ablement, and auto-instrumentation hooks), runtime instrumentation with trace/span ID generation and cognitive extraction,
logging pipeline for event encoding and routing, and downstream storage and visualization. Contextual spans are enriched with

OpenTelemetry attributes via auto-instrumentation.

SQL/NoSQL databases, cache layers, vector stores, and file
systems. Rather than requiring agent authors to manually
log these operations, we leverage OpenTelemetry’s auto-
instrumentation capabilities to monkey-patch standard li-
braries (e.g., requests, sqlalchemy, redis) at runtime. How-
ever, we also include the option for manual instrumentation
in order to capture more granular and cohesive log struc-
tures.

Each contextual interaction produces a span enriched with
resource-specific metadata: URLs and headers for HTTP,
query structure and row counts for SQL, and key/value op-
erations for cache or vector DBs. These events are stored ex-
clusively as OTel spans to avoid redundancy with file-based
logging. Temporal nesting under the same trace context en-
ables causal analysis across layers of computation and I/O.

This surface bridges the agent’s cognitive operations and
their environmental grounding, providing a unified view of
how internal plans translate to external effects (cf. Paxton et
al. 2023).

Unified Representation and Trace Semantics
All three surfaces emit logs that conform to a shared enve-
lope schema. Each log event includes:
* a UUID identifier
* surface type (cognitive, operational, or contextual)
e trace ID and span ID
e precise UTC timestamp
* event body (structured per surface)
Logs are stored in two complementary formats:
* JSONL files (line-delimited JSON for offline inspection,
streaming, or replay)

e OpenTelemetry spans (for real-time distributed tracing
and integration with tools like Jaeger or Tempo)

This dual-path storage ensures both low-latency local de-
bugging and scalable remote observability. Logs are append-
only and schema-validated at write time to preserve consis-
tency and support batch analytics and visualization.

Implementation

To operationalize the proposed schema, we implemented
AgentTrace as a modular runtime system that instantiates
the three observability surfaces introduced in the Methodol-
ogy section. This implementation translates the theoretical
framework into concrete runtime mechanisms for capturing,
structuring, and exporting agent logs.

Overview. AgentTrace is a lightweight Python package
that (i) injects runtime instrumentation without modifying
agent code, (ii) emits schema-consistent records across op-
erational, cognitive, and contextual surfaces, and (iii) ex-
ports telemetry to an OpenTelemetry (OTel) backend for dis-
tributed tracing. Our design goals are non-intrusiveness, low
overhead, and graceful degradation (i.e., falling back to local
logging when remote export fails) when external telemetry
is unavailable.

Python Module Layout and Initialization
AgentTrace exposes a minimal API:

* init (...) configures local sinks and toggles OTel ex-
port or auto-instrumentation.

* instrument_agent (obj, name,
methods=None) wraps selected public callables
for runtime tracing.

* ALogger records surface-specific events and optionally
exports to OTel.

Initialization loads configuration, prepares append-only
JSONL outputs, and, when enabled, activates OTel auto-
instrumentation for common I/O libraries.

Algorithm 1: AgentTrace Runtime Instrumentation Wrapper
Input: agent instance A, name n, optional allowlist M
Output: instrumented agent A

1: for each public method m € select(A4, M) do

2: let f < original implementation of m
3: define wrapper w with preserved signature
4
5

function w(x)
(trace.id,span-id) < new IDs (or propa-
gate)

6: RECORDOPERATIONAL(status=start, n,m,
args=summary(x))

7: to < now()

8: try

9: y < f(x)
10 (y,0) + maybe_extract_cognitive(y)
11: if 6 # & then RECORDCOGNITIVE(H)
12: RECORDOPERATIONAL(dur=now()—ty,

status=complete, result:summary(y))
13: return y

14: catch exception e

15: RECORDOPERATIONAL(status=error,
dur=now()—tg, err=repr(e))

16: rethrow e

17: end function

18: replace m on A with w
19: end for

20: return A

Instrumentation via Decorator Injection

AgentTrace uses a runtime observer pattern. For each target
method, it installs an in-place wrapper that:

1. emits a start event (method name, argument summary,
timestamp),

2. records a complete event on success (duration, result
summary), and

3. records an error event on exception while re-raising to
preserve semantics.

Wrappers preserve function signatures, and each event car-
ries a fresh span_id under a shared trace_id. Span
nesting and context propagation enforce temporal causality
across reasoning, tool, and workflow events.

Cognitive trace extraction. When completions include
a delimited reasoning segment, AgentTrace returns the
cleaned answer and logs the segment as a cognitive event;
otherwise, results pass through unmodified.

Log Schema and Local Sinks

All surfaces share a common envelope with
identifiers, timestamps, agent name, surface
€ {operational, cognitive, contextual }, level, trace._id,
and span_id. Surface payloads are concise: Operational
includes method, status, duration, and result summary
(optionally token or latency metadata); Cognitive stores
thought, plan, and reflection excerpts with model and
token counts; Contextual captures operation type, source,

query or response summaries, and provenance. Crucially,
contextual traces manage tool invocations and data access
operations (reads and writes), linking agent reasoning
with its external interactions. Operational and cognitive
events are persisted to JSONL, while contextual events are
primarily exported via OTel with optional file mirroring
for offline workflows. All records are validated at emission
time against the schema to maintain consistency.

OpenTelemetry Export and Auto-Instrumentation

When enabled, AgentTrace converts each event into an OTel
span and exports via a batch processor. Attributes are pop-
ulated defensively, i.e., with type checks and safe conver-
sions: scalars are set directly, structured values are JSON-
stringified when necessary, and unknown objects fall back to
string representations. Exporter failures gracefully degrade
to local JSONL.

Contextual I/0O capture. OTel auto-instrumentation
patches common HTTP, database, and cache libraries to
emit contextual spans (URLs, queries, status, counts, laten-
cies) without manual logging. In tracing Uls (e.g., Jaeger),
method-level operational spans appear alongside contextual
spans, providing end-to-end visibility complementary to
local files.

Engineering Considerations

Non-intrusiveness. Decorators enable tracing without
changing agent logic.

Low overhead. Typical success paths emit two events per
call; export is batched asynchronously.

Robustness. Serialization and export are defensive; failures
never block execution.

Composability. A stable, analysis-ready schema supports
JSONL and OTel; contextual I/O is auto-instrumented with
optional file mirroring.

Conclusion

In this paper, we present AgentTrace, a research frame-
work that establishes the first open standard for structured
agent logging through a schema-based protocol spanning
cognitive, operational, and contextual traces. By transform-
ing logging into a semantically rich, introspectable substrate,
AgentTrace elevates observability from an engineering util-
ity to a core enabler of agent safety, reproducibility, and ac-
countability. This design closes critical gaps in existing ob-
servability systems by enabling fine-grained debugging, reli-
able failure attribution, and transparent governance of LLM-
based agents.

Looking ahead, the structured and interpretable traces
generated by AgentTrace pave the way for security and eval-
uation research. They allow for dynamic threat modeling,
real-time risk detection, and post-hoc forensic analysis of
adversarial or misaligned behaviors. Beyond security, these
logs provide the groundwork for agent evaluation, enabling
new metrics for reasoning stability, goal fidelity, and cross-
agent behavioral benchmarking.

References

Dong, L.; Lu, Q.; and Zhu, L. 2024. AgentOps: Enabling
Observability of LLM Agents. arXiv:2411.05285.

Goyal, S.; Hira, M.; Mishra, S.; Goyal, S.; Goel, A.; Dadu,
N.; DB, K.; Mehta, S.; and Madaan, N. 2024. LLMGuard:
Guarding Against Unsafe LLM Behavior. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI-24),
23790-23792. Demonstration Track.

Kim, B.; Hewitt, J.; Nanda, N.; Fiedel, N.; and Tafjord, O.
2025. Because we have LLMs, we Can and Should Pursue
Agentic Interpretability. arXiv:2506.12152.

Liu, Y.; Lo, S.; Lu, Q.; Zhu, L.; Zhao, D.; Xu, X.; Harrer,
S.; and Whittle, J. 2024. Agent Design Pattern Catalogue: A
Collection of Architectural Patterns for Foundation Model
Based Agents. arXiv preprint arXiv:2405.10467.

Rombaut, B.; Masoumzadeh, S.; Vasilevski, K.; Lin, D.;
and Hassan, A. E. 2024. Watson: A Cognitive Observabil-
ity Framework for the Reasoning of LLM-Powered Agents.
arXiv:2411.03455.

Rorseth, J.; Godfrey, P.; Golab, L.; Srivastava, D.; and
Szlichta, J. 2025. LADYBUG: an LLM Agent DeBUGger
for data-driven applications. In Proceedings of the 28th In-
ternational Conference on Extending Database Technology
(EDBT), 1082-1085. OpenProceedings.org. Demonstration
Paper.

Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Hambro, E.; Zettlemoyer, L.; Cancedda, N.; and
Scialom, T. 2023. Toolformer: Language Models Can Teach
Themselves to Use Tools. In Advances in Neural Informa-
tion Processing Systems 36 (NeurIPS 2023).

Sigelman, B. H.; Barroso, L. A.; Burrows, M.; Stephenson,
P.; Plakal, M.; Beaver, D.; Jaspan, S.; and Shanbhag, C.
2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. https://research.google.com/archive/papers/
dapper-2010-1.pdf. Google Technical Report.

Weng, L. 2023. LLM Powered Autonomous Agents. On-
line blog post, https://lilianweng.github.io/posts/2023-06-
23-agent/.

Zheng, Y.; Hu, Y.; Yu, T.; and Quinn, A. 2025. AgentSight:
System-Level Observability for AI Agents Using eBPF. In
Proceedings of the 4th Workshop on Practical Adoption
Challenges of ML for Systems, SOSP °25, 110-115. ACM.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.;
and Fredrikson, M. 2023. Universal and Transferable Ad-
versarial Attacks on Aligned Language Models. CoRR,
abs/2307.15043. ArXiv:2307.15043.

