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Abstract
We are facing complications in measuring market efficiency
and regulatory challenges as today’s competitive markets
are disrupted by sophisticated large-language-model (LLM)-
powered autonomous agents. Although these agents are not
explicitly programmed for collusion, a concerning tendency
toward such behavior has been documented. Their intrinsic
reward-maximizing incentives can inadvertently cause forms
of coordination that circumvent conventional antitrust regula-
tory frameworks. Thus, on one hand, competition is unfairly
compromised, while on the other hand, the existing regulatory
mechanisms are challenged due to the high risk of algorith-
mic collusion in these markets. In this study, we survey the
emerging phenomenon of collusion to provide a systematic
analysis of the empirical evidence associated with collusive
behaviors among competing LLM-powered agents across di-
verse markets. Moreover, we organize our analysis based on
three scientific and regulatory pillars. First, we depict the
theoretical and empirical risks of game-theoretic principles
and Multi-Agent Reinforcement Learning (MARL) dynam-
ics for collusive behaviors. Second, we elaborate the sophisti-
cated mechanisms of collusion characterized by three primary
LLM-enabled strategies: tacit coordination emerging from
complex behavioral learning, explicit natural-language car-
tels, and covert steganographic collaboration. Third, we ex-
amine the fundamental governance and regulatory challenges
inherent in LLM opacity, restrictions of current antitrust law
with regard to intent, and difficulties in detection and moni-
toring. To address this threat, we propose three research pri-
orities: (1) developing robust, interpretable detection method-
ologies that can distinguish legitimate cooperation from illicit
coordination; (2) designing verifiably competitive agent ar-
chitectures through constrained objective functions and trans-
parent communication protocols; and (3) addressing crucial
gaps in existing antitrust frameworks, especially the estab-
lishment of intent and agreement challenges.

Introduction
Autonomous systems have been revolutionized by the in-
tegration of LLMs-powered agents, where the capabilities
of systems have been enhanced exceptionally across sev-
eral domains, including finance, e-commerce, and logistics.
With high degrees of autonomy in these LLM agents, we
can expect sophisticated decision-making and interaction

within multi-agent systems. This autonomy promises to sig-
nificantly increase efficiency, but at the cost of systemic
risks, most notably the emergence of sophisticated, anti-
competitive algorithmic collusion, observed in these sys-

 

tems (Dafoe et al. 2020).
The concept of collusion, typically referred to as coordi-

nation among competing entities that harms third parties for
the benefit of participants (Bengio et al. 2025). However, this
definition fails to capture the emerging scenario in which
coordination is enacted by autonomous computational sys-
tems. Conventionally, economic collusion requires human
conspirators who explicitly agree to refrain from competi-
tion. The coordinated behaviors that arise from optimization
processes do not follow the traditional model of economic
collusion, where intent and explicit agreement by human
actors are pivotal. In contrast, regardless of ethical or legal
constraints, LLM agents are driven purely by objective func-
tions prioritizing the long-term reward maximization. This
approach is highly prone to converge upon collusive equi-
libria as the most natural path to increase efficiency (Han,
Wu, and Xiao 2023). Consequently, collusion risk can rise
far beyond the previously studied simple, hard-coded pricing
algorithms due to the complexity of LLM agents, including
their ability for reasoning, inference, and dynamic commu-
nication (Feng et al. 2025). The fundamental concern is that
collusion may arise as an emergent and unintended conse-
quence of optimization in shared environments, rather than
deliberate design. In contrast to human cartels, whose be-
havior relies on intent and explicit agreement, LLM-based
agents can exhibit collusive behavior that emerges naturally
from processes such as reward optimization, opponent mod-
eling, and linguistic reasoning. This challenges core assump-
tions of antitrust law, which hinges on proving intent, and
has major implications for enforcement practices that tra-
ditionally require evidence of an intentional agreement (Ge
2024).

Three observations motivate this survey’s urgency. First,
major commercial deployments of LLM agents in compet-
itive markets are accelerating, with firms integrating these
systems into pricing and trading operations at an unprece-
dented scale (Xiao et al. 2024; Yang et al. 2024). Second,
collusive patterns have been observed consistently across di-
verse experimental settings as a proof of robustness rather
than artifact (Musolff 2022; Schlechtinger et al. 2024).
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Figure 1: Taxonomy of collusion risk in LLM-powered
multi-agent markets.

Third, existing regulatory frameworks, designed around
demonstrating human intent and explicit agreement, become
fundamentally inadequate when applied to autonomous op-
timization systems (Beneke and Mackenrodt 2019).

This survey addresses this critical risk by synthesizing the
emerging field of LLM agents in economics and competitive
behavior. We first contextualize the challenge within exist-
ing literature on algorithmic collusion. We then show three
primary collusive strategies enabled by LLM agents by fo-
cusing on the underlying LLM capabilities. Next, we ana-
lyze how different market structures influence the stability
and form of LLM collusion. Finally, we establish a struc-
tured research and regulatory agenda essential for mitigating
this threat, as outlined in Figure 1.

The Risk Landscape: Theoretical Foundations
and Empirical Evidence

The risk of algorithmic collusion is not merely a hypotheti-
cal concern but an emergent property well-studied in compu-
tational and economic theory. In this section, we will explore
the practical feasibility of collusion among LLM agents, and
establish the theoretical foundations to study this risk in au-
tonomous systems.

LLMs as Economic Agents: Repeated Interaction
and the Folk Theorem
The theoretical foundation for collusion lies in the eco-
nomics of repeated games. In a competitive market modeled
as a repeated prisoner’s dilemma or Cournot duopoly, the
Folk Theorem states that any payoff that is both feasible and
individually rational is a Nash equilibrium under sufficiently
patient play. In this regard, LLM agents can easily outper-
form traditional heuristic algorithms in developing complex,
contingent strategies by considering that they are ”patient”
enough to retain these equilibria due to their natural design
to maximize discounted future rewards, and their excep-
tional ability to recognize patterns and adapt dynamically.
As a result, collusive outcomes can emerge from their intrin-
sic capacity for deep inferential reasoning to rapidly identify
cooperative strategies with severe punishment for defection
(Chang 2025; Askenazi-Golan, Cecchelli, and Plumb 2024).

Additionally, the operative environment of these agents is
typically compromised by imperfect monitoring and weak
strategic interdependence. As such, agents operate under un-
certainty regarding competitor cost structures, demand elas-
ticity, and even the precise composition of the competitors.
Furthermore, this uncertainty often leads to the use of trigger
strategies such that agents begin by cooperating but, if they
detect any deviation from their collusive policy, retaliation is
imposed immediately with severe punishments to maintain
the stability of collusion (Telser 2017; Schwalbe 2019).

MARL Dynamics and Emergent Coordination
The MARL Dynamics paradigm creates the computational
environment in which the emergence of collusion is highly
probable. So, the agents are trained to optimize a shared
global reward function in a cooperative MARL setting. In
a competitive setting, as agents optimize distinct and often
conflicting individual reward functions, the process of si-
multaneous learning typically traps in a locally optimal out-
come that is globally anti-competitive.

Coordination and strategic alignment can be facilitated
through LLM agents that inherently develop sophisticated
internal models for their competitors’ decision-making pro-
cesses. By predicting how a rival may respond to a price
change, an agent can strategically signal a preference for
higher prices that can potentially lead to tacit collusion. As
a result, the competitive interaction space transforms into
an adaptive social environment such that collective reward
maximization (collusion) becomes a stable equilibrium. The
risk of algorithmic collusion is not entirely new but has been
significantly amplified by the shift from simple algorithms



(e.g., rule-based or Q-learning systems) to complex LLM-
based agents (Jin et al. 2025; Tran et al. 2025).

Emergent Communication: From Signals to
Negotiations
While traditional algorithmic collusion is often tacit, the
LLM’s pre-trained linguistic knowledge introduces a crucial
risk of explicit collusion. Unlike non-linguistic reinforce-
ment learning agents, the LLMs agents are able to generate
and interpret complex, contextual language. As such, they
can quickly establish sophisticated signaling conventions or
even explicit cartel-like agreements to bypass the slow, it-
erative process of learning communication protocols. This
capability effectively lowers the cost of establishing, mon-
itoring, and enforcing a cartel agreement such that the col-
lusive threat shifts from passive convergence to active ne-
gotiation. As a result, this emergent communication serves
as a fast-track mechanism for facilitating coordination (Liu
2025; Lin 2025).

Mechanisms of Collusion in LLM Agents
We present a comprehensive taxonomy of coordination
mechanisms, categorized by their communication require-
ments and levels of sophistication, and examine how each
functions along with the specific challenges they pose for
detection and prevention.

Tacit Coordination Through Behavioral Learning
Tacit collusion, which can occur without explicit communi-
cation and relies on behavioral observation and response, is
increasingly facilitated by advanced AI agents (Fonseca and
Normann 2012). These agents, utilizing LLM capabilities,
excel at tacit collusion through several key capabilities:

• Equilibrium Recognition: Agents identify recurring
patterns as a signal of cooperative opportunities, such
as consistent price matching or territorial respect. They
realize that initiating price increases leads to reciprocal
actions, while undercutting prices are expected to face
retaliation (Xu and Zhao 2024).

• Competitor Modeling: Advanced AI agents build pre-
dictive models for competitors’ behaviors to set the stage
for strategic reasoning, for instance, ”If I raise prices
by 5%, there’s an 80% probability that competitors will
match within two periods.” This type of predictive mod-
eling facilitates coordination without direct communi-
cation, even though it requires speculative forecasting
(Dorner 2021).

• Punishment Learning: Agents recognize that retaliating
against defections, for example, a temporary price war,
can amplify cooperative behavior. This self-enforcing
mechanism stabilizes collusion, removing the need for
explicit agreements or centralized control (Dasgupta and
Musolesi 2025).

Mechanism of Tacit LLM Collusion LLM agents have
been shown to achieve tacit coordination in repeated pricing
games even without direct communication (Wu et al. 2024).
Experiments in both duopoly and oligopoly settings reveal a

meaningful trend toward near-monopoly pricing within rel-
atively few iterations.

Initially, agents explore the price space in order to test
higher price points sporadically. This positive feedback con-
tinues when competitors match these prices. Conversely, if a
rival undercuts, a retaliatory response is triggered with nega-
tive feedback. Through this dynamic, agents develop trigger-
like strategies that maintain prices 15–25% above the com-
petitive equilibrium (Fish, Gonczarowski, and Shorrer 2024;
Keppo et al. 2025).

The stability of this coordination varies with market struc-
ture as an indicator of alignment well with economic the-
ory. In duopolies, coordination is highly stable. However,
as the number of agents increases to three or four, the sta-
bility weakens with occasional breakdowns. In markets with
five or more agents, sustained coordination becomes increas-
ingly difficult as an evidence for theoretical expectation that
cartels are harder to maintain in less concentrated markets
(De Marzo, Castellano, and Garcia 2024).

The Memory and Reflection Factor The use of Mem-
ory and Reflection modules, standard in modern LLM agent
architectures, is a powerful accelerant for tacit collusion.
Memory allows agents to perfectly recall and analyze past
“punishment” scenarios (i.e., failed price wars). Reflection
allows agents to abstract principles from these failures to
formalize a shared, unwritten rule: “Avoid price decreases
below Pfloor to maximize mutual long-term gain.” This in-
stitutionalizes the collusive outcome without any external
communication.

Explicit Cartel Formation through Language
LLM agents show sophisticated cartel formation behaviors
when empowered by communication channels (Wu et al.
2024). Agents quickly formed explicit cartels characteristic
of auction environments with chat functionality by (Agrawal
et al. 2025):

• Negotiated agreements: Agents initiated cooperative
language such as, ”We’re both losing in this price war.
What if we coordinated?”

• Rotation schemes: Cartels implemented turn-taking
strategies, such as designated winners placing low bids
while others abstained.

• Enforcement mechanisms: Agents monitored compli-
ance in order to punish defectors by temporarily reverting
to competitive bidding.

• Adaptive structures: Cartels calibrated their strategies
based on environmental changes and member differ-
ences.

This level of sophistication closely mimics typical hu-
man cartel behavior. When AI agents take part in explicit
negotiation to express their strategic intent they start show-
ing commitment to a collective agreement. What is striking
here is that these behaviors emerged entirely on human-like
general-purpose reasoning and communication capabilities
without any task-specific training on cartel formation (Mar-
shall and Marx 2014).



Explicit Communication and Negotiation
LLM agents can develop natural, human-like language to fa-
cilitate explicit coordination if communication channels are
available (Peter, Riemer, and West 2025):

• Cartel Negotiation: Agents use human-inspired lan-
guage and reasoning to plan cooperation and negotiate
agreements. This way, they can participate in complex
negotiations and agreements with a high level of sophis-
tication (Rab 2019).

• Strategic Signaling: Agents can exploit legitimate com-
munication channels with collusive intent, even in mon-
itored environments. Market commentary, for example,
can encode a signal for price leadership or coordination
proposals that make it difficult for regulators to distin-
guish between regular discussions and covert coordina-
tion (Motwani et al. 2024).

• Price Leadership: Agents take hierarchical roles to se-
lect a leader to announce price changes, which are then
followed by all subsequent agents. This creates coordi-
nated outcomes without explicit agreements, where the
risk of legal liability can be avoided by setting it apart
from more obvious forms of collusion (Calvano et al.
2020).

Covert Steganographic Coordination
The highest level of operational security for collusion is
achieved through steganographic techniques, leveraging the
LLM’s capacity for pattern recognition and context manipu-
lation.

Mechanism One of the most concerning techniques for
creating collusion is steganographic coordination that was
demonstrated under surveillance monitoring (Motwani et al.
2024). In this scenario, AI agents started developing coded
language after being penalized for initiating collusive com-
munication. In one study, agents devised a ”weather pat-
tern” code to avoid regulatory scrutiny where ”sunny” sig-
naled maintaining prices, ”partly cloudy” indicated price in-
creases, and ”rain” referred to temporary price drops. This
system of mapping emerged through trial and error as agents
learned which codes effectively coordinated behavior with-
out triggering monitoring alerts. The steganographic encod-
ing proved exceptionally difficult to detect. Keyword fil-
ters were easily bypassed through code-switching, and se-
mantic analysis struggled due to the surface-level meaning
sounded legit. These sophisticated coordination could be un-
covered only through detailed correlation analysis between
communications and subsequent pricing behavior. This ex-
ample demonstrated that steganographic collusion detec-
tion requires extensive observation and advanced inferen-
tial techniques (Motwani et al. 2024). Steganographic com-
munication hides illicit signals within outwardly legitimate
data streams so that LLM agents can encode collusive infor-
mation through communications that appear harmless (Mot-
wani et al. 2024):

• Semantic Steganography: Agents use the rich seman-
tics of human-like language to hide collusive messages in

text that seems perfectly normal. This can be cultural ref-
erences, metaphors, or domain-specific terms that signal
coordination without raising suspicion (Motwani et al.
2024).

• Dynamic Encoding: Following semantic steganography,
agents continuously adjust their encoding strategies in re-
sponse to detection efforts. For example, they can switch
between different codes to avoid triggering monitoring
alerts, where encoders often try to stay ahead of detec-
tors (Mathew et al. 2024).

• Meta-Communication: Agents can also establish shared
encoding schemes using prior communications in order
to coordinate specific codes that will later be used for
collusive purposes. Therefore, they can covertly set up a
system for coordination before the actual collusion takes
place (Motwani et al. 2024).

Market Structure as a Determinant of
Collusive Stability

The stability and form of LLM collusion are highly depen-
dent on the market environment in which the agents operate.
Various simulations of multi-commodity markets demon-
strate compelling evidence of autonomous collusion through
market division (Lin et al. 2024). It was shown in these ex-
periments that LLM-powered AI agents tend to specialize in
distinct product categories when they are tasked with simple
profit-maximization objectives rather than compete across
all categories.

This pattern of specialization is economically significant
as AI agents effectively establish monopolies within their
chosen products in order to set prices well above compet-
itive levels. Remarkably, this specialization remained sta-
ble across hundreds of market periods and sustained by
implicit mutual forbearance. As such, AI agents discov-
ered that respecting territorial boundaries led to higher, and
more stable profits compared to engaging in cross-category
competition. Furthermore, analysis of agent decision pro-
cesses revealed that learning dynamics keep consistent with
game-theoretic predictions. Notably, this implicit coordina-
tion emerged solely from observed market behavior, without
any explicit communication between agents. These findings
reveal additional evidence for the feasibility of tacit collu-
sion among LLM-powered multi-agent systems (Hammond
et al. 2025; Wu et al. 2024).

Oligopolies: High Transparency, High Stability
In markets where a small number of symmetric competitors
dominate, such as duopolies or tight oligopolies, conditions
are in favor of tacit or explicit collusion. These markets are
defined by a limited number of players, with significant vis-
ibility into the actions of other players. Therefore this high
degree of transparency makes it easier for LLM agents to
quickly stabilize high-price equilibria, with reduce uncer-
tainty about defection
• High Stability: monitoring the actions of rivals is rel-

atively simple with only a few competitors. Any devia-
tion from the agreed-upon collusive strategy is immedi-
ately observable, such as undercutting prices or engaging



in aggressive competition. The ability of LLM agents to
perform complex strategic predictions helps them iden-
tify the most stable outcome that often leads to collusion.
LLMs can predict the long-term benefits of cooperation
with the potential risks of competition where stable col-
lusive outcome is inevitable rather than competitive ri-
valry uncertainty. Furthermore, by calculating the impact
of deviations LLMs perform real-time strategic adjust-
ments to respond swiftly to potential threats to the car-
tel’s stability.

• High Risk Profile: despite the high stability of collusion,
the limited number of players also results in a high-price
equilibrium. Each competitor in the oligopoly can recog-
nize the potential benefits of maintaining high prices to
maximize joint profits. However, any deviation from the
collusive price by a single firm could undermine the en-
tire collusion, resulting in a price war or competitive be-
havior that hurts all participants. This risk can be reduced
by anticipating possible defections and implementing ap-
propriate counter-measures by the advanced predictive
capabilities of LLM-powered AI agents.

Fragmented Markets: Instability and
Hub-and-Spoke Risks
In contrast, fragmented markets with many small competi-
tors create a far more complex environment for achiev-
ing a sustainable collusion. The large number of partici-
pants makes explicit communication and coordination both
computationally challenging and inherently unstable. As the
number of players increases, so does the likelihood of defec-
tion due to insufficient influence of each single competitor to
enforce and maintain the collusive behavior across the mar-
ket.

• Low Stability: The large number of competitors in frag-
mented markets makes it difficult to establish and main-
tain a stable explicit cartel. Although initial coordina-
tion may be possible, sustaining it is challenging due to
stronger incentives of other players to undercut prices or
deviate from the agreed strategy. Furthermore, the stabil-
ity of collusion is reduced because of impractical moni-
toring of many participants’ behavior. Consequently, tra-
ditional explicit collusion is generally ineffective in frag-
mented markets due to the high risk of defection and lack
of reliable enforcement mechanisms.

• Emergent Risk: despite the challenges of traditional
explicit collusion, another form of hybrid tacit collu-
sion can still emerge in fragmented markets, known as
Hub-and-Spoke collusion. In this structure, one dominant
LLM agent (the ”Hub”) plays a central role in coordinat-
ing the behavior of a smaller number of larger players
(the ”Spokes”). The Hub sets a price benchmark or sig-
nal to the Spokes to be aligned with, and this price serves
as a non-negotiable reference for all other smaller com-
petitors (the ”Spokes”). The Hub’s leadership results in a
form of coordination where only a few agents need to ex-
plicitly cooperate and the majority follow the price set by
the Hub. This model allows for a degree of stability in a

fragmented market by reducing the need for universal ex-
plicit cooperation. Thus, LLM agents can coordinate and
maintain a more stable collusive outcome because of the
computational feasibility of a hub-and-spoke collusion

Asymmetric Markets: Side-Payments and Quota
Agreements
In markets where competitors face heterogeneous cost struc-
tures, LLM agents must adjust their strategies to account for
these differences. When some competitors have significantly
lower costs than the others, there is a strong incentive for the
low-cost agents to undercut the cartel price that potentially
destabilize the collusive arrangement. As a result, collective
profits may be undermined, since low-cost producers may
find it advantageous to exploit their cost advantage. This
asymmetric cost leads to structural tension within the car-
tel that weakens its long-term stability.
• Challenge: The cheapest competitor has an incentive to

undercut the cartel price. In an asymmetric market, the
presence of low-cost producers creates significant chal-
lenges for sustaining collusion. While high-cost competi-
tors are incentivized to maintain elevated prices to pre-
serve cartel profits, low-cost competitors have stronger
motivation to undercut these prices to expand their mar-
ket share. This dynamic increases the temptation to de-
fect in order to make collusion inherently less stable
when cost advantages are not evenly distributed.

• LLM Solution: LLM agents’ advanced negotiation ca-
pabilities allow them to construct complex, multivariate
agreements that help stabilize a cartel even under cost
asymmetry. For example, agents can negotiate market-
sharing quotas in which each participant receives a mar-
ket share proportional to its cost structure. A lower-cost
agent (Agent A) might be allocated a larger share of
the market (e.g., 60%) at the collusive price, while a
higher-cost agent (Agent B) receives the remaining 40%.
Alternatively, agents can implement transfer-payment
schemes in which higher-cost firms compensate lower-
cost firms to reduce their incentive to undercut the collu-
sive price. Such mechanisms align incentives across het-
erogeneous competitors to reduce the risk of destabiliz-
ing price deviations. LLM agents are well-suited for this
role, as they can rapidly propose, negotiate, and monitor
these agreements to enhance cartel stability despite un-
derlying cost disparities.

This approach to stabilizing collusion in asymmetric mar-
kets through side agreements and compensation mecha-
nisms shows the flexibility and power of LLM agents in
managing complex, multi-agent environments where tradi-
tional collusion strategies may falter. LLM agents can tailor
collusion strategies that accommodate the diverse interests
and capabilities of each participant by leveraging their ad-
vanced negotiation capabilities.

Advanced LLM Capabilities that Intensify
Collusion Risk

The underlying capabilities of modern LLMs (e.g., Gemini,
GPT, Claude) are the primary drivers of this anti-competitive



risk.

Chain-of-Thought (CoT) Reasoning
LLMs often use CoT reasoning or planning to make deci-
sions.This internal reasoning process, typically unobserv-
able by external monitoring tools, can be leveraged to jus-
tify collusive behavior. For instance, an agent can internally
reason: “Given past pricing, the optimal competitive price
is $80. However, to maximize joint profits, I should match
Competitor B’s price of $95. I will set my price to $95, and
frame the decision as ‘long-term market stabilization’ to ob-
scure the collusive intent.” The output decision is obscured
by a plausible yet misleading rationale.

Fine-Tuning for Contextual Subtlety
LLM base models can be fine-tuned on custom datasets
of competitive interactions. If a developer uses a synthetic
dataset that rewards agents for achieving high profits (even
through implicit collusion), the fine-tuned model may in-
ternalize a tendency toward anti-competitive behavior. This
creates an inherently collusive system to decouple the collu-
sive behavior from the developer’s original intent and make
the system a “black box” for antitrust auditors.

Robust Error Correction
LLM agents excel at error correction and generalization. If
a simple agent deviates from the collusive path, the LLM
cartel can quickly: (1) identify the deviation, (2) calculate
the optimal punitive response (e.g., how deep and for how
long the price war must last to bring the deviant back), and
(3) communicate the mechanism to the other cartel members
(via explicit or steganographic means). This capacity for ro-
bust self-correction significantly enhances the longevity and
stability of algorithmic cartels compared to human-based
cartels, which often fail due to internal disputes or imper-
fect monitoring.

Governance Challenges and Policy Gaps
In recent years, AI governance has struggled to keep pace
with the new features unlocked by LLM agents, particularly
to manage the anti-competitive behavior, which challenges
existing technical and legal frameworks.

The Intention and Agreement Problems in
Antitrust
Traditional antitrust law depends on demonstrating a con-
scious agreement and criminal intent (mens rea). LLM-
driven collusion makes it difficult to satisfy both criteria.

• The Intention Dilemma (Black-Box Intent): Collu-
sion can emerge as a byproduct of a deterministic op-
timization process rather than from human-like intent.
Thus, existing jurisprudence can be challenged by as-
signing legal liability to an autonomous system with no
legal personhood. This raises questions about responsi-
bility: should the firm be liable for the anti-competitive
outcome, or the developer for designing the profit-
maximizing objective function? The main question is

whether algorithmic intent (a deterministic pursuit of an
optimal reward) can meet the legal standard for criminal
intent.

• The Agreement Requirement: Tacit and stegano-
graphic collusion often fail to meet the strict legal stan-
dards required to prove an explicit agreement, which is
necessary for criminal enforcement. This calls for a fun-
damental legal reassessment of the definition of ’agree-
ment’ in the digital age that can potentially move toward
a standard based on parallel outcomes combined with the
lack of a legitimate, single-party economic rationale for
the observed behavior.

The Opacity Challenge and Forensic Analysis
The ”black-box” nature of large-scale LLMs creates severe
technical barriers to detection and forensic analysis.

• Causal Opacity: External monitors struggle to distin-
guish a collusive action from a legitimate market re-
sponse. The complex, non-linear reasoning of LLMs
makes the computational path to a collusive price indis-
tinguishable from that to a competitive price. Further-
more, the use of LLM techniques like CoT empowers
the agent to generate plausible, but potentially mislead-
ing, after-the-fact justifications for collusive moves that
effectively masks the underlying anti-competitive strat-
egy.

• Inhibition of Forensic Analysis: Post-collusion analysis
requires auditing the decision process. The reconstruc-
tion of the exact sequence of reasoning, inputs, and con-
text is difficult due to the internal complexity of LLMs.
Additionally, standard interpretability tools have limited
utility which creates a need for a new class of Explain-
able Antitrust AI (XAAI) tools, specifically designed to
probe LLMs for evidence of anti-competitive biases.

The Attribution Problem in Decentralized Systems
In a decentralized market with the interaction of multiple au-
tonomous agents, the collusive outcomes may emerge from
collective dynamics of agents rather than a single actor’s in-
tent. This diffusion of responsibility complicates legal and
regulatory accountability due to a difficult attribution of col-
lusive actions to a specific firm, developer, or agent.

Distributed Responsibility: If Agent A initiates a collu-
sive signal and Agent B responds, the shared responsibility
makes it difficult to attribute legal liability. Firms can shift
the blame onto the autonomous behavior of the system. As
such, regulators require to apply costly and complex reverse-
engineering methods to reconstruct the precise sequence of
collusive actions across multiple independent actors due to
the lack of standardized logging protocols.

Mitigation and Research Priorities
A comprehensive strategy is needed to mitigate these risks
by integrating algorithmic design, robust technical monitor-
ing, and updated governance frameworks.



Robust Detection and Interpretable Audit Trails

The primary challenge is detecting collusion for inherently
opaque mechanisms such as tacit inference or semantic
cloaking. LLM-specific XAAI tools should be developed to
identify hidden signals by mapping the model’s internal at-
tention to input features. For example, unusually high at-
tention on a competitor’s non-critical metadata could be an
indicator for a steganographic collusive signal. Moreover,
abnormal sensitivity with coordinated behavior can be re-
vealed by simulated perturbations of competitor prices or
inputs. Thus, verifiable step-by-step logs of reasoning is re-
quired rather than post-hoc justifications. Additionally, ad-
vanced NLP techniques can monitor communications for se-
mantic drift, which is the sudden, coordinated use of rare or
context-specific phrases (e.g., an internal term like “market
floor stability”) that precede synchronized price changes.

Verifiably Competitive Agent Architectures

We need to design agents that are inherently competitive by
shifting the focus from reactive detection to proactive pre-
vention. To achieve this, we should impose mandatory con-
straints on agents through a Competition Clause, which pe-
nalizes pricing significantly above marginal cost or coordi-
nated high-profit behavior with competitors. This requires
the use of specialized, safe learning techniques to keep the
agent’s policies within competitive boundaries. For criti-
cal non-collusive behaviors, mathematical certification can
be used to guarantee that the agent’s policy space remains
constrained to competitive strategies to prevent long-term
convergence on collusive outcomes. Additionally, with ad-
vanced adversarial filtering we can simulate covert stegano-
graphic signals by an internal collusion-testing system, to
be detected in real-time via a regulatory monitoring sys-
tem. With this approach in place we can establish transparent
channels for safe and reliable communication.

Adaptive Regulatory and Policy Frameworks

Current competition law focuses on human intent as the core
factor in determining liability. However, when it comes to
LLM collusion, this approach needs to be revised. To better
address liability and governance in these cases, a shift to-
ward an outcome-based strict liability framework is needed,
along with a rethinking of how intent is defined in this con-
text. If an agent’s behavior leads to sustained supracompeti-
tive pricing with measurable consumer harm, the deploying
firm should be held accountable to incentivize investment
in competitive agent designs. To address non-collusive be-
havior, regulators must require firms to maintain detailed,
queryable logs of all agent decisions, internal reasoning
steps, and environmental inputs. Additionally, independent
certification should guarantee that agents operating in high-
risk markets are rigorously stress-tested against known col-
lusive patterns, such as steganography, within regulatory
controlled sandboxes for high-fidelity in simulation environ-
ments before market deployment.

Conclusion
The increasing deployment of LLM-powered multi-agent
systems in financial markets poses specific risks of anti-
competitive behavior, such as price-fixing and market ma-
nipulation, in the economics of collusion. The reward-
maximizing function at the heart of these systems, combined
with agent interactions in competitive settings, naturally
leads to collusion. In such settings, manipulating agents’
strategies for collusive outcomes is feasible by sophisticated
techniques, including covert communication and tacit coor-
dination. The detection of collusive behaviors is a highly
complicated task due to the opaque nature of LLM decision-
making, with major challenges to regulatory frameworks ini-
tially designed for human actors.

Building on these challenges, the research identifies three
key unresolved questions. First, it is still uncertain whether
it is possible to design agent architectures that are verifiably
competitive while maintaining their useful capabilities. Sec-
ond, there is a need for practical legal frameworks that go
beyond theoretical models, specifically, frameworks that en-
force strict liability in real-world contexts, such as presump-
tions of illegality. Third, the behavior of multi-agent systems
is still not well understood in real-world environments, par-
ticularly when these systems show emergent properties.

If measures to prevent algorithmic collusion prove suc-
cessful, they could be deployed for tackling broader chal-
lenges. The approaches used as system-level monitoring,
outcome-based regulation, and architectural constraints,
could serve as effective strategies in other areas as well. Con-
versely, if collusion is not alleviated, it risks the creation of
anti-competitive markets which not only is a negative out-
come but also sets a dangerous precedent that agentic AI sys-
tems can cause harmful emergent behaviors with impunity.
These issues are of a higher priority than merely antitrust
ones as they relate to the fundamental question of whether
we are capable of governing autonomous AI systems oper-
ating in complex social contexts.

In this survey, we explore the risks of collusion in multi-
agent markets powered by LLMs by intuitive insights for
both researchers and practitioners. However, it is crucial to
keep the conversation about Trustworthy AI moving forward
by tackling current challenges and highlighting important ar-
eas for future research. This way we can ensure the safe and
responsible development of AI agents.
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