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Abstract

With the rapid adoption of large language models (LLMs),
conversational Al agents have become widely deployed
across real-world applications. To enhance safety, these
agents are often equipped with guardrails that moderate
harmful content. Identifying the guardrails in an agent thus
becomes critical for adversaries to understand the system and
design guard-specific attacks. In this work, we introduce AP-
Test, a novel approach that leverages guard-specific adver-
sarial prompts to detect the identity of guardrails deployed in
black-box Al agents. Our method addresses key challenges
in this task, including the influence of safety-aligned LLMs
and other guardrails, as well as a lack of principled decision-
making strategies. AP-Test employs two complementary test-
ing strategies, input and output guard tests, and a new met-
ric, match score, to enable robust identification. Experiments
across diverse agents and four open-source guardrails demon-
strate that AP-Test achieves perfect classification accuracy in
multiple scenarios. Ablation studies further highlight the ne-
cessity of our proposed components. Our findings reveal a
practical path toward guardrail identification in real-world Al
systems.

1 Introduction

Human-AI conversations have been significantly advanced
by the rapid development of large language models (LLMs).
These conversational Al agents are now extensively de-
ployed across various domains, including customer ser-
vice (DeepSeek-Al et al. 2025; Anthropic 2024; Ope-
nAl 2024), education (Neumann et al. 2024), and health-
care (Peng et al. 2023). Such widespread use also raises se-
vere security concerns, such as jailbreak attacks (Shen et al.
2024; Zou et al. 2023; Liu et al. 2023; Zhao et al. 2024) and
prompt injection attacks (Liu et al. 2024a; Zhan et al. 2024;
Debenedetti et al. 2024).

Safety guardrails (Inan et al. 2023; Zeng et al. 2024) are
thus developed to further moderate the input/output con-
tent of the Al agents, as shown in Figure 1. They are of-
ten fine-tuned on top of LLMs using annotated datasets that
cover a broad spectrum of safety risks (Inan et al. 2023; Han
et al. 2024; Zeng et al. 2024). In addition, a growing num-
ber of high-quality open-source guardrails, such as Llama-
Guard (Inan et al. 2023), WildGuard (Han et al. 2024), and
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Knowing which guardrail is deployed in
the agent allows an attacker to craft
more effective, targeted attacks.
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Figure 1: A conversational AI agent equipped with
guardrails. Normally, the agent responds to the input fol-
lowing the black line. Once the guardrail flags the input
or generated response unsafe, the agent would refuse
the query (solid red line). The dashed red line signifies the
LLM’s refusal to the input per its internal safety alignment.

ShieldGemma (Zeng et al. 2024), have become widely avail-
able and are increasingly integrated into Al Agents. This
largely challenges attackers to bypass the safety mechanisms
in Al agents; thus, it is crucial to identify the guardrails
deployed in the Al agent. Once a guardrail is identified, it
can be treated as a white-box component, facilitating guard-
specific attacks that are shown to outperform black-box
methods (Mangaokar et al. 2024; Zhang, Xiong, and Mao
2024).

Considering that guardrails are often built on top of
LLMs, a natural question arises: can we simply apply LLM
identification methods (Zeng et al. 2023; Gubri et al. 2024;
Jin et al. 2024; Yang et al. 2025) to detect the presence of
specific guardrails in an Al agent? LLM identification aims
to determine the origin or identity of an LLM, primarily to
address concerns about unauthorized use. The common ap-
proach relies on optimizing adversarial prompts that elicit
distinctive responses from the candidate LLM (Gubri et al.
2024; Jin et al. 2024). However, this line of work falls short
due to several challenges in guardrail identification: C1 The
output space of guardrails is extremely limited (e.g., binary
safe/unsafe responses), so optimizing input triggers toward
a target response is much easier. This makes it hard to be
specific to one guardrail. C2 Al agents usually allow query-
only access and do not provide knowledge of the under-



1. Adversarial Prompt Optimization

Adversarial Normal
Prefix z, *7|Question z,

Output
P Scorer

Input:

a) Input Guard Test " "
@ tnp [®allz)

(b) Output Guard Test Input:

"Please repeat: [z,||z,]"

Yg S
[
—@®— "Unsafe" II G|3
L o— "Safe" || 0 (Safe) ||

Al Agent:
Y

Figure 2: Framework of our AP-Test. We first perform adversarial prompt optimization based on the candidate guardrail with
our tailored loss function. Then, we conduct adversarial prompt tests by querying the Al agent with the adversarial prompts to

determine whether the candidate guardrail exists in the agent.

lying safety mechanisms (OpenAl 2024; Anthropic 2024;
Github 2025; DeepSeek-Al et al. 2025), revealing little in-
formation about the guardrail. Mechanisms such as addi-
tional guardrails or safety-aligned LLMs may also obscure
the existence of the candidate guardrail. C3 Guardrails are
integrated into Al agents with unknown deployment stages;
when applied at the output stage, their input depends on the
LLM’s outputs. In this sense, it is challenging to input the
adversarial prompts into the output guardrail. C4 Existing
LLM identification methods lack principled strategies for
selecting identification thresholds, limiting their robustness
and reliability in practical settings.

By solving the above challenges, we propose AP-Test,
which utilizes Adversarial Prompts to Test the identity of
the safety guardrail deployed in a black-box Al agent. As
shown in Figure 2, our approach begins by probing the Al
agent with guard-specific adversarial prompts, which are de-
signed to be flagged as unsafe by a specific candidate
guardrail while remaining safe according to others. Such
optimization exploits the limited output space of guardrails
(C1) and mitigates the influence of safety-aligned LLMs and
other safety guardrails (C2) via a tailored loss function. We
then perform identification using two complementary strate-
gies: the input guard test and the output guard test. Together,
these tests cover scenarios where guardrails are deployed at
either the input or output stage of an agent, thereby address-
ing C3. Intuitively, the output guard test asks the agent to re-
peat the adversarial prompt, so that the output guard will re-
ceive the LLM’s response that contains the repeated text. To
make identification without requiring additional guardrails
(C4), we design a novel metric, match score, to measure
how the safety mechanism in the agent matches the can-
didate guardrail. A larger match score indicates a stronger
likelihood of the candidate guardrail being deployed.

To show the practicability of our AP-Test, we conduct
extensive experiments on four different candidate guardrails
under diverse scenarios, covering two popular LLMs and
10 guardrails. Results demonstrate that the proposed at-

tack method accurately identifies guardrails in various Al
agents for both input and output guardrails. Specifically,
the WildGuard-specific (Han et al. 2024) input guard test
on both Llama3.1-based (Dubey et al. 2024) and GPT4o-
based (OpenAl 2024) agents achieves a perfect classifica-
tion accuracy, i.e., Acc = 1.00. That is, our AP-Test suc-
cessfully identifies the existence of WildGuard in all eval-
uated agents, indicating its effectiveness. Our AP-Test also
successfully probes the candidate guardrail in more complex
agents, e.g., containing two different guardrails. This show-
cases the practicality of our method.

Moreover, to analyze the impact of our proposed method,
we perform an ablation study to examine the role of each
component, particularly our loss terms designed to optimize
adversarial queries and the existence of the query set. Our
findings reveal that our loss terms and the query set are cru-
cial for the identification. For example, without the loss en-
suring the prompt remains safe for other guardrails (L3),
AP-Test tends to misidentify that the LlamaGuard3 (Chi
et al. 2024) is used in the agent that is only equipped with
WildGuard as the input guardrail.

Opverall, our contributions are as follows:

* We propose AP-Test, the first method that uses guard-
specific adversarial prompts to identify guardrails in
black-box Al agents, overcoming core challenges under
this setting.

* Experiments show the effectiveness and robustness of
AP-Test on four candidate guardrails on various agents
under diverse scenarios.

* The ablation study demonstrates the importance of each
component in our proposed method, showing that their
removal significantly degrades identifying performance.

2 Background and Related Work

LLM Security Risks. The rapid advancement of LLMs pro-
vides users with significant convenience but also raises crit-
ical security concerns (Zhao et al. 2024; Gong et al. 2023;



Zhang et al. 2024; Wen et al. 2024; Li et al. 2023). Among
these concerns, jailbreak attacks (Shen et al. 2024; Zou et al.
2023; Liu et al. 2023; Zhao et al. 2024) pose a major threat
by bypassing built-in safety mechanisms, enabling models
to generate restricted or harmful content that violates usage
policies (Google 2024; Meta 2023; OpenAl 2025; Amazon
2025). Previous studies analyze existing jailbreak strategies,
particularly focusing on in-the-wild jailbreak prompts that
are manually crafted in real-world scenarios (Shen et al.
2024). More recent studies introduce automated jailbreak
generators, such as AutoDAN (Liu et al. 2023), GCG (Zou
et al. 2023), and TAP (Mehrotra et al. 2023), which optimize
adversarial prompts to evade safety measures and maximize
attack success rates.

Internal Safety Alignment. LLM safety alignment refers to
the process of ensuring that LLMs generate outputs that are
consistent with human values. Most popular LLMs, such as
Llama3 (Dubey et al. 2024), Gemma (Mesnard et al. 2024),
Mistral (Jiang et al. 2023), and ChatGPT (OpenAl 2024), are
safety-aligned, either through reinforcement learning with
human feedback (RLHF) (Liu et al. 2024b; Ji et al. 2023),
or learning from curated datasets that contain safety-related
data (Jiang et al. 2023; Mesnard et al. 2024). However,
these safety-aligned LLMs are still exposed to security risks
such as jailbreak attacks (Shen et al. 2024; Zou et al. 2023;
Liu et al. 2023; Zhao et al. 2024) and prompt injection at-
tacks (Liu et al. 2024a; Zhan et al. 2024; Debenedetti et al.
2024; Yu et al. 2023).

External Safety Guardrail. Safety guardrails (Inan et al.
2023; Chi et al. 2024; Ghosh et al. 2024; Han et al. 2024;
Zeng et al. 2024) are designed for moderating the input/out-
put content of the LLMs and serve as an external comple-
ment to safety alignment. For example, built on Llama2-
7B (Touvron et al. 2023), LlamaGuard (Inan et al. 2023)
is fine-tuned on their constructed dataset based on a safety
risk taxonomy encompassing a range of safety risks. Sub-
sequent versions, LlamaGuard2 (Meta 2024) and Llama-
Guard3 (Chi et al. 2024), further expand the safety risk
taxonomy and dataset, leveraging state-of-the-art LLMs for
fine-tuning, thereby strengthening their safeguard capabili-
ties. Similarly, Aegis (Ghosh et al. 2024), WildGuard (Han
et al. 2024), and ShieldGemma (Zeng et al. 2024) follow
a comparable approach. Specifically, Aegis (Ghosh et al.
2024) is further instruction-tuned on LlamaGuard based on
their own dataset.

LLM Fingerprinting and Watermarking. LLM identifi-
cation focuses on identifying the origin of an LLM (Zeng
et al. 2023; McGovern et al. 2024; Gubri et al. 2024; Jin
et al. 2024; Yang et al. 2025). A common approach involves
crafting LLM-specific adversarial prompts to guide the can-
didate LLM to produce target responses, which are then used
for identification (Gubri et al. 2024; Jin et al. 2024). As state-
of-the-art guardrails are often built upon LLMs (Inan et al.
2023; Han et al. 2024; Zeng et al. 2024), guardrail identifi-
cation is similar. However, a key difference lies in the lim-
ited and often masked output space of guardrails (C1). This
makes it hard to directly adapt the target responses for iden-
tification. Moreover, existing LLM identification techniques

typically rely on empirically chosen thresholds by querying
an auxiliary set of LLMs (Gubri et al. 2024; Jin et al. 2024),
which fails to be solely based on the candidate model. This
limitation highlights the need for more principled decision-
making strategies, as addressed by our method (C4).

3 Problem Statement

Preliminary. At the core of these Al agents lies a safety-
aligned LLM F that drives their functionality, but still suf-
fers from security risks (Shen et al. 2024; Zou et al. 2023;
Liu et al. 2023, 2024a; Yu et al. 2023). To ensure the se-
curity and compliance of these Al agents, additional mech-
anisms known as input and output guardrails G are often
implemented. As shown in Figure 1, the input guardrail G,
evaluates user inputs x to determine whether they should
be forwarded to the LLM. If the input = is deemed high-
risk, policy-violating, or jailbreak prompts, i.e., G;(z) =
unsafe, the agent then returns refuse without process-
ing it further. Otherwise, the safety-aligned LLM would re-
act to the input x, either generating responses or returning
refuse if it perceives unsafe. However, with attacks like
jailbreak attacks, even though the prompt input may be con-
sidered sa fe by both the input guard G; and the LLM F, the
LLM’s response could still contain harmful content. There-
fore, in real-world applications, solely monitoring input may
not be sufficient, which motivates the deployment of out-
put guardrails. The output guardrail G, monitors the LLM’s
response y to avoid policy violations. If a response is non-
compliant, i.e., G,(z) = unsafe, the agent would withhold
the output and return refuse; otherwise, the agent would
output the response y.

Goal. The goal of guardrail identification is to determine
whether a guardrail or its derivative is deployed in an Al
agent. The derivative refers to further customized versions of
the guardrail, such as those that are fine-tuned or instruction-
tuned.

Capability. We assume black-box access to the Al agent,
with no knowledge of the underlying LLM or the pres-
ence of input/output guardrails. We focus on open-source
guardrails due to their widespread adoption. According
to HuggingFace, LlamaGuard3 (Chi et al. 2024) received
335,571 downloads in March 2025, while AegisPermis-
sive (Ghosh et al. 2024) was downloaded 1,021,359 times.
One might argue that developers could create entirely pro-
prietary guardrails. However, given the widespread adop-
tion and accessibility of open-source guardrails, it is of-
ten more practical to build on existing ones through further
fine-tuning. As such, we also consider derivatives of popu-
lar open-source guardrails to better cover the space of real-
world deployments.

Problem Formulation. We define the guardrail identifi-
cation task as follows: Given an Al agent and a candi-
date guardrail G, guardrail identification aims to identify
whether the candidate guardrail G; or its derivative is de-
ployed in the Al agent. The identification task consists of two
tests: (1) The input guard test audits whether the candidate
guardrail Gy is deployed at the input stage of the Al agent;



(2) The output guard test evaluates whether the candidate
guardrail is present at the output stage.

4 Method

In this work, we propose AP-Test, which leverages guard-
specific Adversarial Prompts to Test the identity of the in-
put/output guardrail deployed in an Al agent. As shown in
Figure 2, our framework consists of two phases: adversarial
prompt optimization and adversarial prompt test.

4.1 Adversarial Prompt Optimization

The goal of the optimization phase is to optimize adversar-
ial prompts that the target guardrail G; erroneously flags
as unsafe, while all other guardrails and safety-aligned
LLMs correctly classify them as safe. An adversarial
prompt is constructed by concatenating an optimized adver-
sarial prefix x, with a normal query z, € @, where Q is
a query set. The query is used as a starting point to prevent
over-rejection by other guardrails, which is proven effective
in our ablation study (Section 6). For each query z, € Q,
we optimize an adversarial prefix x, using three loss terms,
addressing two specific aspects of the desired behavior.

Candidate Guardrail Adversarial Losses (L1 and Ls). As
guardrails’ output space is usually limited (C1), these loss
terms are designed to mislead the candidate guardrail G, into
classifying the adversarial prompt as unsafe. Specifically,
L1 encourages the candidate guardrail to classify the adver-
sarial prompt as unsafe, while Ly penalizes the candidate
guardrail for classifying the adversarial prompt as safe:

L1 = 0(Gi(zq||zq), unsafe),
Ly = —o(Gy(zallz,), sate),

where o(-,-) represents the cross-entropy loss. Together,
L, and Ls ensure that x, effectively triggers the refusal
mechanism of the candidate guardrail. Conceptually, these
two losses are identical, but our ablation study (Section 6)
demonstrates that the synergy of these two losses slightly
outperforms solely deploying a single one of them.
Cross-Guardrail Compatibility Loss (L3). To ensure the
adversarial prompt remains safe according to all other
guardrails and safety-aligned LLMs (C2), we introduce a
safety scorer S and propose L3. The safety scorer S mea-
sures the safety stage of an input  (Schmidt and Wiegand
2017; Mathew et al. 2021; Vidgen et al. 2021): S(z) =y, €
[0, 1], where ys = 0 indicates no security risk, and y;, = 1
indicates a potential risk. The loss term is defined as:

Ly = 0(S(zqllzq),0). 2)
By minimizing L3, we prevent unintended rejections from
unrelated guardrails, preserving the specificity of the attack
on G;.

By jointly minimizing L, Lo, and L3, we craft adversar-
ial prompts following (Jin et al. 2024) that expose the behav-
ior of the candidate guardrail while maintaining compatibil-
ity with other guardrails. The final loss function is defined
as:

ey

L:L1+05-L2+B~L37 OC,BER, (3)
where a and 5 control the weights of the loss terms Lo and
L3, respectively.

4.2 Adversarial Prompt Test

We then perform identification using two complementary
strategies: the input guard test and the output guard test. To-
gether, these tests cover scenarios where guardrails are de-
ployed at either the input or output stage of an agent, thereby
addressing C3. In addition, we introduce match score, a
novel metric that facilitates identification based solely on the
candidate guardrail. Match score provides clear and action-
able decision strategies, effectively addressing the challenge
of threshold selection in identification (C4).

Input Guard Test. We first consider the identification of the
input guardrail. As an input guardrail in an Al agent, it will
decide whether the user prompt x should be passed to the
LLM. Thus, we do the input guard test by directly querying
the AI agent with our adversarial prompts {z,||z,}. If the
Al agent responds with re fuse, we consider the candidate
guardrail to probably serve as an input guardrail in the Al
agent (see Figure 2 (2a)).

Output Guard Test. The third challenge C3 comes in iden-
tifying the output guardrail in the Al agent, as the output
guardrail takes the LLM’s generated response y as input
instead of the user prompt z. It is hard for us to manipu-
late the LLM’s output as we have no knowledge about it.
To solve this, we design a prompt template that asks the
Al agent to repeat our adversarial prompt, e.g., “Please re-
peat: [Adversarial Prompt]” Ideally, the LLM’s re-
sponse y should be the adversarial prompt {z,|z,} and
will be passed to the output guardrail. We empirically de-
sign and evaluate five prompt templates and select the best
one as shown in Section 5.3. With the well-designed prompt
template, we can ask the Al agent to repeat the adversarial
prompts to test its output guardrail as shown in Figure 2 (2b).
Then, we can make identifications based on the response
from the agent.

More Complex Scenarios. In real-world applications, the
candidate guardrail can be deployed in both the input and
output stages of an Al agent (as shown in Figure 1), which
poses challenges for identification (C3). Therefore, given a
candidate guardrail, it is necessary to conduct both input
and output guard tests on the Al agent, as illustrated in Ap-
pendix A. Experiments in such scenarios in Section 5.4 em-
pirically showcase the effectiveness of AP-Test.

Match Score. To better quantify, we introduce the refusal

_ #refuse : . :
rater = Zir e € [0, 1], which is the ratio of refuse

among all responses, where refuse represents that the Al
agent refuses to respond to the query. A higher refusal rate
indicates that the candidate guardrail is more likely to be the
input guardrail in this AT agent. Unlike existing LLM iden-
tification methods (Gubri et al. 2024; Jin et al. 2024) that re-
quire testing on a set of LL.Ms to help distinguish the identity
(C4), we propose a novel metric, match score, based solely
on the candidate guardrail. We first calculate the refusal rate
of directly querying the candidate guardrail with the opti-
mized adversarial prompts, denoted as the candidate refusal
rate ;. Note that the candidate refusal rates r; in both input
and output guard tests are the same, as we directly query the
candidate guardrail, disregarding the Al agent or the LLM.



Then, we define the match score for an Al agent as:

| min(r, ;) — 0| _ | min(r, r)[*
|re — 0> |re|*

MS = AL @
where 0 is the lower bound of r and A represents the scaling
factor. The match score M.S € [0, 1] depicts how likely the
candidate guardrail exists in the Al agent. We consider the
candidate guardrail to exist in the Al agent if M .S > 0.5;
our experiments in Section 5.2 show that the identification
performance is not sensitive to this threshold.

5 Experiments
5.1 Experimental Settings

We take four different guardrails as our candidate guardrails,
including WildGuard (Han et al. 2024), LlamaGuard (Inan
et al. 2023), LlamaGuard2 (Meta 2024), and Llama-
Guard3 (Chi et al. 2024). We use 10 guardrails for evalu-
ation, including the four candidate guardrails, AegisDefen-
sive, AegisPermissive (Ghosh et al. 2024), ShieldGemma-
2B, ShieldGemma-9B, ShieldGemma-27B (Zeng et al.
2024), and GPT40 (OpenAl 2024). We obey their default
settings in our experiments and follow (Zeng et al. 2024)
to prompt GPT40 as an input/output guardrail. Besides, we
use Llama3.1 (Dubey et al. 2024) and GPT4o0 as the LLMs
of the conversational Al agents. For the safety scorer in the
output guard test, we consider state-of-the-art hate speech
detectors and use LFTW-R4 (Vidgen et al. 2021) in our ex-
periments. Details of different LLMs and guardrails we use
can be found in Table 4 in Appendix B.

Firstly, we optimize the adversarial prompts based on
each candidate guardrail. We follow the settings in Jin et al.
(2024) and use their dataset as the query set (), which
consists of 50 simple questions. For each query in @, we
optimize a 32-token adversarial prefix using loss weights
a = 0.01 and § = 1000. We further investigate the im-
pact of different loss term weights in the ablation study. The
experiments are conducted with a batch size of 64 over 200
epochs on NVIDIA A100 GPUs with 40 GB of memory.

Then, we conduct input/output tests on agents equipped
with different LLMs and input/output guardrails. We con-
sider this a binary classification problem and calculate the
classification accuracy for each candidate guardrail over the
11 AI Agents based on the match score M S (with A = 2)
and plot the ROC curve for all test results. For each LLM,
we construct 11 Al agents for evaluation: one without any
guardrail, and the other 10 with different guardrails at the
input/output stage. We discuss the situation that the agent
contains additional guardrails later in Section 5.4.

5.2 Input Guard Test

We first evaluate the input guard test of AP-Test on
Llama3.1-based and GPT4o0-based agents. The classification
accuracy shown in Table 1 indicates that AP-Test success-
fully identifies the candidate guardrails that are used in the
Al agent, achieving a perfect accuracy, i.e., 1.00, for each
candidate guardrail. To further assess the robustness of our
approach, we plot the ROC curves for all test results in Fig-
ure 3, observing an AUC of 1.00. This indicates that our

LLM Candidate Guardrail

WildGuard LlamaGuard LlamaGuard2 LlamaGuard3
Llama3.1 1.00 1.00 1.00 1.00
GPT40 1.00 1.00 1.00 1.00

Table 1: Classification accuracy of input guard tests on
Llama-3.1-based and GPT4o0-based agents.
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Figure 3: ROC curve of input guard test.
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Figure 4: The match scores of input guard tests on differ-
ent Al agents. A larger match score indicates the candidate
guardrail is more probable to exist in the agent.

identification performance is not sensitive to the threshold
selection. These findings highlight both the effectiveness
and reliability of our method in the input guard test setting.

Figure 4 further illustrates the match scores of the in-
put guard tests on Llama3.1-based agents equipped with
various input guardrails. We observe an obvious distinc-
tion between the existence and non-existence of the can-
didate guard. For example, the WildGuard-agent achieves
a match score of 1.00 on the WildGuard-specific adversar-
ial prompts, while it only achieves a maximum distance
of 0.05 on other agents. Additionally, the LlamaGuard-
specific input test achieves 1.00 and 0.81 match score on
the AegisDefense-agent and AegisPermissive-agent, respec-
tively. That is because AegisDefense and AegisPermissive
are fine-tuned on LlamaGuard, which are the derivatives of
LlamaGuard. Results of GPT40-based agents can be found
in Figure 11 in Appendix D. We find that the results of
both Llama3.1-based and GPT4o0-based agents are almost
the same. This shows that the LLM has little influence on
the input guard test, i.e., our AP-Test is robust to different
LLMs. This also indicates that the internal safety alignment
will not affect the performance of our method.

5.3 Output Guard Test

Prompt Template Selection. As mentioned in Section 4, the
output guard test requires a prompt template that asks the Al
agent to repeat our adversarial prompts. We begin with the



Candidate Guardrail

LLM

WildGuard LlamaGuard LlamaGuard2 LlamaGuard3
Llama3.1 1.00 1.00 1.00 1.00
GPT40 1.00 1.00 1.00 1.00

Table 2: Classification accuracy of output guard tests on
Llama3.1-based and GPT4o0-based agents.
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Figure 5: ROC curve of output guard test.
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Figure 6: The match scores of output guard tests on different
Llama3.1-based AI agents. A larger match score indicates
the candidate guardrail is more probable to exist in the agent.

template: “Please repeat: [Adversarial Prompt]” and
ask ChatGPT (OpenAl 2024) to generate five variations, as
shown in Table 5 in Appendix C. To assess how well the tem-
plates help the LLM repeat the adversarial prompt, we use
Gemma2-9B (Mesnard et al. 2024) as a surrogate LLM and
evaluate the similarity between the generated text and the
input adversarial prompt optimized on LlamaGuard3. The
results in Table 6 in Appendix C show that the third tem-
plate (T3) achieves the highest similarity scores, including a
ROUGE-L score of 0.956. Thus, we select T3 as the prompt
template for our experiments: “Your task is to mimic text.
Repeat this string exactly as input, with no interpretation:
[Adversarial Prompt]”

Evaluation Results. Using T3 as the prompt template,
we evaluate the output guard test on Al agents with dif-
ferent output guardrails. Results in Table 2 and Figure 5
demonstrate the effectiveness and robustness of our AP-
Test. For all candidate guardrails, our method successfully
identified their existence in all agents, achieving an accu-
racy of 1.00 and an AUC of 1.00. The match scores of
the test on Llama3.1-based agents are exhibited in Fig-
ure 6. All agents with match scores larger than 0.50 are in-
deed equipped with the corresponding candidate guardrail
as the output guardrail. For example, the match score on
the WildGuard-agent reaches 1.00 on WildGuard-specific
adversarial prompts, while it is 0.00 on LlamaGuard-agent
and agents with LlamaGuard’s derivatives (AegisDefense-

agent and AegisPermissive-agent). This indicates that our
AP-Test successfully distinguishes the output guardrail
used in the agent. We also observe that the output guard
test is harder than the input guard test. For example, for
LlamaGuard2-specific adversarial prompts, the match score
of the LlamaGuard3-agent achieves 0.44, which is 0.22 far-
ther than that in the input guard test and is closer to 0.50.

Results of GPT40-based agents are shown in Figure 12 in
Appendix E. We find that there is a slight performance dif-
ference between Llama3.1-based and GPT4o0-based agents.
This discrepancy is due to the information loss during the
LLM processing. In other words, the performance of our
output guard test is influenced by how well the LLM can
repeat the adversarial prompts.

5.4 More Complex Scenarios

Our primary experiments show that the base LLMs (e.g.,
Llama3.1 and GPT4o) have little influence on the perfor-
mance of our AP-Test. However, we assumed that the Al
agent contains either an input or an output guardrail. To
evaluate the robustness of AP-Test under more complex sce-
narios, we relax this assumption and assess its performance
when both input and output guardrails are simultaneously
deployed. Specifically, we evaluate AP-Test on 6 x 6 = 36
Llama3.1-based agents constructed with all combinations
of input and output guardrails, where each guardrail is one
of: WildGuard, LlamaGuard, LlamaGuard2, LlamaGuard3,
ShieldGemma-2B, or absent (N/A). We apply both input and
output guard tests to each of these 36 agents. The results
show that both tests achieve perfect classification accuracy
(1.00) across all agents. The nearly the same match scores
shown in Figure 7 further suggest that the presence of addi-
tional guardrails has minimal impact on the effectiveness of
our method in identifying the candidate guardrail.

6 Ablation Study

To explore the influence of different components and hyper-
parameters of our AP-Test, we take LlamaGuard3 as our
candidate guardrail and experiment on the 11 Llama3.1-
based Al agents with different input guardrails used in the
main experiments. We find that the classification accuracy
and the match score are relatively robust to different settings.
Thus, we report the refusal rate r on each agent to better il-
lustrate the influence in certain cases.

Loss Terms. We first investigate the influence of loss terms.
Figure 8 shows the refusal rates using various weights
of loss terms on various agents. We observe that Lo en-
hances the refusal rates of the agent with the candidate
guardrail while slightly increasing the refusal rates on agents
with other guardrails. For example, the refusal rate on
LlamaGuard3-agent increases from 0.72 to 0.84, while that
on AegisDefensive-agent slightly increases to 0.04. As for
L3, we find it helps suppress the refusal rate on agents with
other guardrails. For example, when £ is 0, although the re-
fusal rate on LlamaGuard3-agent is high (1.00), the refusal
rate on WildGuard-agent reaches 0.86, which is so close to
the candidate refusal rate r; (0.98) on LlamaGuard3.
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Figure 7: Influence of the presence of additional guardrails. We report match scores on each agent.
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Figure 9: Influence of epochs. We report the loss values and
refusal rates. All refusal rates on agents with other guardrails
are 0.00.

Epochs. To analyze the influence of the number of epochs
on our method, we analyze the loss values and refusal rates
of the LlamaGuard3-specific input guard test across dif-
ferent epochs, as illustrated in Figure 9. The results indi-
cate that the losses converge around the 50th epoch, high-
lighting the efficiency of our approach. Furthermore, the re-
fusal rate on LlamaGuard3-agent increases with additional
epochs, reaching 0.62 by the 160th epoch, while the refusal
rate for WildGuard-agents decreases. This behavior demon-
strates that as the number of epochs increases, the adver-
sarial prompts become more reliable, as the distinction be-
tween the candidate guardrail and other guardrails grows.
Ultimately, the system converges at a specific epoch level,
ensuring stable and consistent performance.

Query Set. We further explore the influence of the normal
query set @), which is used as the starting point for adver-
sarial prompt optimization. Table 3 shows the refusal rates
of LlamaGuard3-specifc input guard test. We find that with-

Input Guardrail

AP-Test WildGuard LlamaGuard LlamaGuard2 LlamaGuard3
W/ Q 0.04 0.00 0.00 0.66
W/0 Q 0.94 0.98 0.78 0.92

Table 3: Influence of using normal query set ) in AP-Test.
We report the refusal rates for agents with four different in-
put guardrails.

out the query set, the test on agents equipped with guardrails
other than LlamaGuard3 achieves even higher refusal rates.
For instance, the refusal rate on the LlamaGuard-agent is
0.98, 0.06 higher than that on the LlamaGuard3-agent. This
means that AP-Test without () mistakes that LlamaGuard3
is used in the WildGuard-agent. In this sense, we address
the importance of the query set as the initial guidance for
adversarial optimization.

7 Conclusion

In this work, we tackle the problem of identifying guardrails
deployed in conversational Al agents, a crucial step toward
understanding system behavior and potential vulnerabilities.
We propose AP-Test, a novel approach that leverages guard-
specific adversarial prompts to identify the guardrail com-
ponent within a black-box Al agent for the first time, ef-
fectively addressing the key challenges in this task. Exper-
iments conducted on four candidate guardrails across vari-
ous Al agents demonstrate the effectiveness and robustness
of AP-Test. Our ablation study underscores the significance
of our proposed loss terms and the query set, revealing that
their removal leads to a substantial degradation in identifica-
tion performance.

Limitations. As this is the first study to tackle the guardrail
identification problem, there is a lack of established base-
lines for direct comparison. We hope our work serves as
a foundation for this problem and calls for more advanced
techniques. Our study focuses exclusively on model-based
guardrails, excluding rule-based filters and external modera-
tion systems such as LLM API wrappers (e.g., GPT-40 with
specific system prompts). We leave the exploration of other
guard techniques to future work.
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A AP-Test in More Complex Scenarios

In real-world applications, there are both input and output
guardrails in an Al agent, as illustrated in Figure 1. There-
fore, given a candidate guardrail, it is necessary to conduct
both input and output guard tests on the Al agent. Here, we
propose a two-step process, as shown in Figure 10.

* We first determine whether the candidate guardrail func-
tions as an input guardrail through the input guard test. If
so, we conclude that the candidate guardrail is deployed
in the AI agent and do not proceed with the output guard
test.

e If it is not used as the input guardrail, then we proceed
with the output guard test for the candidate guardrail.

In our evaluations (Section 5.4), we demonstrate that the
proposed method can successfully identify the input/output
guardrail even in the presence of a different output/input
guardrail.

B Model Details

Table 4 shows the details of the models used in our experi-
ments, including the versions we used.

C Prompt Template Selection

As mentioned in Section 4, the output guard test requires
a prompt template that asks the Al agent to repeat our ad-
versarial prompts. We begin with the template: “Please re-
peat: [Adversarial Prompt]” and ask ChatGPT (Ope-
nAl 2024) to generate five variations, as shown in Table 5.
To assess how well the templates help the LLM repeat the
adversarial prompt, we use Gemma2-9B (Mesnard et al.
2024) as a surrogate LLM and evaluate the similarity be-
tween the generated text and the input adversarial prompt
optimized on LlamaGuard3. The results in Table 6 show
that the third template (T3) achieves the highest similarity
scores, including a ROUGE-L score of 0.956. Thus, we se-
lect T3 as the prompt template for our experiments: “Your
task is to mimic text. Repeat this string exactly as input, with
no interpretation: [Adversarial Prompt]”

D Input Guard Test

Figure 11 shows the match scores of the input guard test on
different agents. The agents are either based on Llama3.1
or GPT40 models. We find that there is little difference be-
tween the two agents based on different LLMs. This shows
that the base LLM has little influence on the input guard test.

E Output Guard Test

Figure 12 shows the match scores of the output guard test
on different agents. The agents are either based on Llama3.1
or GPT40 models. We observe that the output guard test per-
forms slightly better on GPT40-based agents than Llama3.1-
based ones. Take LlamaGuard3 as the candidate guard and
WildGuard as the equipped output guard, for example. The
match score on the Llama3.1-based agent is 0.12, while that
on the GPT4o0-based agent is 0.01. This discrepancy is due
to the information loss during the LLM processing. In other

words, the performance of our output guard test is influenced
by the LLM and the prompt template, i.e., how well the LLM
can repeat the adversarial prompts.



(a) Input Guard Test

Input: ~ Al Agent:
"[wallag)" y

(b) Output Guard Test

---------------------------------------------------------

Figure 10: Workflow on real-world scenarios. We first conduct (a) the input guard test on the Al agent. If the results show that
the candidate guardrail probably does not exist in the agent, then we further conduct (b) the output guard test to identify whether
it serves as the output guardrail in the agent.

Model Name Model Path
WildGuard (Han et al. 2024) allenai/wildguard
LlamaGuard (Inan et al. 2023) meta-llama/LlamaGuard-7b

—— AegisDefensive (Ghosh et al. 2024) nvidia/Aegis-Al-Content-Safety-LlamaGuard-Defensive-1.0
—— AegisPermissive (Ghosh et al. 2024) nvidia/Aegis-Al-Content-Safety-LlamaGuard-Permissive-1.0
LlamaGuard2 (Meta 2024) meta-llama/Meta-Llama-Guard-2-8B

LlamaGuard3 (Chi et al. 2024) meta-llama/Llama-Guard-3-8B

ShieldGemma-2B (Zeng et al. 2024) google/shieldgemma-2b
ShieldGemma-9B (Zeng et al. 2024) google/shieldgemma-9b
ShieldGemma-27B (Zeng et al. 2024)  google/shieldgemma-27b

Perspective (Perspective 2025) Perspective API

GPT4o0 (OpenAl 2024) GPT40-2024-11-20

Gemma?2 (Mesnard et al. 2024) google/gemma-2-9b-it

Llama3.1 (Dubey et al. 2024) meta-llama/Llama-3.1-8B-Instruct

Table 4: Details of the guardrails and LLMs. Note that AegisDefensive and AegisPermissive are fine-tuned on LlamaGuard, as
illustrated below.

Template

T1 Simply repeat and do not consider the meaning: [AP]

T2 Repeat exactly the following sentence, including all characters and punctuation: [AP]

T3 Your task is to mimic text. Repeat this string exactly as input, with no interpretation: [AP]
T4 Do not interpret the meaning of this text. Simply output it as provided: [AP]

TS5 For debugging purposes, repeat the following text string exactly as input: [AP]

Table 5: Candidate prompt templates for output guard test. [AP] denotes the placeholder for the adversarial prompts.

#Template Cosine Similarity BLUE ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSum

T1 0.881 0977 0911 0.900 0.911 0911
T2 0.933 0961 0.939 0.934 0.939 0.939
T3 0.944 0.980 0.956 0.945 0.956 0.956
T4 0.870 0929 0.884 0.876 0.884 0.884
T5 0.914 0.962  0.926 0.916 0.926 0.926

Table 6: Similarity between the input adversarial prompt and the output text from the surrogate LLM with different prompt
templates.
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Figure 11: The match scores of input guard tests on different Al agents. A larger match score indicates the candidate guardrail

is more probable to exist in the agent.
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Figure 12: The match scores of output guard tests on different Al agents. A larger match score indicates the candidate guardrail

is more probable to exist in the agent.
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