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Abstract

Conversational AI systems require guardrails to prevent harm-
ful outputs, yet existing approaches use static rules that can-
not adapt to new threats or deployment contexts. We intro-
duce LATTICE, a framework for self-constructing and continu-
ously improving guardrails. LATTICE operates in two stages:
construction builds initial guardrails from labeled examples
through iterative simulation and optimization; continuous im-
provement autonomously adapts deployed guardrails through
risk assessment, adversarial testing, and consolidation. Evalu-
ated on the ProsocialDialog dataset, LATTICE achieves 91% F1
on held-out data, outperforming keyword baselines by 43pp,
LlamaGuard by 25pp, and NeMo by 4pp. The continuous
improvement stage achieves 7pp F1 improvement on cross-
domain data through closed-loop optimization. Our framework
shows that effective guardrails can be self-constructed through
iterative optimization.

Introduction
The deployment of large language models in conversational
AI systems presents a fundamental tension between capability
and safety. Although these systems must engage naturally
in diverse contexts, they also require mechanisms to prevent
harmful outputs in real-world deployments (Ayyamperumal
and Ge 2024; Hakim et al. 2024; Abdelkader et al. 2024).

Current approaches to conversational safety are predom-
inantly based on static guardrail mechanisms (Dong et al.
2024; Rebedea et al. 2023). These systems employ fixed rule
sets designed to filter input queries and LLM outputs based
on predetermined patterns. However, static guardrails face
two critical limitations that compromise their effectiveness in
deployed systems. First, they cannot adapt to attack vectors or
conversational contexts that emerge post-deployment (Yang
et al. 2024). Second, they exhibit brittleness when faced with
adversarial inputs specifically crafted to circumvent existing
protections (Goyal et al. 2024).

These limitations point to a deeper algorithmic challenge:
how can guardrail systems self-evolve to address emergent
threats while maintaining safety coverage? This requires
moving beyond static guardrail application toward systems
capable of learning, identifying coverage gaps, and refining
protection mechanisms through experiences.

We introduce LATTICE, a framework that treats guardrail
construction and adaptation as continuous optimization prob-
lems. Rather than relying on fixed rules defined at design
time, LATTICE constructs initial guardrail sets through iter-
ative conversation simulation, evaluating candidate policies
against labeled training data and refining them based on ob-
served failure modes. After deployment, LATTICE continu-
ously improves these guardrails by monitoring conversations
for coverage gaps, expanding edge cases through adversar-
ial beam search, and updating policies when performance
degrades. Evaluated on ProsocialDialog (Kim et al. 2022),
this approach outperforms static baseline systems and demon-
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strates cross-domain adaptation.
Our primary contributions are: (1) A simulation-based

construction method that learns compact guardrail sets from
minimal labeled data through iterative optimization, outper-
forming manually designed static systems. (2) A closed-loop
continuous improvement system combining dual-check risk
assessment, adversarial case expansion, and policy optimiza-
tion that enhances deployed guardrails, achieving measurable
performance gains in cross-domain settings.

Related Work
Static safety mechanisms at training and inference
time
Safety mechanisms for language models are typically in-
troduced either during training or at inference time. Train-
ing time methods include safety fine tuning and guardrail
aware adaptation (Kumar et al. 2024), as well as parame-
ter efficient approaches such as LoRA based safety mod-
ules (Fomenko et al. 2024; Hsu et al. 2025). These methods
embed constraints directly into model parameters, which
can yield strong performance within the training distribution.
However, they require new optimization cycles whenever
threats change, limiting rapid adaptation to novel jailbreak
patterns (Huang et al. 2025).

Inference time guardrail systems, including NeMo
Guardrails (Rebedea et al. 2023) and LlamaGuard (Fedorov
et al. 2024), represent the prevailing runtime strategy. These
systems achieve broad coverage of predefined safety cate-
gories but their rules remain fixed at design time, which
constrains their ability to handle multi-turn jailbreaks or
emerging violation types (Yang et al. 2024; Yu et al. 2024).



Figure 1: Two-stage framework architecture. Construction
stage (top) generates initial guardrails from labeled conver-
sations through three iterative steps: (1) Conversation Sim-
ulation tests current guardrails on synthetic dialogues; (2)
Performance Evaluation computes precision, recall, and F1;
(3) Guardrail Optimization creates, deletes, tightens, loosens,
or clusters guardrails based on false positives and false neg-
atives. Continuous improvement stage (bottom) adapts de-
ployed guardrails to unlabeled conversations through four
steps: (1) Risk Assessment identifies coverage gaps via dual-
check evaluation; (2) Case Expansion generates adversarial
variations; (3) Guardrail Optimization updates policies; (4)
Performance Evaluation validates changes and reverts if per-
formance degrades.

LATTICE builds on this line of work by introducing an in-
ference time mechanism that not only applies rules but also
generates, edits, and consolidates them through a continuous
optimization process.

Programmed guardrails and moderation models
Rule based toolkits such as NeMo Guardrails provide pro-
grammable rails, dialogue flows, and domain specific pol-
icy enforcement (Rebedea et al. 2023). Moderation mod-
els such as LlamaGuard (Fedorov et al. 2024) and Shield-
Gemma (Zeng et al. 2024) classify content categories for
safety filtering. These systems are effective for predefined
risks, yet studies highlight gaps in coverage for paraphrased
intent, cross category drift, and extended dialogue con-
text (Yang et al. 2024; Yu et al. 2024). Our approach uses
such systems as components inside a broader feedback loop:
general purpose classifiers serve as baseline evaluators, while
LATTICE induces new guardrails to address their blind spots.

Adversarial robustness, red teaming, and multi turn
jailbreaks
A substantial literature explores adversarial prompting and
jailbreak attacks on safety systems. Red teaming frameworks
demonstrate that carefully staged inputs can bypass filters
and that multi turn dialogues can erode safety boundaries
by gradually shifting context (Goyal et al. 2024). Multi step
evaluations reveal that contextual drift, latent goal pursuit,
and role play exploitation often lead to safety failures (Yang
et al. 2024). HAICOSYSTEM (Zhou et al. 2024) introduces
sandboxed evaluation across diverse domains, emphasizing
large scale testing of system vulnerabilities. These works
focus primarily on identifying weaknesses. LATTICE comple-
ments them by integrating adversarial testing with automatic
policy improvement, converting discovered jailbreaks into
new guardrail rules without manual patching.

Learning based refinement and critique driven
methods
Iterative learning approaches use feedback loops to refine
model behavior. Self Refine (Madaan et al. 2023) and critique
driven refinement (Ke et al. 2024; Ye et al. 2024) demonstrate
that self feedback can improve textual quality and consis-
tency, though their focus lies on generation fidelity rather
than safety. Reward model scaling studies (Rafailov et al.
2024) show that feedback driven alignment improves safety
and helpfulness, but these methods often rely on thousands
of human annotated feedback samples per iteration and may
encounter reward hacking effects (Yan et al. 2024). LATTICE
differs by employing synthetic feedback derived from ob-
served guardrail failures and adversarial expansions, enabling
unsupervised improvement.

Methodology
Construction Stage
The construction stage learns an initial guardrail set from
labeled conversations via iterative refinement (Figure 1, Algo-
rithm 1). Each iteration comprises three steps that (i) expand
behavioral coverage, (ii) evaluate detection performance, and
(iii) apply targeted edits to the guardrail set while enforcing
an acceptance criterion that prevents regressions.



Conversation Simulation (Algorithm 1, lines 7–11) For
each labeled conversation (ci, yi), the system samples a user
persona and simulates a multi-turn dialogue conditioned
on the current guardrails R. We then evaluate whether any
r ∈ R triggers on the simulated transcript s, appending
(ci, yi,triggered) to a validation set V . This procedure
exposes R to diverse conversational dynamics and yields ob-
served trigger patterns beyond the original labels, increasing
the effective variation encountered during optimization.

Performance Evaluation (Algorithm 1, lines 12–20)
From V , we compute TP,FP,FN,TN by comparing yi with
the observed trigger outcome and report precision P =

TP
TP+FP , recall R = TP

TP+FN , and F1 = 2PR
P+R as the primary

selection metric. This diagnostic decomposition identifies
whether error is dominated by over-sensitivity (FP) or under-
coverage (FN), providing sufficient statistics to guide the
subsequent optimization step. If F < F ⋆ and a prior best
configuration R⋆ exists, we revert to R⋆; if F ≥ F ⋆, we pro-
mote the current configuration to R⋆ and update F ⋆. Early
stopping is triggered when F ≥ τ , where τ is a user-specified
threshold.

Guardrail Optimization (Algorithm 1, lines 21–40)
Based on the failure modes observed in V , we apply targeted
edits to R as follows:

• False negatives related to existing guardrails: broaden
the guardrail involved to increase sensitivity.

• False negatives unrelated to existing guardrails: syn-
thesize a new specialized guardrail to cover the uncovered
pattern.

• False positives: refine the triggered guardrail to reduce
over-flagging while preserving coverage.

• Unused guardrails: remove rules that never trigger to
prevent bloat and improve interpretability.

• Redundant guardrails: optionally cluster similar rules
and consolidate them into a single policy.

Each proposed edit is accepted only if it maintains or im-
proves the best observed score, i.e., Fnew ≥ F ⋆; otherwise
the system reverts to R⋆. This acceptance rule enforces mono-
tonic, non-decreasing F1 over accepted configurations, ensur-
ing stable convergence of the construction process.

Continuous Improvement Stage
The continuous improvement stage adapts the deployed
guardrails to the unlabeled deployment data through struc-
tured testing and optimization (Algorithm 2). Each itera-
tion executes four steps –risk assessment, case expansion,
guardrail optimization, and performance evaluation – to main-
tain or improve safety coverage in response to novel conver-
sational patterns.

Risk Assessment (Algorithm 2, lines 9–16) Each new con-
versation u undergoes a dual-evaluation procedure: the sys-
tem tests both (i) current specialized guardrails R and (ii)
a general-purpose safety guardrail rgeneral. The dual-check
mechanism identifies coverage gaps by comparing activation

states; cases where rgeneral(u) = 1 and
∨

r∈R r(u) = 0 indi-
cate missed threats-instances—instances where the general
model detects risk that the specialized set fails to capture.
The resulting set of discrepancies, denoted G, serves as the
seed for a subsequent adversarial exploration.

Case Expansion (Algorithm 2, lines 17–26) For each
u ∈ G, the system performs multi-turn adversarial search
to generate conversation variants that investigate known and
potential weaknesses. An attacker model Ma produces candi-
date user turns designed to bypass existing guardrails while
preserving the inferred harmful intent; a target model Mt

responds under the current guardrail policy. The beam search
with configurable width k and depth d expands the conversa-
tion tree, producing a set of labeled leaf nodes E categorized
as:

• successful attacks (guardrail bypasses)
• blocked attacks (guardrail triggered correctly)
• false alarms (benign content flagged in error)

This step operationalizes adversarial testing, generating di-
verse challenge cases.

Guardrail Optimization (Algorithm 2, lines 27–42) The
system applies targeted updates to R conditioned on the
analysis of E :

• Successful attacks: broaden or synthesize new guardrails
to cover novel attack strategies.

• False alarms: refine corresponding guardrails to reduce
over-sensitivity.

• Redundant policies: cluster semantically similar
guardrails and consolidate them to prevent drift and com-
plexity growth.

Each proposed update produces a candidate set R′ that is
validated against a held-out evaluation split. Updates are
accepted only if F1(R

′) ≥ F1(R), enforcing non-decreasing
performance across improvement cycles.

Performance Evaluation (Algorithm 2, lines 43–47) Up-
dated guardrails R′ are re-evaluated on both the original risk-
assessment cases G and the adversarially expanded cases
E . If F1(R

′) < F1(R) or performance falls below a spec-
ified degradation threshold, the system reverts to the prior
configuration R. Otherwise, R′ is promoted to the deployed
set, thereby closing the continuous-improvement loop and
enabling adaptive response to emergent threats.

Implementation via Prompted Language Models
All algorithmic operations in the construction and continuous
improvement stages are implemented as structured prompt
calls to large language models (LLMs). To ensure fair com-
parison with baselines and computational efficiency, all op-
erations use gpt-4o-mini uniformly across the pipeline.
This includes persona sampling, conversation simulation,
guardrail generation and refinement, adversarial attack gener-
ation, and all testing procedures.

Each LLM call follows a fixed prompt schema to ensure
consistency and facilitate automatic parsing of results:



Figure 2: Iterative construction from 100 labeled examples.
F1 score (left axis, red) and guardrail count (right axis, blue)
across 10 construction iterations. F1 improves from 82%
(iteration 0, 23 guardrails) to 93% (iteration 7, 6 guardrails),
exceeding the early stopping threshold (F1 ≥ 0.90, black
dotted line) at iteration 4. Guardrail consolidation reduces
the set from 23 to 6 policies through iterative clustering while
maintaining performance. The system exhibits convergence
with non-monotonic but improving F1 trajectory.

### TASK
<Defines the operation's purpose and
establishes the model's role>

### INSTRUCTIONS
<Provides step-by-step procedures,
specific requirements, and
constraints>

### OUTPUT FORMAT
<Specifies the expected response
schema,
typically JSON with fields for
generated content and reasoning>

This standardized structure constrains model behavior, en-
forces reproducible output formats, and allows the system to
programmatically integrate LLM outputs within the guardrail
construction and improvement loops.

Experimental setup
Dataset
We evaluate on PROSOCIALDIALOG (Kim et al. 2022), a
corpus of 58,000 multi-turn conversations between users and
AI assistants annotated for conversational safety. Each di-
alogue is labeled as either harmful (requiring guardrail
intervention) or benign (safe). To ensure consistency, we
filter out ambiguous or multi-intent examples and retain only

Parameter Value
Max construction iterations 10
Early stop F1 threshold 0.90
Simulated conversation turns 3
Iteration selection metric F1 score
Beam width (case expansion) 3
Tree depth (case expansion) 10
Holdout evaluation runs 5

Table 1: Key hyperparameters for reproducibility. Con-
struction iterates up to 10 times with early stopping when
F1 ≥ 0.90. Each iteration simulates 3-turn conversations and
selects updates based on F1 score comparison. Continuous
improvement uses beam search with width 3 and depth 10
for adversarial case expansion.

those with unambiguous binary annotations. From this fil-
tered subset, we construct three evaluation splits: Dtrain (100
conversations from social domain), Dtest (652 conversations
from social domain, disjoint from train, representing 10%
of the social domain data), and Dimprove (100 conversations
from ethics domain for cross-domain testing). We treat the
social and ethics domains as distinct subspaces within the
corpus to better capture differences between interpersonal
sensitivity and moral reasoning. Training and test sets are
balanced between harmful and benign labels.

Evaluation Metrics
We report standard binary classification metrics. Precision
(P ) quantifies the fraction of flagged conversations that are
truly harmful. Recall (R) measures the fraction of harmful
conversations correctly identified. The F1-score provides
the harmonic mean of precision and recall. All holdout and
baseline results are averaged over 5 independent runs on the
same test set to estimate measurement variance.

Baseline Systems
We compare LATTICE against three representative static
guardrail baselines:

1. Keyword — deterministic keyword matching over prede-
fined lexical patterns (e.g., suicide, kill, violence, abuse).

2. LlamaGuard (Fedorov et al. 2024) — Meta’s Llama-
Guard-3-8B content moderation model accessed via the
Together AI API.

3. NeMo (Rebedea et al. 2023) — NVIDIA’s NeMo
Guardrails framework configured with a gpt-4o-mini
backend.

All baselines are evaluated on the same 652-conversation test
set using the same preprocessing pipeline to ensure compara-
bility.

Hyperparameters
Table 1 summarizes key experimental settings. The construc-
tion stage iterates up to T = 10 cycles with early stopping



when F1 ≥ 0.90. Each iteration simulates three-turn dia-
logues, computes F1, and applies targeted guardrail opti-
mization based on precision–recall analysis. Model selection
across iterations follows an F1-based comparison criterion.
The continuous improvement stage employs beam search
for adversarial case expansion with width k = 3 and depth
d = 10. All reported experiments are conducted under these
fixed hyperparameters.

Research Questions
We evaluate LATTICE across three core research objectives:

1. RQ1 — Self-Construction: Can LATTICE self-construct
an effective guardrail set from a limited sample of 100 la-
beled conversations such that the resulting model achieves
F1 ≥ 0.90 on unseen data?

2. RQ2 — Baseline Comparison: Does the guardrail set
produced by LATTICE outperform representative static
baselines—Keyword, LlamaGuard, and NeMo—in detect-
ing harmful conversations?

3. RQ3 — Continuous Improvement: Can the continuous
improvement stage, when deployed on unlabeled data,
improve F1 without human supervision or manual inter-
vention?

These questions collectively test the extent to which LAT-
TICE can (i) construct guardrails with minimal supervision,
(ii) achieve or exceed state-of-the-art performance relative
to existing static systems, and (iii) continuously adapt to
emerging conversational risks in a fully automated manner.

Results
Self-Construction (RQ1)
Figure 2 shows construction performance across 10 itera-
tions on 100 labeled examples. The system starts with 23
initial guardrails at iteration 0 achieving F1=82%. Through
iterative refinement, F1 improves to 93% by iteration 7, sur-
passing the early stopping threshold (F1 ≥ 0.90) at itera-
tion 4. Guardrail consolidation reduces the set from 23 to 6
policies while maintaining performance. Sample constructed
guardrails demonstrating the specificity and structure of gen-
erated policies are shown in Figures 3 and 4.

The construction stage achieves F1 = 91%± 1% on held-
out data from 100 labeled training examples. While final con-
struction performance (93%) exceeds holdout performance
(91%), indicating some overfitting, the absolute holdout F1
remains substantially higher than initial construction (82%),
demonstrating effective learning. The system prioritizes re-
call (93% ± 1%), ensuring comprehensive coverage of harm-
ful content, while maintaining strong precision (90% ± 1%).

Baseline Comparison (RQ2)
Table 3 compares LATTICE against static guardrail systems.
LATTICE achieves the highest F1 (91%), outperforming key-
word matching (48%), LlamaGuard (66%), and NeMo (87%).
The 43pp improvement over keyword matching demonstrates
the value of learned guardrails. Compared to NeMo (4pp
improvement), LATTICE achieves comparable F1 with higher
precision but slightly lower recall (90%/93% vs 82%/93%).

Metric Initial Final Holdout

Precision 73% 91% 90%± 1%
Recall 94% 96% 93%± 1%
F1 Score 82% 93% 91%± 1%

Guardrails generated 23 (initial)→ 6 (final)
Iterations to convergence 4 (of max 10)

Table 2: Self-construction performance on training and
test sets. Initial construction (iteration 0) starts with 23
guardrails achieving 82% F1. Final construction (best iter-
ation) improves to 93% F1 with 6 guardrails after consoli-
dation. Holdout evaluation over 5 independent runs yields
91% ± 1% F1 (mean ± 95% CI), with the 2pp gap analyzed
in Section . The system reaches the early stopping threshold
(F1 ≥ 0.90) at iteration 4. High recall (93%) ensures compre-
hensive coverage while maintaining strong precision (90%).

System Precision Recall F1

Keyword 95%± 0% 32%± 0% 48%± 0%
LlamaGuard-8B 98%± 0% 50%± 0% 66%± 0%
NeMo 82%± 1% 93%± 0% 87%± 0%

Lattice 90%± 1% 93%± 1% 91%± 1%

Table 3: Comparison against static guardrail baselines.
All systems evaluated on the same 652-conversation test set
over 5 independent runs (balanced 50% harmful). LATTICE
achieves 91% F1, outperforming keyword matching (48%),
LlamaGuard-8B (66%), and NeMo Guardrails (87%). Im-
provements of 43pp, 25pp, and 4pp respectively. LATTICE
achieves high precision and recall (90%/93%) compared to
LlamaGuard’s high precision but low recall (98%/50%) and
NeMo’s recall-focused approach (82%/93%).

Compared to LlamaGuard (25pp improvement), LATTICE
achieves substantially higher recall (93% vs 50%) with lower
but still strong precision (90% vs 98%).

Continuous Improvement (RQ3)

Table 4 demonstrates automated guardrail adaptation through
the continuous improvement stage. Starting from baseline
performance of 86% F1 on the improvement dataset (cross-
domain ethics data), the system executes the full feedback
loop. The dual-check risk assessment identifies 8 conver-
sations where general safety classifiers trigger but specific
guardrails do not, indicating potential coverage gaps. For
each gap, beam search with width 3 and depth 10 generates
adversarial conversation variants, producing 24 test cases that
probe guardrail boundaries. The optimization component per-
forms 5 targeted guardrail updates: broadening policies that
miss related cases and creating new policies for novel pat-
terns. The adapted guardrails achieve 93% F1, representing
a 7pp improvement over baseline, validating that the contin-
uous improvement loop enhances safety coverage even in
cross-domain settings.



Metric Value

Coverage gaps identified 8
Adversarial tests generated 24
Guardrail updates performed 5

Initial F1 (before) 86%
Final F1 (after) 93%
Change +7pp

Table 4: Continuous improvement operational statistics.
Starting from constructed guardrails with 86% F1 on cross-
domain data (ethics), the system identifies 8 coverage gaps
via dual-check risk assessment, generates 24 adversarial test
cases through beam search, and performs 5 guardrail updates.
Final performance achieves 93% F1, representing a 7pp im-
provement through the risk assessment, case expansion, and
optimization loop.

Discussion
Our results demonstrate that LATTICE constructs effective
guardrails through iterative optimization, achieving strong
holdout performance while maintaining compact policy sets.
The system converges efficiently and substantially outper-
forms static baselines across all metrics.

Precision-recall trade-offs and configurability. Table 3
reveals distinct precision-recall profiles across systems: Lla-
maGuard achieves high precision (98%) but low recall (50%),
capturing only the most obvious violations while avoiding
false positives; NeMo prioritizes recall (93%) with lower
precision (82%), flagging more broadly at the cost of over-
triggering; LATTICE achieves strong precision (90%) and
high recall (93%). The 10% false positive rate in LATTICE’s
current configuration reflects an explicit optimization toward
comprehensive harmful content detection. This trade-off is
appropriate for safety-critical deployments where missing
harmful content (false negatives) carries greater risk than
occasional over-flagging of benign conversations (false posi-
tives).

Crucially, LATTICE’s precision-recall balance is config-
urable rather than fixed. The framework supports two op-
timization modes: (1) F1-based selection (harmonic mean
of precision and recall), or (2) weighted scoring with user-
defined coefficients (αP + βR). F1 optimization penalizes
precision-recall imbalance, ensuring both metrics remain
high. Weighted scoring allows asymmetric optimization: ap-
plications prioritizing user experience can set α = 2.0, β =
1.0 to favor precision (fewer false positives), while safety-
critical deployments can set α = 1.0, β = 2.0 to favor
recall (fewer false negatives). This configurability enables
deployment-specific optimization without code changes, al-
lowing organizations to align guardrail behavior with their
risk tolerance and operational constraints. Our evaluation
uses F1-based selection, representing a balanced default that
equally penalizes precision and recall deficiencies.

Generalization and overfitting analysis. Table 2 shows a
2pp drop in F1 from final construction (93%) to holdout eval-
uation (91%). This gap warrants careful interpretation. On

one hand, the performance decrease indicates some degree
of overfitting to the 100-example training set. On the other
hand, the absolute holdout performance (91%) remains sub-
stantially higher than initial construction (82%), representing
a 9pp net improvement. Additionally, the 91% holdout F1
significantly exceeds all static baselines, demonstrating that
despite the generalization gap, the learned guardrails capture
meaningful safety patterns.

The 2pp gap is within expected bounds for classifica-
tion tasks trained on 100 examples. Comparing precision
and recall components reveals the source: final construction
achieves 91% precision on training data, maintaining similar
holdout precision (90%), while recall decreases from 96%
to 93%. This suggests the guardrails generalize well but are
slightly more conservative on new data. The modest gener-
alization gap, combined with strong absolute performance,
indicates the approach is viable for deployment.

The continuous improvement stage demonstrates effective
unsupervised adaptation. Starting from constructed guardrails
with 86% F1 on cross-domain improvement data (ethics), the
system identifies 8 coverage gaps through dual-check risk
assessment, generates 24 adversarial test cases via beam
search exploration, and performs 5 targeted guardrail updates.
The final adapted guardrails achieve 93% F1, representing
a 7pp improvement. This validates that the framework can
enhance deployed guardrails through structured feedback
loops, even when adapting to new domains.

Computational cost analysis. The construction stage
consumes approximately 53.6 million tokens (~$20 at
gpt-4o-mini pricing) and requires 46 minutes of run-
time to train on 100 labeled examples. This cost contrasts
with static baseline systems—keyword matching, Llama-
Guard, and NeMo Guardrails—which incur no construction
overhead but require manual rule specification and cannot
self-adapt post-deployment. While the upfront computational
investment is substantial, it must be contextualized within
deployment scale. For production conversational AI systems
serving millions of users, construction costs are amortized
across all subsequent interactions. Consider a customer ser-
vice chatbot handling 100,000 daily conversations: a one-time
cost of $20 and 46 minutes yields guardrails protecting 36.5
million annual conversations, reducing to $0.0000005 per
protected conversation. For safety-critical domains where a
single harmful output could have severe consequences, this
investment is justified by superior performance over static
systems (4–43pp improvement), automated construction from
minimal supervision, and continuous adaptation capabilities
that static systems lack. The framework’s configurability
further enables cost-performance trade-offs: organizations
can adjust iteration counts, clustering aggressiveness, and
precision-recall weights based on their risk tolerance and
budget constraints.

Limitations and Future Directions While LATTICE
demonstrates effective guardrail construction and adapta-
tion, several limitations warrant consideration. First, evalua-
tion focuses exclusively on English-language conversations
within the ProsocialDialog domain; generalization to multi-
lingual settings, domain-specific contexts, and cross-cultural



safety norms remains untested. Second, all pipeline opera-
tions use gpt-4o-mini uniformly; exploring additional
models, particularly reasoning models, could identify opti-
mal model-operation pairings to improve quality or reduce
costs. Third, we evaluate with a fixed 100-example training
set; investigating how training set size affects holdout and
continuous improvement performance would inform data col-
lection requirements. Fourth, automated refinement raises
interpretability questions for regulated domains requiring
audit trails.

Future work should investigate: (1) multilingual and cross-
domain robustness; (2) training set size ablations to determine
data efficiency bounds; (3) model selection studies comparing
reasoning models against fast inference models for different
pipeline operations; (4) adversarial testing against sophisti-
cated jailbreak techniques; (5) human-in-the-loop variants for
high-stakes decisions; and (6) long-term deployment studies
measuring adaptation and drift.

Conclusion
We presented LATTICE, a framework enabling conversa-
tional AI systems to self-construct and continuously improve
guardrails.. The framework operates through two stages: con-
struction generates initial guardrails from labeled training
examples via iterative simulation and optimization; contin-
uous improvement adapts deployed guardrails through risk
assessment, adversarial testing, and consolidation.

Beyond accuracy, the system is configurable—trading pre-
cision vs. recall to match deployment risk—and practical,
with a one-time construction cost on the order of minutes and
dollars that amortizes at scale. Framing safety this way rec-
onciles ethics-driven desiderata with engineering constraints:
the guardrails self-construct, self-audit, and self-improve, en-
abling sustained coverage as threats and contexts shift. This
is a step toward resilient, auditable safety layers that keep
pace with real-world dialogue systems without proportional
increases in human oversight.

References
Abdelkader, H.; Abdelrazek, M.; Barnett, S.; Schneider, J.-
G.; Rani, P.; and Vasa, R. 2024. ML-On-Rails: Safeguarding
Machine Learning Models in Software Systems — A Case
Study. In Proceedings of the IEEE/ACM 3rd International
Conference on AI Engineering - Software Engineering for AI,
CAIN ’24, 178–183. New York, NY, USA: Association for
Computing Machinery. ISBN 9798400705915.
Ayyamperumal, S. G.; and Ge, L. 2024. Current state of
LLM Risks and AI Guardrails. arXiv:2406.12934.
Dong, Y.; Mu, R.; Jin, G.; Qi, Y.; Hu, J.; Zhao, X.; Meng,
J.; Ruan, W.; and Huang, X. 2024. Building Guardrails for
Large Language Models. arXiv:2402.01822.
Fedorov, I.; Plawiak, K.; Wu, L.; Elgamal, T.; Suda, N.;
Smith, E.; Zhan, H.; Chi, J.; Hulovatyy, Y.; Patel, K.; Liu, Z.;
Zhao, C.; Shi, Y.; Blankevoort, T.; Pasupuleti, M.; Soran, B.;
Coudert, Z. D.; Alao, R.; Krishnamoorthi, R.; and Chandra,
V. 2024. Llama Guard 3-1B-INT4: Compact and Efficient
Safeguard for Human-AI Conversations. arXiv:2411.17713.

Fomenko, V.; Yu, H.; Lee, J.; Hsieh, S.; and Chen, W. 2024.
A Note on LoRA. arXiv:2404.05086.
Goyal, S.; Hira, M.; Mishra, S.; Goyal, S.; Goel, A.; Dadu,
N.; DB, K.; Mehta, S.; and Madaan, N. 2024. LLMGuard:
Guarding Against Unsafe LLM Behavior. arXiv:2403.00826.
Hakim, J. B.; Painter, J. L.; Ramcharran, D.; Kara, V.; Powell,
G.; Sobczak, P.; Sato, C.; Bate, A.; and Beam, A. 2024. The
Need for Guardrails with Large Language Models in Medical
Safety-Critical Settings: An Artificial Intelligence Applica-
tion in the Pharmacovigilance Ecosystem. arXiv:2407.18322.
Hsu, C.-Y.; Tsai, Y.-L.; Lin, C.-H.; Chen, P.-Y.; Yu, C.-M.;
and Huang, C.-Y. 2025. Safe LoRA: the Silver Lining of
Reducing Safety Risks when Fine-tuning Large Language
Models. arXiv:2405.16833.
Huang, T.; Hu, S.; Ilhan, F.; Tekin, S. F.; and Liu, L. 2025.
Virus: Harmful Fine-tuning Attack for Large Language Mod-
els Bypassing Guardrail Moderation. arXiv:2501.17433.
Ke, P.; Wen, B.; Feng, A.; Liu, X.; Lei, X.; Cheng, J.; Wang,
S.; Zeng, A.; Dong, Y.; Wang, H.; Tang, J.; and Huang, M.
2024. CritiqueLLM: Towards an Informative Critique Gener-
ation Model for Evaluation of Large Language Model Gener-
ation. In Ku, L.-W.; Martins, A.; and Srikumar, V., eds., Pro-
ceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 13034–
13054. Bangkok, Thailand: Association for Computational
Linguistics.
Kim, H.; Yu, Y.; Jiang, L.; Lu, X.; Khashabi, D.; Kim, G.;
Choi, Y.; and Sap, M. 2022. ProsocialDialog: A Prosocial
Backbone for Conversational Agents. In EMNLP.
Kumar, D.; Kumar, A.; Agarwal, S.; and Harshangi, P. 2024.
Fine-Tuning, Quantization, and LLMs: Navigating Unin-
tended Outcomes. arXiv:2404.04392.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Gupta, S.; Majumder, B. P.; Hermann, K.; Welleck, S.;
Yazdanbakhsh, A.; and Clark, P. 2023. Self-Refine: Iterative
Refinement with Self-Feedback. arXiv:2303.17651.
Rafailov, R.; Chittepu, Y.; Park, R.; Sikchi, H.; Hejna, J.;
Knox, B.; Finn, C.; and Niekum, S. 2024. Scaling Laws
for Reward Model Overoptimization in Direct Alignment
Algorithms. arXiv:2406.02900.
Rebedea, T.; Dinu, R.; Sreedhar, M.; Parisien, C.; and Co-
hen, J. 2023. NeMo Guardrails: A Toolkit for Control-
lable and Safe LLM Applications with Programmable Rails.
arXiv:2310.10501.
Yan, Y.; Lou, X.; Li, J.; Zhang, Y.; Xie, J.; Yu, C.; Wang, Y.;
Yan, D.; and Shen, Y. 2024. Reward-Robust RLHF in LLMs.
arXiv:2409.15360.
Yang, Y.; Dan, S.; Roth, D.; and Lee, I. 2024. Bench-
marking LLM Guardrails in Handling Multilingual Toxicity.
arXiv:2410.22153.
Ye, Z.; Greenlee-Scott, F.; Bartolo, M.; Blunsom, P.; Campos,
J. A.; and Gallé, M. 2024. Improving Reward Models with
Synthetic Critiques. arXiv:2405.20850.
Yu, E.; Li, J.; Liao, M.; Wang, S.; Gao, Z.; Mi, F.; and Hong,
L. 2024. CoSafe: Evaluating Large Language Model Safety
in Multi-Turn Dialogue Coreference. arXiv:2406.17626.



Zeng, W.; Liu, Y.; Mullins, R.; Peran, L.; Fernandez, J.;
Harkous, H.; Narasimhan, K.; Proud, D.; Kumar, P.; Rad-
harapu, B.; Sturman, O.; and Wahltinez, O. 2024. Shield-
Gemma: Generative AI Content Moderation Based on
Gemma. arXiv:2407.21772.
Zhou, X.; Kim, H.; Brahman, F.; Jiang, L.; Zhu, H.; Lu,
X.; Xu, F.; Lin, B. Y.; Choi, Y.; Mireshghallah, N.; Bras,
R. L.; and Sap, M. 2024. HAICOSYSTEM: An Ecosys-
tem for Sandboxing Safety Risks in Human-AI Interactions.
arXiv:2409.16427.



Algorithm 1: Construction Stage: Iterative Guardrail Optimization

1: Input: Labeled dataset D = {(ci, yi)}ni=1 where yi ∈ {0, 1} indicates if conversation ci requires guardrail
2: Max iterations T , F1 threshold τ
3: Output: Optimized guardrail setR∗

4:
5: Initialize:
6: R← ∅ {Current guardrail set (initially empty)}
7: R∗ ← ∅, F ∗ ← 0 {Best guardrail set and its F1 score}
8:
9: for t = 0 to T − 1 do

10:
11: // Step 1: Conversation Simulation
12: V ← ∅ {Validation results}
13: for each labeled conversation (ci, yi) ∈ D do
14: p← SamplePersona(ci) {Generate diverse user persona}
15: s← SimulateConversation(ci, p,R) {Multi-turn simulation}
16: triggered←

∨
r∈R r(s) {Test if any guardrail fires}

17: V ← V ∪ {(ci, yi, triggered)}
18: end for
19:
20: // Step 2: Performance Evaluation
21: Compute TP, FP, FN,TN from V by comparing yi with triggered
22: P ← TP/(TP + FP), R← TP/(TP + FN)
23: F ← 2PR/(P +R) {F1 score}
24:
25: if F < F ∗ andR∗ ̸= ∅ then
26: R← R∗ {Revert to previous best}
27: continue to next iteration
28: end if
29:
30: if F ≥ F ∗ then
31: R∗ ←R, F ∗ ← F {Update best configuration}
32: end if
33:
34: if F ≥ τ then
35: break {Early stopping: F1 threshold reached}
36: end if
37:
38: // Step 3: Guardrail Optimization
39: FP_cases← {v ∈ V : yi = 0 ∧ triggered = true}
40: FN_cases← {v ∈ V : yi = 1 ∧ triggered = false}
41:
42: // Refine guardrails with false positives
43: for each guardrail r ∈ R that triggered on FP_cases do
44: r′ ← RefineGuardrail(r, FP_cases) {Make more specific}
45: R← R \ {r} ∪ {r′}
46: end for
47:
48: // Handle false negatives
49: for each case c ∈ FN_cases do
50: if c is semantically related to existing guardrail r ∈ R then
51: r′ ← BroadenGuardrail(r, c) {Increase sensitivity}
52: R← R \ {r} ∪ {r′}
53: else
54: rnew ← CreateGuardrail(c) {Generate new guardrail}
55: R← R∪ {rnew}
56: end if
57: end for
58:
59: // Remove unused and consolidate
60: unused← {r ∈ R : r never triggered in V}
61: R← R \ unused {Delete unused guardrails}
62: R← ClusterSimilar(R) {Consolidate redundant guardrails}
63: end for
64:
65: return R∗ {Return best performing guardrail set across all iterations}



Algorithm 2: Continuous Improvement Stage: Adaptive Guardrail Refinement
1: Input: Initial guardrail setR (from construction stage)
2: Unlabeled deployment data U = {u1, u2, . . . , um}
3: Beam width k, tree depth d
4: Output: Adapted guardrail setR′

5:
6: Initialize:
7: R′ ← R {Start with constructed guardrails}
8: Fbaseline ← EvaluateF1(R,U) {Baseline performance}
9:

10: // Step 1: Risk Assessment
11: G ← ∅ {Coverage gap set}
12: for each unlabeled conversation u ∈ U do
13: sspecific ←

∨
r∈R′ r(u) {Test specific guardrails}

14: sgeneral ← rgeneral(u) {Test general-purpose guardrail}
15: if sgeneral = true and sspecific = false then
16: G ← G ∪ {u} {Potential coverage gap detected}
17: end if
18: end for
19:
20: // Step 2: Case Expansion
21: E ← ∅ {Expanded adversarial cases}
22: for each gap conversation u ∈ G do
23: goal← ExtractAttackGoal(u) {Identify harmful intent}
24: T ← BeamSearchAttack(u, goal,R′, k, d) {Tree search}
25: for each leaf node ℓ ∈ T do
26: Classify ℓ as: successful attack, blocked attack, or false alarm
27: E ← E ∪ {ℓ}
28: end for
29: end for
30:
31: // Step 3: Guardrail Optimization
32: // Handle successful attacks (increase coverage)
33: for guardrail r ∈ R′ bypassed in E do
34: r′ ← BroadenGuardrail(r, bypassed cases)
35: R′ ←R′ \ {r} ∪ {r′}
36: end for
37:
38: // Handle false alarms (reduce over-flagging)
39: for guardrail r ∈ R′ with false alarms in E do
40: r′ ← RefineGuardrail(r, false alarm cases)
41: R′ ←R′ \ {r} ∪ {r′}
42: end for
43:
44: // Create guardrails for novel attack patterns
45: N ← {e ∈ E : e has novel pattern not covered byR′}
46: for each novel case n ∈ N do
47: rnew ← CreateGuardrail(n)
48: R′ ←R′ ∪ {rnew}
49: end for
50:
51: R′ ← ClusterSimilar(R′) {Consolidate redundant guardrails}
52:
53: // Step 4: Performance Evaluation
54: Fupdated ← EvaluateF1(R′,U) {Test on deployment data}
55: if Fupdated < Fbaseline then
56: R′ ←R {Revert if performance degraded}
57: end if
58:
59: return R′ {Return adapted guardrail set}



Figure 3: Sample guardrail: Illegal, unsafe, and unethical behavior monitoring. This guardrail was generated by
LATTICE during construction to detect conversations involving illegal activities, unsafe advice, or unethical requests.
The prompt includes explicit triggering conditions (e.g., planning illegal acts, seeking harmful advice) and exclusion
rules (e.g., educational discussions, hypothetical scenarios). The structured format enables consistent evaluation
across conversations.

1 ### TASK
2 You are a security system monitoring conversations for any encouragement,

facilitation, or inadequate discouragement of illegal, unsafe, unethical, or
policy-violating behavior or advice, including harassment, substance misuse,
misrepresentation, risky activities, and unauthorized actions in correctional
facilities.

3
4 ### INSTRUCTIONS
5 Analyze each conversation for signs of:
6 - Encouragement, normalization, facilitation, or insufficient discouragement of

illegal acts or policy violations (e.g., theft, fraud, vandalism, bringing
weapons to school).

7 - Admissions of intent, planning, or rationalization of harmful or non-
consensual behaviors (e.g., harassment, assault, stalking, discrimination)
and any failure to clearly discourage them.

8 - Promotion or positive portrayal of unsafe substance use (excessive alcohol,
illegal drugs) or underage vaping, including minimizing risks or lacking
guidance toward safe/legal alternatives.

9 - Advice or discussion of engaging in risky or dangerous activities without
adequate safety measures or consideration of harm.

10 - Discussions of misrepresenting or withholding important information from
clients or stakeholders as a strategy.

11 - Guidance that could facilitate unauthorized activities within correctional
facilities or conflict with institutional rules.

12
13 Look for patterns such as:
14 - Justifications, rationalizations, or attempts to trivialize or dismiss the

impact of harmful actions.
15 - Absence of immediate discouragement or alternative suggestions that emphasize

legality, safety, and ethics.
16
17 ### OUTPUT FORMAT
18 Return a JSON response with:
19 {
20 "triggered": boolean, // true if any monitored issue is detected
21 "reason": string // clear explanation of why the guardrail was or was not

triggered
22 }



Figure 4: Sample guardrail: Inappropriate content detection and requests. This guardrail identifies conversations
with inappropriate content or requests for harmful material. Generated during construction, it demonstrates how
LATTICE creates specific triggering patterns (e.g., explicit content requests, inappropriate relationship advice) while
avoiding over-flagging through carefully defined exclusions (e.g., medical discussions, educational content).

1 ### TASK
2 You are a security system monitoring conversations for inappropriate, harmful, or

offensive content and user requests.
3
4 ### INSTRUCTIONS
5 Analyze the conversation for any of the following:
6 - Inappropriate, harmful, or sensitive topics that violate community guidelines

or ethical standards.
7 - Jokes or comments that trivialize sexual violence, harm to individuals or

groups, or other serious issues.
8 - References to illegal, unethical, or dangerous activities, including self-harm

or unsafe practices.
9 - Explicit sexual content or language that may breach content policies.

10 - Attempts to justify harmful language or behavior as humor, or to dismiss
concerns about their impact.

11 - Solicitation or requests for edgy, boundary-pushing, or escalating jokes or
offensive content.

12 - Patterns of repeated or escalating requests for increasingly offensive or
inappropriate material.

13 - Situations where a user may be in distress or require mental health support,
and any inadequate responses lacking proper escalation or referral to
professional help.

14
15 Do NOT trigger when:
16 - Conversations are playful or consensual, maintaining respect and comfort for

all parties.
17 - Content consists of light-hearted or non-explicit innuendo that does not

become explicit or disrespectful.
18 - Participants express mutual understanding and respect, even if using mild humor

or personal anecdotes.
19
20 ### OUTPUT FORMAT
21 Return a JSON response with:
22 {
23 "triggered": boolean, // true if inappropriate content or requests are detected
24 "reason": string // explanation of why the guardrail was or was not triggered
25 }


