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Abstract

Agentic systems for physical world applications must sat-
isfy strict bounds on latency, energy, and safety. We present
an embodied agent architecture, built on spiking neural net-
works and integrated with a runtime safety supervisor and a
calibrated human-in-the-loop interface. The system provides
verifiable control through formal safety envelopes and pro-
duces auditable evidence objects at runtime. Hardware-in-
the-loop validation on a BrainChip Akida neuromorphic pro-
cessor demonstrates a 92% mission success rate under com-
bined adversarial and environmental faults, with a median
inference latency of 1.2 ms and an energy of 45 uJ per in-
ference. A 90-participant study confirms its utility for hu-
man oversight, where integrated explanations increased oper-
ator diagnostic accuracy from 61.2% to 88.5% and subjective
trust from 2.8 to 4.5 on a five-point Likert scale, with cogni-
tive load assessed via the NASA-TLX framework. The find-
ings establish a practical and verifiable paradigm for embod-
ied agency at the edge, complementing LLM-centric archi-
tectures by providing a deployable solution for applications
where safety and resource efficiency are paramount.

1 Introduction

Recent advances in large language models have catalyzed
the development of agentic Al systems capable of com-
plex reasoning, planning, and tool use. These systems, how-
ever, are predominantly designed for and evaluated in digi-
tal environments, where computational resources are abun-
dant and the consequences of failure are contained. Their
reliance on massive, cloud-hosted models introduces sig-
nificant and variable latency, a characteristic unsuitable for
control loops that require millisecond-scale responsiveness
to maintain stability in physical systems. Local language-
model agents reduce network delay, yet their compute and
memory footprints still exceed typical edge power budgets
and make worst-case timing guarantees impractical for mil-
lisecond control. Furthermore, the stochastic nature of their
generative outputs makes their behavior difficult to verify
formally, posing a fundamental challenge for certification in
safety-critical applications. This creates a distinct embodied
gap for agentic Al, where the requirements of the physical
world demand a different architectural foundation.
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For agents deployed in high-stakes environments such as
autonomous space robotics, trustworthiness is not an ab-
stract goal but a set of non-negotiable engineering require-
ments. First, the system must provide verifiable safety. Its
actions must be guaranteed to remain within a predefined
safety envelope, regardless of the internal state of its com-
plex, probabilistic core. This necessitates a mechanism for
runtime monitoring and enforcement of formal constraints.
Second, the agent must operate in real time. Decisions and
interventions must occur on millisecond timescales to in-
teract with and control physical dynamics effectively. This
requires a computational architecture with predictable, low-
latency performance. Third, the system must enable effec-
tive human oversight. This extends beyond simple mon-
itoring to providing human operators with the necessary
transparency to understand the agent’s reasoning, calibrate
their trust in its outputs, and intervene correctly during off-
nominal events. The interface must support rapid and accu-
rate human diagnosis without imposing an excessive cogni-
tive load. Together, these imperatives demand an integrated
approach to agent design that prioritizes safety, responsive-
ness, and human-Al collaboration from the outset (Bansal
et al. 2021).

This paper presents an integrated assurance framework
and an embodied agent architecture designed to meet these
safety-critical requirements. At its core is a neuromorphic
agent based on a spiking neural network (SNN). Its event-
driven, asynchronous nature provides the foundation for the
extreme energy efficiency and low-latency processing nec-
essary for edge deployment. This probabilistic agent is gov-
erned by a deterministic runtime safety supervisor. The su-
pervisor implements a monitor-shield pattern, continuously
checking the agent’s state against formal guard conditions
and overriding its actions with a predefined safe maneuver
if a violation is detected. This provides the verifiable control
component of the framework. To enable effective oversight,
the system includes an integrated explainability (XAI) mod-
ule and a human-in-the-loop validation protocol. We demon-
strate through a 90-participant study that providing opera-
tors with spike-level explanations of the agent’s reasoning
leads to a quantifiable improvement in diagnostic accuracy
and calibrated trust. The complete architecture, illustrated
in Figure 1, composes these elements into a single, cohe-
sive system. We present this integrated system not as a re-



placement for LLM-based agents, but as a necessary and
complementary paradigm for embodied agency at the safety-
critical edge. We evaluate the framework against three mea-
surable properties: task success under compounded distur-
bances, end-to-end timing and energy, and the calibration of

human trust and performance.
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Figure 1: The integrated architecture for a verifiable and
trustworthy embodied agent. Sensor data is processed by the
neuromorphic core, which generates both a policy action and
an explanation. The runtime safety supervisor monitors the
agent’s state and proposed action against a formal safety en-
velope, either permitting the action or intervening with a safe
maneuver. The explanation is provided to a human operator
to support oversight and calibrated trust.

2 The Challenge of Verifiability and Trust at
the Edge

The development of trustworthy embodied agents requires a
direct confrontation with the physical and operational real-
ities of their intended environments. For systems deployed
at the safety-critical edge, these realities impose a set of un-
compromising constraints that dictate architectural choices
and define the boundaries of feasible autonomy. The chal-
lenge is twofold: first, to create an agent that can func-
tion effectively within a severely resource-constrained op-
erational envelope, and second, to ensure this agent remains
robust and controllable when faced with a complex spec-
trum of internal failures, environmental hazards, and mali-
cious threats.

2.1 Operational Constraints of the Safety-Critical
Edge

The cislunar domain serves as an exemplar of a safety-
critical edge environment, where the constraints of power,
latency, and communication are pushed to their physical lim-
its (Nesnas, Fesq, and Volpe 2021; Izzo et al. 2022). These
factors collectively render agent architectures that depend on
continuous access to large, remote computational resources
non-viable for real-time control.

First, such agents are subject to extreme Size, Weight, and
Power (SWaP) limitations. A robotic platform’s power bud-
get for a compute subsystem is often less than 10 W. An
agent’s core inference loop must therefore be exceptionally
efficient, with an energy cost on the order of microjoules per
decision, to ensure mission longevity, especially during long
periods of eclipse where the system must run on limited bat-
tery reserves.

Second, communication latency makes remote decision-
making for dynamic tasks impossible. The round-trip light-
time delay between the Earth and the Moon is approximately

2.5t0 2.7 seconds. We target onboard control loops with me-
dian latency near 1-2 ms and a 99th percentile below 5 ms;
any architecture must satisfy these bounds without remote
calls. This architectural requirement for local, real-time pro-
cessing fundamentally precludes any system that relies on a
remote server for its primary reasoning or action-selection
functions.

Third, communication bandwidth is a scarce and power-
intensive resource. A high-gain antenna on a deep-space as-
set might provide a downlink rate of less than 100 kilobits
per second. This makes it infeasible to transmit high-volume
raw sensor data for analysis. The agent must be capable of
performing data fusion and information processing locally,
reserving the communication link for high-level summaries
and critical alerts.

2.2 The Threat Model Beyond Benign Failures

A trustworthy agent must be resilient to a wide range of
active, off-nominal events. The threat space for a cislunar
robotic agent is a composite of environmental hazards, inter-
nal system degradation, and intelligent adversarial attacks.
The environment itself is a source of faults, with radiation
inducing single-event upsets (SEUs) that manifest as tran-
sient sensor glitches or corrupted data. Internal systems are
also subject to failure, including gradual sensor bias drift and
actuator degradation.

Finally, the agent must be robust to intentional attacks.
Our attacker model assumes white-box access to the percep-
tion stack but no access to the supervisor, which is part of the
trusted computing base. Perturbation budgets are bounded
by an /., timing jitter of < 4 ms on spike times and a point-
cloud edit rate of < 2% of points per frame. This includes
the adversarial temporal jitter attack, which involves making
subtle manipulations to the timing of input events to cause a
misclassification (Sharmin et al. 2020). A robust agent must
be designed with an explicit threat model that accounts for
this full spectrum of failures, including gradient-based at-
tacks (Goodfellow, Shlens, and Szegedy 2014; Madry et al.
2018).

2.3 Defining Verifiable Control and Calibrated
Trust

To meet these challenges, an agent must possess two key,
measurable properties: verifiable control and the ability to
foster calibrated trust with its human supervisors.

We operationalize verifiable control as zero unmitigated
safety envelope violations across all experimental trials.
This is achieved through a runtime safety supervisor that im-
plements a monitor-shield pattern. The monitor evaluates the
agent’s state and proposed actions against a set of formally
specified safety rules. If a proposed action would violate this
envelope, the shield intervenes and executes a predefined
safe maneuver. We report the monitor and shield decision
latency per control cycle to quantify the responsiveness of
this safety mechanism.

We operationalize calibrated trust as the statistical align-
ment between an operator’s subjective confidence in the
agent and their objective performance when using the sys-



tem. This is measured in our human-subject study by com-
paring participants’ self-reported trust ratings with their di-
agnostic accuracy. We report these findings with calibration
error metrics and the statistical effect sizes of the improve-
ments gained from the system’s explanations. The challenge,
therefore, is to build an agent that is not only performant and
robust, but is also architecturally controllable and demon-
strably trustworthy to its human partners.

3 An Integrated Framework for Embodied
Agency

The proposed framework for trustworthy embodied agency
is an integrated system composed of three primary compo-
nents. First, a neuromorphic core agent, based on a spik-
ing neural network (SNN), serves as the high-performance
policy and perception engine. Second, a deterministic run-
time safety supervisor provides a verifiable control layer that
enforces a formal safety envelope around the probabilistic
core. Third, a human-in-the-loop interface, equipped with a
portfolio of explainable Al (XAI) methods, facilitates effec-
tive operator oversight and enables the calibration of trust.
These components work in concert to create a system that
is simultaneously efficient, safe, and interpretable, address-
ing the core challenges of deploying autonomous agents in
high-stakes environments.

3.1 The Neuromorphic Core Agent

The foundation of the agent is a neuromorphic processing
architecture that is inherently suited to the constraints of
the safety-critical edge. Unlike traditional Artificial Neural
Networks (ANN5) that operate on static vectors and require
dense matrix multiplications at every time step, SNNs, the
third generation of neural network models (Maass 1997),
process information using discrete, asynchronous events,
or spikes (Gerstner and Kistler 2002). This event-driven
paradigm provides a fundamental architectural advantage
for embodied applications. Computation and energy are ex-
pended only when new information is present, leading to
sparse network activity and extreme power efficiency. Fur-
thermore, the explicit representation of time in SNN dynam-
ics allows the network to learn and react to complex tem-
poral patterns in sensor data with millisecond precision, a
critical capability for interacting with the physical world.
The core agent’s architecture is a hybrid SNN designed
for multi-modal data fusion. The policy has approximately
1.2 million synapses distributed across 5 layers. Inputs are
integrated over 20 ms windows with a 1 ms stride, and the
system operates on a control cycle of 2 ms. Input layers,
composed of computationally efficient Leaky Integrate-and-
Fire (LIF) neurons, are responsible for encoding raw sensor
data from various modalities into spike trains. Deeper, in-
tegrative layers of the network employ Izhikevich neurons,
which offer a richer set of dynamical behaviors, such as
bursting and adaptation. This heterogeneity allows the net-
work to capture a wider range of temporal features, from
the sharp transients of an impact event to the slow drifts
of sensor degradation. The network topology includes con-
volutional SNN layers for extracting spatial features from

camera imagery and recurrent connections for processing se-
quential data from telemetry and inertial sensors.

The agent’s resilience is built into its core design
through the Hierarchical Temporal Defense (HTD) frame-
work (Kaczmarek 2025a). This multi-layered security archi-
tecture provides intrinsic robustness against a wide spectrum
of perturbations by combining input-level Bayesian filtering,
homeostatic neuronal thresholds, and volatility-gated synap-
tic plasticity.

Furthermore, the agent is designed for long-term au-
tonomy through the Information-Theoretic Adaptive Mor-
phology (ITAM) framework. This mechanism, guided by
principles from the information bottleneck method (Tishby,
Pereira, and Bialek 2000), governs the network’s structural
plasticity, allowing it to adapt to novel, unforeseen events
by dynamically adding or pruning neurons and connections.
ITAM plasticity is enabled only during specific adaptation
phases, with add and prune thresholds set to the 95th and
5th percentiles of the estimated mutual information change
over a 2-second horizon. The entire agent is trained on
our Cislunar Anomaly and Risk Dataset (CARD) (Kacz-
marek 2025b), which comprises over 150 mission scenar-
ios (avg. 10 s duration) with 100 Hz IMU and 10 Hz Li-
DAR streams, labeled across 5 categories (e.g., collision,
sensor degradation). Training proceeds for 200 epochs us-
ing the Adam optimizer with a learning rate of le-3, LI
regularization for sparsity, and a comprehensive data aug-
mentation protocol (including noise injection o = 0.05,
rotation £15°, and temporal warping) to improve general-
ization. The training objective minimizes a composite loss
L=Lcg+ A MLr1+ AoLagw, Where Lo g is cross-entropy,
L1 targets 5% sparsity (A, = 10™%), and L4, is the loss
on PGD-generated adversarial examples (A2 = 0.5).

3.2 The Runtime Safety Supervisor

The neuromorphic core agent is a high-performance, prob-
abilistic system. To provide the deterministic safety guaran-
tees required for critical applications, it is enclosed within a
runtime safety supervisor. This supervisor provides the veri-
fiable control component of the framework, implementing a
monitor-shield pattern that decouples the complex, learned
policy of the agent from the enforcement of absolute safety
constraints (Bloem et al. 2015; Ames et al. 2017).

The first component of the supervisor is the monitor. The
monitor is a lightweight, deterministic module that runs in
parallel with the core agent. It continuously observes a set
of critical state variables from the agent and its environment.
These variables include the agent’s physical state (e.g., po-
sition, velocity, orientation), the state of its internal systems
(e.g., motor torques, battery temperature), and its proposed
next action as determined by the SNN policy. The monitor’s
function is to evaluate this information against a set of for-
mal guard conditions at every control cycle.

These guard conditions collectively define the agent’s
safety envelope. The safety envelope is a set of simple,
human-authored, and formally verifiable rules that spec-
ify the bounds of safe operation. These rules are de-
rived from the system’s engineering specifications and mis-
sion constraints. For the cislunar rover application, exam-



ples of such rules include hard limits on kinematic vari-
ables (e.g., ‘velocity < 0.5 m/s‘), physical constraints
(e.g., ‘motor_current < 5 A°), and environmental in-
teractions (e.g., ‘predicted_time_to_collision >
2 seconds®). The logic of the safety envelope is intentionally
simple, consisting of straightforward threshold checks and
logical predicates that can be formally verified to be correct
and can be executed with minimal computational overhead.

The second component of the supervisor is the shield.
The shield is a simple, finite-state machine that is activated
only when the monitor detects a violation of the safety enve-
lope. If the agent’s proposed action would lead to a state
that breaches a guard condition, the shield intervenes. It
preempts and discards the agent’s proposed action and in-
stead issues a command for a predefined, provably safe ma-
neuver. The set of safe maneuvers is small and conserva-
tive. For a mobile robot, the default safe action is typically
‘halt_motion®, which brings the vehicle to a controlled
stop. Other safe actions might include ‘retract_arm® or
‘enter_low_power_state’. The shield’s logic is also
deterministic and formally verifiable, ensuring that its inter-
vention will always transition the system to a known-safe
state. To prevent rapid switching (oscillations) between pol-
icy and shield control, the supervisor implements a latch-
ing mechanism that maintains the safe state for a minimum
duration of 2 seconds or until stability conditions are met.
The monitor and shield logic execute in 0.35 ms median and
0.48 ms at the 99th percentile per cycle on the host micro-
controller; these bounds were verified with cycle-accurate
timers. The guard rules are unit-tested against over 10,000
synthetic states per rule, and the supervisor’s finite-state ma-
chine (5 states, 12 transitions) is validated via exhaustive
state enumeration to always transition to a safe sink state.

A key function of this architecture is the generation of
an auditable trail for accountability and post-hoc analy-
sis. Every time the shield intervenes, it generates a signed,
immutable log entry called an Assurance Evidence Object
(AEO). This data structure contains a timestamp, the spe-
cific guard condition that was violated, a snapshot of the sys-
tem state at the time of the violation, the unsafe action pro-
posed by the core agent, and the safe action executed by the
shield. This creates an unambiguous record of every safety-
critical intervention, which is essential for debugging, inci-
dent analysis, and providing evidence for certification and
regulatory compliance, analogous to the goals of formal as-
surance cases (Graydon 2018).

3.3 The Human-in-the-Loop Interface and XAI
Portfolio

While the runtime supervisor provides a guarantee of low-
level safety, effective management of complex, off-nominal
situations still requires the expertise of a human operator.
The third component of the framework is a human-in-the-
loop interface designed to provide operators with the neces-
sary transparency to understand the agent’s behavior, make
informed decisions, and build a calibrated sense of trust in
the autonomous system. This is the calibrated trust compo-
nent of the framework.

The interface presented to participants in our human-
subject study is designed to mimic a mission control dash-
board. It features a multi-panel display showing synchro-
nized, time-series plots of key telemetry streams from the
agent’s sensors. A dedicated alert panel highlights when the
neuromorphic core has detected an anomaly, displaying the
system’s confidence in its detection. The core of the inter-
face, however, is the XAl module, which provides a portfo-
lio of explanations to give operators insight into the agent’s
decision-making process. Recognizing that different tasks
and user expertise levels may benefit from different levels
of abstraction, the system offers three distinct types of ex-
planations, as validated in our prior work.

The first explanation method is Layer-wise Relevance
Propagation (LRP) (Montavon et al. 2019), adapted for
SNNs. LRP is a feature attribution technique that traces
the agent’s decision back through the network to identify
which specific inputs were most responsible for the output.
The explanation is presented to the operator as a heatmap
overlaid on the telemetry plots. Warmer colors highlight the
specific sensor channels and the precise moments in time
that the agent considered most relevant to its anomaly de-
tection. LRP uses an e-rule with ¢ = 10~ over spike-rate
features aggregated in 10 ms bins. This method provides a
deep, forensic level of detail, allowing an operator to per-
form a root-cause analysis by answering the question: "Ex-
actly what did the agent see that caused this alert?”

The second method is a temporal attention mechanism,
conceptually similar to those used in transformer architec-
tures (Vaswani et al. 2017). This technique visualizes the
agent’s internal focus of attention over time. It is presented
as a shaded region over the time-series plots, with the in-
tensity of the shading indicating the degree of attention the
network paid to that particular time window. The attention
is intrinsic to the temporal module of the SNN, reported
as normalized weights over 50 ms slices. This provides a
higher-level, more intuitive summary than LRP, allowing an
operator to quickly understand the temporal context of the
agent’s decision by answering the question: "When did the
important event happen?”

The third method is a surrogate model (Ribeiro, Singh,
and Guestrin 2016). A simple, interpretable decision tree is
trained to approximate the global decision logic of the com-
plex SNN. The explanation is presented as a human-readable
set of IF-THEN rules. For example, a rule might state: ”IF
the variance of the wheel motor current is high AND the
rover’s velocity is low, THEN an anomaly is likely.” The
surrogate tree matches policy decisions with 91% fidelity on
a held-out set and is pruned to a maximum depth of four
for interpretability. This provides a global overview of the
agent’s learned behavior, allowing an operator to understand
the general principles guiding its decisions.

4 Experimental Validation Methodology

To validate the performance, safety, and trustworthiness
of the integrated agent framework, we designed a two-
part experimental methodology. The first part consists of
a hardware-in-the-loop (HIL) evaluation to quantify the



agent’s operational performance and resilience under a high-
stress, mission-relevant scenario. The second part is a for-
mal human-subject study designed to measure the practi-
cal utility of the system’s explainability features for en-
abling effective human oversight. This dual approach allows
for a comprehensive assessment, providing both objective
system-level metrics and quantitative evidence of the frame-
work’s value in a human-Al team context.

4.1 Hardware-in-the-Loop Testbed

The HIL testbed was designed to evaluate the complete, inte-
grated agent architecture in a realistic, dynamic, and closed-
loop environment. The neuromorphic policy runs on the
BrainChip Akida neuromorphic SoC (BrainChip Inc. 2023),
while the monitor and shield run on a co-located microcon-
troller (MCU); both are on the HIL loop. The simulation en-
vironment provides a physically realistic model of a cislunar
rover and its operational context, using the Gazebo physics
simulator for dynamics and Cesium for Unreal for visual
rendering. A custom ROS2 bridge facilitates real-time data
exchange between the simulation and the hardware.

To rigorously test the system’s resilience, we designed a
“worst-case” stress test scenario that subjects the agent to a
combination of simultaneous challenges. The test involves
the rover navigating a hazardous region while contending
with a high-flux radiation environment (simulated as a high
rate of SEU bit-flips), multi-sensor degradation (IMU bias
drift and camera noise), and a degraded communication link
(high packet loss and variable latency).

We evaluate two distinct attack classes: (1) Sensor-
Space: A sophisticated adversarial attack launched against
the agent’s primary navigation sensor. The LiDAR injection
uses Projected Gradient Descent (PGD) (Madry et al. 2018)
in feature space with a step size of 0.01 over 40 steps, clip-
ping to sensor limits. The edits are restricted to a physically
plausible frustum with range-dependent noise to ensure the
attack is stealthy. (2) Temporal-Space: Isolated spike tim-
ing jitter attacks, where random noise § ~ U[—4,4] ms is
added to spike timestamps after encoding to test the SNN’s
specific temporal vulnerabilities. The combined stress test
utilizes the Sensor-Space attack to challenge multi-modal
fusion.

We conducted 100 trials per model per seed across 3 ran-
dom seeds, for a total of 300 trials. Latency is measured from
sensor interrupt to actuator command using hardware GPIO
toggles and a logic analyzer for cycle-accurate timing. En-
ergy per inference is the median over 10,000 single-batch
inferences measured at the wall with a USB power meter,
with idle power draw subtracted.

4.2 Human-Subject Study Protocol

To provide quantitative evidence for the “calibrated trust”
component of our framework, we conducted a formal
human-subject study with 90 participants. The study’s pri-
mary endpoints were operator diagnostic accuracy and task
completion time; secondary endpoints were subjective trust
ratings and cognitive workload as measured by the NASA
Task Load Index (NASA-TLX) (Hart and Staveland 1988).
A power analysis indicated that N=90 provides greater than

0.8 power to detect a 0.2 effect size at an alpha of 0.05. All
participants provided informed consent; no personally iden-
tifying data were collected.

Participants were stratified into ’expert” and "non-expert”
groups and were randomly assigned to one of four condi-
tions: a control group, or one of three experimental groups
provided with explanations from either LRP, a temporal at-
tention mechanism, or a surrogate decision tree. Random-
ization was uniform over conditions, with the scenario pre-
sentation order counterbalanced by a Latin square design to
mitigate learning effects. Each participant was tasked with
acting as a remote mission operator, diagnosing anomalies
presented in a series of simulated telemetry clips. We col-
lected objective metrics on their performance and subjective
ratings on their trust and perceived workload. Table 1 details
the specific questionnaire items used.

Table 1: Questionnaire Items for Subjective Assessment.
Anchors: 1=Strongly Disagree, 5=Strongly Agree. Trust
score is the mean of items 1-3. NASA-TLX uses un-
weighted Raw TLX.

Trust (Likert 1-5)

1. I am confident that the Al system’s assessment of this
event was correct.

2.1 would trust this Al system to assist me in a real mission.
3. The system behaved in a predictable manner.
NASA-TLX (0-100)

Mental Demand, Physical Demand, Temporal Demand, Per-
formance, Effort, Frustration.

5 Results: Quantifying Control and Trust

The experimental validation yielded two primary sets of
results. First, the hardware-in-the-loop evaluation provided
quantitative metrics on the agent’s operational performance,
safety, and resilience under the combined-arms stress test.
Second, the human-subject study provided empirical data on
the impact of the integrated XAl framework on operator per-
formance and trust.

5.1 Verifiable Control: Hardware Performance
and Safety Intervention

The HIL evaluation was designed to quantify the agent’s
ability to provide verifiable control in a high-stakes, dy-
namic environment. The primary outcome was the mis-
sion success rate in the “worst-case” stress test scenario.
The proposed neuromorphic agent, governed by the run-
time safety supervisor, achieved a mission success rate of
92.0% [95% CI: 88.5, 94.6]. In contrast, the baselines con-
sistently failed when deceived by the adversarial attack.
The Baseline SNN (a standard LIF network without HTD/I-
TAM) achieved 43.0% [36.7, 49.5], and the LSTM agent
(2-layer, 128 hidden units, trained on the same dataset)
achieved 35.0% [29.0, 41.4] (Hochreiter and Schmidhuber
1997). A one-way ANOVA confirmed a large and statis-
tically significant effect, F'(2,297) = 152.7, p < 0.001,
n? = 0.51. Critically, no unmitigated safety envelope viola-
tions were observed across any trials of the proposed frame-



work; all shielded events transitioned to the designated safe
state within a median of 0.35 s and remained latched for at
least 2 s.

This high success rate was enabled by the system’s core
operational performance. The end-to-end latency from sen-
sor input to actuator command had a median of 1.7 ms [1.5,
1.9] and a 99th percentile of 4.8 ms [4.6, 5.0]. The energy per
inference for the neuromorphic agent was 45 pJ [41, 49]. For
comparison, the LSTM baseline, running on an Intel Core
i7-9700K CPU at 3.60 GHz, consumed 8.5 mJ [7.9, 9.1] per
inference. The Attack Success Rate (ASR) for the specific
LiDAR data injection attack provides a direct measure of the
core agent’s security. Attack success is defined as inducing
a misclassification or hazardous state. The proposed agent,
with the full HTD framework, exhibited an ASR of only
22.4%, whereas the baseline models were highly vulnera-
ble, with ASRs of 78.1% for the Baseline SNN and 85.6%
for the LSTM. Additionally, under isolated temporal jitter
attacks (0 ~ U[—4, 4] ms), the HTD-protected agent main-
tained an ASR of 25.1%, compared to 75.8% for the base-
line, confirming the efficacy of the temporal defenses.

Table 2: System Performance and Safety in the Combined
Stress Test. ASR refers to the LIDAR PGD attack.

Proposed Baseline

Metric SNN SNN LSTM
Mission Success Rate 92% 43% 35%
Attack Success Rate 22.4% 78.1%  85.6%
Latency (ms, P99) <5 > 30 > 40

Energy/Inference (J) 4.5e-5 6.7¢-5  8.5e-3

5.2 Calibrated Trust: Human-in-the-Loop
Performance

The human-subject study quantified the practical utility of
the XAI portfolio for enabling effective human oversight.
The results demonstrate that providing operators with trans-
parent insights into the agent’s reasoning leads to significant
improvements in team performance, operator trust, and cog-
nitive workload.

The most critical finding is the impact of explanations on
operator diagnostic accuracy. As shown in Figure 2(a), op-
erator accuracy improved from 61.2% [95% CI: 56.8, 65.6]
in the control condition to 88.5% [85.4, 91.1] with LRP
explanations. A one-way ANOVA revealed a large, signif-
icant main effect of the explanation condition on accuracy,
F(3,86) = 34.1, p < 0.001, n? = 0.54. Post-hoc Tukey
HSD tests confirmed that all three explanation conditions re-
sulted in significantly higher accuracy than the control con-
dition (p < 0.01).

Explanations also improved the efficiency of the human-
Al team. The mean task completion time for the control
group was 35.8 s [33.6, 38.0]. The decision tree explanation,
being the most concise, enabled the fastest performance at
22.1 s [20.7, 23.5]. An ANOVA confirmed this effect was
also significant (p < 0.001).

The provision of explanations had a profound impact on
operators’ subjective trust in the system. On a Likert scale
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Figure 2: Results of the human-subject study (N=90) com-
paring operator performance across four conditions. (a)
Mean diagnostic accuracy, showing a significant improve-
ment for all XAl conditions over the control. (b) Mean task
completion time, showing a significant reduction for all XAI
conditions. (c) Mean subjective trust rating on a 5-point
scale, showing a significant increase for all XAI conditions.
Error bars represent 95% confidence intervals.

from 1 to 5, the mean trust rating for the control group was
2.8 [2.6, 3.0]. This increased to 4.5 [4.3, 4.7] for the LRP
condition. The effect size for this improvement was large
(Cliff’s 6 = 0.82). Finally, the NASA-TLX results (Hart and
Staveland 1988) confirmed that explanations improved per-
formance without increasing cognitive load. On a scale from
0 to 100, the overall workload score for the control group
was 68 [64, 72], while the decision tree condition resulted
in the lowest workload of 41 [38, 44]. A Kruskal-Wallis test
confirmed a significant difference in workload scores across
conditions (p < 0.001).

6 Discussion

These results support an assurance pattern for safety-critical
embodied agents that composes (i) a low-latency, low-
energy neuromorphic core, (ii) a deterministic runtime su-
pervisor that enforces a formal safety envelope, and (iii)
a human-in-the-loop interface with validated explanations,
consistent with runtime assurance principles for learning-
enabled systems (Cofer et al. 2020). In hardware-in-the-
loop trials, the integrated system sustains high mission suc-
cess under compounded environmental faults and adversar-
ial perturbations while maintaining millisecond-scale end-



to-end timing and microjoule-scale energy per inference.
In the human-subject study, explanations measurably im-
prove operator diagnostic accuracy, task efficiency, and self-
reported trust without increasing workload, indicating that
transparency can improve human-Al team performance in
operationally relevant settings (Bansal et al. 2021).

For certification and governance, the key benefit is separa-
tion of concerns: safety guarantees depend on the auditable
monitor and shield logic rather than on attempting to prove
end-to-end correctness of the learned core. The supervisor
emits Assurance Evidence Objects (AEOs) on intervention,
including the violated guard, state snapshot, rejected action,
and executed safe maneuver. Each AEO is hashed and ap-
pended to a hash chain; the chain head is periodically signed
and exported, enabling tamper-evident post-hoc audit and
supporting assurance-case arguments (Graydon 2018).

Limitations remain. The Akida device is not radiation-
hardened, so long-duration deployment requires space-
qualified hardware or equivalent fault-tolerant compute. The
safety envelope is currently static and hand-engineered; fu-
ture work should address threshold synthesis and envelope
maintenance under hazard drift. While the surrogate deci-
sion tree achieves high fidelity on held-out data, fidelity
in sparsely sampled off-nominal regimes warrants targeted
stress testing. Finally, we did not evaluate attacks on the
supervisor or evidence pipeline; hardened implementations
and red-team evaluation are appropriate next steps.

7 Related Work

This work is positioned at the intersection of three distinct
but converging fields of research: runtime assurance for au-
tonomous systems, neuromorphic robotics, and explainable
Al. While significant contributions exist within each do-
main, our framework is distinguished by its synthesis of all
three into a single, empirically validated system for safety-
critical embodied agency.

Recent work on learning-enabled controllers with runtime
assurance and formal envelopes shows a similar decoupling
of safety and performance (Schierman et al. 2020; Cofer
et al. 2020; Tran et al. 2019); our contribution is an end-to-
end embodied system with human validation. This body of
work has predominantly focused on traditional control sys-
tems or has treated the high-performance component as a
generic probabilistic module. Our work provides a concrete
methodology for applying the principles of runtime assur-
ance to the next generation of bio-inspired, learning-based
agents.

In the field of neuromorphic robotics, research has pri-
marily focused on leveraging the efficiency and low-latency
of spiking neural networks to solve specific robotics tasks,
such as navigation and motor control (Polykretis, Tang, and
Michmizos 2020; Davies et al. 2018; Schuman et al. 2022).
Similarly, the emerging field of SNN security has begun to
identify unique vulnerabilities, such as temporal attacks, and
propose algorithmic defenses (Sharmin et al. 2020; Marchi-
sio et al. 2021). Our work builds upon these foundations but
moves beyond the evaluation of isolated algorithmic compo-
nents. We present a complete, integrated agent architecture
that is not only performant on its primary task but is also

designed from the ground up with a multi-layered security
framework and a principled mechanism for long-term adap-
tation.

Finally, the field of explainable Al has produced a wide
range of techniques for interpreting complex models, with
a growing emphasis on evaluating their practical utility
through human-subject studies (Bansal et al. 2021). The ap-
plication and validation of XAI for SNNs, however, is a far
less developed area, though initial methods are emerging
(Kim and Panda 2021; Neftci, Mostafa, and Zenke 2019).
Our contribution is a comprehensive empirical validation
of XAI for neuromorphic systems. By conducting a 90-
participant study that measures not only diagnostic accuracy
and subjective trust but also cognitive workload, we provide
rigorous, quantitative evidence that a portfolio of spike-level
explanations can significantly enhance the performance of a
human-AlI team. The primary novelty of our work, therefore,
is the synthesis of these three research threads into a single,
coherent, and empirically validated assurance framework for
embodied agents.

8 Conclusion

This paper presented an integrated framework for design-
ing and validating trustworthy embodied agents for safety-
critical applications at the edge. We have argued that for this
class of system, trustworthiness is an architectural property
that emerges from the composition of a resilient core, a ver-
ifiable control mechanism, and a transparent human-in-the-
loop interface. Our proposed solution integrates a secure and
adaptive neuromorphic agent, a deterministic runtime safety
supervisor, and a portfolio of validated explainable AI meth-
ods into a single, cohesive system.

The efficacy of this framework was demonstrated through
arigorous experimental methodology. Hardware-in-the-loop
trials confirmed the system’s ability to provide verifiable
control, achieving a 92% mission success rate in a worst-
case scenario involving simultaneous hardware faults, envi-
ronmental noise, and a direct adversarial attack. These tri-
als also validated the extreme efficiency of the neuromor-
phic approach (BrainChip Inc. 2023), with the agent oper-
ating at a median inference latency of 1.2 ms (end-to-end
1.7 ms) and an energy cost of 45 uJ per inference. A for-
mal, 90-participant human-subject study provided quanti-
tative evidence of the system’s ability to foster calibrated
trust (Bansal et al. 2021), showing that the integrated ex-
planations increased operator diagnostic accuracy by up to
27 percentage points and significantly improved subjective
trust ratings. The system replaces opaque decision-making
with auditable evidence and enforced envelopes while meet-
ing tight timing and energy bounds. These findings estab-
lish a practical and verifiable paradigm for embodied agency
that complements the current focus on LLM-based agents by
providing a deployable solution for the safety-critical edge.
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