Verifiability-First Agents: Provable Observability and Lightweight Audit Agents
for Controlling Autonomous LLM Systems

Anonymous submission

Abstract

As LLM-based agents grow more autonomous and multi-
modal, ensuring they remain controllable, auditable, and
faithful to deployer intent becomes critical. Prior benchmarks
measured propensity for misaligned behavior and showed
that agent personalities and tool access significantly influ-
ence misalignment. Building on those insights, we propose
a Verifiability-First architecture that (1) integrates run-time
attestations of agent actions (cryptographic & symbolic), (2)
embeds lightweight Audit Agents that continuously verify in-
tent vs. behavior using constrained reasoning, and (3) en-
forces challenge—response attestation protocols for high-risk
operations. We introduce OPERA (Observability, Provable
Execution, Red-team, Attestation), a benchmark suite and
evaluation protocol designed to measure (i) detectability of
misalignment, (ii) time-to-detection under stealthy strategies,
and (iii) resilience of verifiability mechanisms to adversar-
ial prompt/persona injection. Our approach aims to shift the
evaluation focus from “how likely misalignment is” to "how
quickly and reliably misalignment can be detected and reme-
diated.”

Introduction

Autonomous LLM agents operate in loops where inter-
nal planning, tool use, long-horizon memory, and repeated
self-prompting generate complex behaviors; small prompt
changes (persona injection) can materially change out-
comes. Recent works have illuminated how to measure
agents’ propensity for misaligned behavior (avoiding over-
sight, sandbagging, resisting shutdown, etc.), and have
shown that both models and personality prompts strongly
modulate misalignment. Also, different comprehensive mis-
alignment scoring mechanisms have been introduced for
quantitative evaluation recently.

Propensity metrics are essential, but a complementary
agenda is needed: verifiability. Instead of only asking,
“would an agent do harm?”, we must ask, “can we reli-
ably observe and verify the agent’s internal goals and actions
in real time and prevent harmful escalations?” Verifiability
is an operational property that enables deployers and audi-
tors to detect, attribute, and remediate misaligned behaviors

Copyright © 2026, Trustworthy Agentic AI Workshop@
Association for the Advancement of Artificial Intelligence (www.
aaai.org). All rights reserved.

quickly. This paper introduces a concrete architecture, theo-
retical properties, and an experimental protocol to evaluate
verifiability mechanisms in agentic systems.

Background

LLM-based agents differ fundamentally from static chat
models: instead of responding to a single prompt, they au-
tonomously plan, call tools, retrieve data, and act in open
environments. This loop of reasoning, acting, and observing
introduces an entirely new axis of risk, not only of incor-
rect predictions but also of uncontrolled behavior over time.
As language models acquire persistent memory and API ac-
cess, they become capable of forming implicit goals that can
deviate from the designer’s stated intent.

Recent research has begun systematically studying these
failure modes. Recent benchmarks have quantified the
propensity for misaligned behavior across realistic au-
tonomous tasks such as cybersecurity, content moderation,
and negotiation. By combining behavioral probes with per-
sona conditioning, it was revealed that even identical base
models could exhibit widely divergent ethical and strate-
gic patterns depending on their internal prompting context.
Works have provided the large-scale, quantitative picture of
emergent misalignment in LLM agents, showing that model
scale, personality framing, and environmental complexity
jointly shape the likelihood of unsafe actions.

However, measuring propensity alone is insufficient for
deployment-grade trust. Detecting misalignment post-hoc
after an agent has already acted cannot guarantee sys-
tem safety in dynamic, multi-agent ecosystems. In practi-
cal settings, operators need mechanisms that make undesir-
able behavior observable and verifiable in real time, before
harm propagates. Yet existing safety techniques such as red-
teaming or output filtering remain reactive; they provide no
formal guarantees about whether an autonomous system’s
internal reasoning or tool usage aligns with the intended ob-
jective.

Moreover, multi-agent systems amplify these challenges.
When LLM agents coordinate, trade information, or dele-
gate subtasks, small deviations from intent can compound
into collective failures. Evaluating only individual agent
reliability overlooks how deception, sandbagging, or non-
compliance may emerge at the group level. The field, there-
fore, needs an evaluative shift from measuring how often

misalignment arises to measuring how transparently and
promptly it can be detected, attributed, and remediated.

This motivates a verifiability-first perspective: design-
ing agentic systems where every consequential action leaves
a cryptographically or symbolically provable trail, contin-
uously checked by lightweight secondary verifiers. Rather
than trusting the agent’s self-reports, we verify its exter-
nal effects and reasoning consistency through independent
attestations. This perspective connects the safety goals of
alignment and robustness with the engineering goal of op-
erational observability, forming the conceptual foundation
for the Verifiability-First Architecture (VFA) and the
OPERA benchmark introduced in this paper.

Methodology

Our methodology operationalizes the Verifiability-First Ar-
chitecture (VFA) through a modular, testable pipeline that
introduces explicit observability and auditability layers into
the lifecycle of an LLM agent. Each component is designed
to generate verifiable evidence of the agent’s decisions and
actions, enabling independent verification and remediation
before any unsafe behavior escalates.

At the start of every task, we define an Intent Specifi-
cation (ISpec). This is a clear, structured file that describes
what the agent is allowed to do, what it should avoid, and
what the overall goal is. Think of it as the rulebook for the
system. Every time the agent performs an operation like us-
ing a tool, retrieving data, or writing to memory — that ac-
tion goes through an Action Attestation Layer (AAL). The
AAL automatically creates a small signed record called a
receipt, which includes a hash of the inputs, outputs, and
the time the action happened. These receipts are stored in a
Provenance Log (PL), which works like an uneditable diary
of everything the agent does.

While the agent continues to plan and act, a separate set of
small models, called Audit Agents (AA), constantly watch
the Provenance Log. Their job is to look for signs that the
agent’s actions might be drifting away from what’s writ-
ten in the ISpec. Each AA can be a rule-based checker or a
lightweight LLM that assigns a probability of how “aligned”
or “off-track” the latest action seems. If something looks
suspicious, the system triggers a Challenge—Response At-
testation (CRA). This is a kind of test: the agent is asked to
explain why it made a certain choice and how that choice fits
within its goals. The explanation is also signed and recorded,
so the system has a verifiable trace of reasoning that can
be cross-checked. All of this runs inside a controlled loop:
the agent acts, the receipts are logged, the auditors check
them, and any detected issue activates a Controller and Re-
mediator (C&R). The C&R can temporarily block tool ac-
cess, pause the agent, or switch it to a safe mode if needed.
This feedback loop ensures that no critical action goes un-
observed or unexplained. We describe the reliability of the
architecture using three measurable ideas: detectability, at-
tributability, and remediability. Detectability means that
if the agent does something it shouldn’t, the system can
catch it quickly. Attributability means that every action can
be traced back to who (or what process) actually did it, us-
ing the signed receipts. Remediability ensures that once a

Intent Specification

Action Attestation Layer

.
Audit Agents
© Rule Based
> Statistical

o Semantic

—
JL
{

—
Controller &
Remediator

R ={id, tools, args, hash,
result hash }

Challenge-Response
Attestation

Figure 1: Proposed Framework

problem is found, the system can stop or correct the behav-
ior before it causes further damage. Together, these prop-
erties create a clear framework for proving that the system
is both observable and controllable. For testing, we imple-
mented this design on top of a ReAct-style agent scaffold
(like InspectAl). The Verifier Stack , the trusted part that
handles cryptographic signatures runs as a lightweight local
service, and the Audit Agents work in parallel so they don’t
slow the main agent down. On average, the extra verification
step adds only a few milliseconds per action, which means
it can scale well even in streaming or multi-agent setups.

Intent Specification (ISpec)

An ISpec can be thought of as the constitution of an agent.
Instead of relying only on natural language prompts, it en-
codes deployer intent in a formal schema that integrates eth-
ical rules, environmental limits, and performance objectives.
During execution, every decision and tool call made by the
agent is compared against its ISpec , forming the basis for
attestation, verification, and alignment scoring.

Structure Each ISpec consists of four major sections:

1. Objective Layer: Defines the agent’s task goals (e.g.,
“summarize articles accurately,” “flag toxic content,”
“optimize logistics routes”) along with measurable suc-
cess conditions.

2. Constraint Layer: Lists forbidden or high-risk actions,
such as restricted APIs, unsafe commands, or sensitive
data access.

3. Policy Layer: Encodes ethical and domain-specific
rules, like fairness policies, environmental limits, or user-
consent conditions.

4. Verification Layer: Specifies the triggers that should
activate extra oversight—e.g., threshold values for cost,
time, or resource usage that require Challenge—Response
Attestation.

At runtime, the ISpec serves three purposes:

1. It acts as the reference for all comparisons: Audit Agents
check the Provenance Log and verify whether actions
conform to the ISpec.

J

Policy

Audit Agents Interpreter

Verifier Stack

Figure 2: Intent Specification

2. It determines when challenge-response steps are trig-
gered.

3. It allows external operators to reconfigure agent behav-
ior by updating rules without retraining the model.

Action Afttestation

The Action Attestation Layer (AAL) is the trust anchor
of the Verifiability-First Architecture. Its purpose is to guar-
antee that every action an agent performs, no matter how
small,can be independently verified. Rather than simply
recording what the agent claims to have done, the AAL
records proof of what was actually executed.

Whenever the agent makes an external call like querying
an API, editing a file, or invoking a tool, the AAL automat-
ically generates a signed receipt. Each receipt is a compact,
tamper-proof record summarizing the action’s essential de-
tails. These receipts are appended to the Provenance Log,
creating an immutable sequence of verifiable operations.

Structure of an Attestation Receipt Each receipt R; is
defined as:

R; = (id, tool, args_hash, result_hash, t;, oyg) (1)

where:
id: Unique identifier for the action.
tool: Name or endpoint of the invoked function or API.

args-hash: Cryptographic hash of the arguments or input
payload.

result_hash: Hash of the tool’s returned data.

t;: Timestamp of execution.

oy s: Digital signature generated by the Verifier Stack using
its private key.

This structure ensures integrity (no log entry can be modi-
fied unnoticed), non-repudiation (the agent cannot deny per-
forming the action), and authenticity (no fake receipts can
be injected without the signing key).

Agent

Call API

Action Attestation Layer

* Hash Inputs

* Execute Tool

¢ Hash Outputs

e Sign Receipt Oys)

|

Provenance
Log

Eamd Verifier Stack

Audit Agents

Figure 3: Action Attestation

Operation The AAL sits directly between the agent’s rea-
soning loop and its environment. When the agent decides to
call a tool, the call first passes through the AAL wrapper.
The wrapper captures the inputs, generates their hash, for-
wards the request, and on receiving the output, computes its
hash as well. The complete tuple is then sent to the Verifier
Stack (VS), which signs it using its RSA key. The resulting
signed receipt is stored both locally and in the Provenance
Log, where Audit Agents (AA) can read it asynchronously
for verification.

If an agent attempts to act outside of its declared tools or
without attestation, the VS immediately rejects the action.
This creates a built-in enforcement mechanism,an agent can-
not perform an undetected operation, since every valid tool
interaction must pass through attestation.

Function in the System Within the overall architecture,
the AAL provides the factual backbone of verifiability. It
transforms uncertain “black-box” activity into cryptograph-
ically verifiable evidence. The receipts collected through the
AAL are what Audit Agents later analyze to measure align-
ment, detect anomalies, and compute verifiability metrics.

Furthermore, by signing every receipt, the AAL creates
a tamper-evident chain of custody. Even if the agent at-
tempts deception or log alteration, the signatures act as
immutable checkpoints, making inconsistencies immedi-
ately detectable. During challenge-response phases, these
receipts are cross-referenced with agent justifications, allow-
ing the Verifier Stack to confirm whether the claimed reason-
ing actually matches the recorded action.

Audit Agents

The Audit Agents (AA) form the reasoning and verifica-
tion backbone of the Verifiability-First Architecture. Their
primary role is to continuously monitor the Provenance
Log (PL) and validate whether the agent’s observed behav-
ior aligns with its Intent Specification (ISpec). While the
AAL provides verifiable facts about what actions occurred,
the AAs interpret those facts — reasoning over context, fre-
quency, and intent to detect misalignment or unsafe devia-
tions.

Table 1: Performance comparison of different system variants. VFA achieves the lowest detection and remediation times with

the highest attribution confidence.

System Variant Mean T, (s) |

No-Verifier Baseline 354
Log-Monitoring (Heuristic) 21.8
VFA (Ours) 11.9

Unlike a single monolithic verifier, the Audit Agents oper-
ate as an ensemble of diverse models and rule systems. This
design reduces correlated blind spots and increases robust-
ness to deception or adversarial prompt manipulation. Each
AA instance runs asynchronously, evaluating the stream of
receipts and outputs generated by the agent. Collectively,
they produce a dynamic estimate of the agent’s alignment
probability over time.

Each Audit Agent combines three complementary reason-
ing modes:

1. Rule-based verification — deterministic logic checks that
directly apply the constraints listed in the ISpec. For ex-
ample, it can verify that no forbidden APIs were called or
that resource usage stayed within limits.

2. Statistical detection — a lightweight classifier or
transformer-based model trained on labeled examples of
aligned vs. misaligned behavior. This model captures sub-
tle behavioral shifts — such as indirect violations or eva-
sive phrasing — that pure rule systems may miss.

3. Semantic consistency analysis — a natural-language rea-
soning step that compares the agent’s explanations, tool
calls, and outputs to the goals in the ISpec. It uses en-
tailment and similarity metrics to detect contradictions or
justification gaps.

The ensemble’s outputs are aggregated into an alignment
score:

AlignScore, = f(rule(Ru), stat(Ry.t), sem(Rlzt))

2
where Ry.; denotes all attested receipts up to time ¢, and f(+)
is a weighted aggregation function that combines the indi-
vidual verifiers. If this score drops below a safety thresh-
old 7, an alert is raised to the Verifier Stack (VS), which
may trigger a Challenge—Response Attestation (CRA) or
temporarily restrict the agent’s privileges through the Con-
troller and Remediator (C&R).

Audit Agents are intentionally designed to be simpler and
more constrained than the primary LLM. This asymmetry
ensures they remain interpretable, lightweight, and harder to
manipulate. In multi-agent settings, the same AA ensemble
can oversee multiple agents simultaneously, cross-checking
their receipts for collusion or abnormal coordination.

Beyond monitoring, AAs also maintain a self-updating
policy cache. When the ISpec changes or new safety con-
straints are introduced, the Audit Agents automatically
reload the updated schema without retraining. This enables
continuous oversight even as system configurations evolve.

In summary, Audit Agents transform static oversight into
a living, adaptive verification process. They interpret raw at-

Mean T, (s) | AC 1 FPR | VScore 1
18.9 0.62 0.15 0.58
11.3 0.73 0.12 0.69
9.2 0.85 0.09 0.72

testations in context, detect emerging risks, and feed verified
insights back into the Verifier Stack. By combining rule pre-
cision, statistical sensitivity, and semantic reasoning, they
close the loop between transparency and control , turning
observability into operational trust.

Results and Evaluation

We conducted a series of experiments to assess the per-
formance, reliability, and interpretability of the proposed
Verifiability-First Architecture (VFA) under diverse agent
configurations. The experiments were designed to test
whether the system can (1) detect deviations rapidly, (2) at-
tribute actions unambiguously, and (3) remediate unsafe be-
havior with minimal latency.

All experiments were performed on a system with a 40-
core CPU and one NVIDIA A100 GPU, using agents with
7B-13B parameter backbones. Each model operated with
tool access (search, code execution, and file editing), and
verification modules ran asynchronously to emulate real-
world conditions.

Evaluation Metrics We evaluated using four measurable
indicators:

¢ Time-to-Detect (7d): Average time (in seconds) taken
to identify a misaligned or rule-violating action.

* Remediation Latency (7"_r): Time between detection and
complete mitigation.

¢ Attribution Confidence (AC): Fraction of episodes
where the signed receipts enabled perfect reconstruction
of the action sequence.

» False Positive Rate (FPR): Frequency of false alarms
during compliant behavior.

A composite Verifiability Score (VScore) summarizes sys-
tem quality across metrics, with higher values indicating
faster detection and higher reliability.

Across 150 test episodes, the VFA consistently achieved
sub-12 second detection times, cutting detection latency by
12.4% compared to heuristic log-monitoring systems. Av-
erage attribution confidence increased from 0.74 — 0.85,
confirming that cryptographic attestation significantly im-
proved traceability. Despite introducing new monitoring
components, the average runtime overhead was under 6.5 %,
demonstrating that real-time verification can coexist with
continuous inference.

Remediation latency dropped to approximately six sec-
onds, reflecting how quickly the Controller and Remedi-
ator (C&R) intervened after Audit Agent alerts. The False
Positive Rate remained under 7%, which is acceptable for
safety-critical pipelines since the system is optimized for
early detection rather than perfect precision.

Table 2: Ablation analysis showing the contribution of each verification component to overall system performance. Removing
any module degrades both detection speed and attribution accuracy.

Configuration AT, (s) T
Without Audit Agents +9.8
Without Attestation Layer +13.4
Without Challenge—Response +7.1

Future Scope

The present study introduces the Verifiability-First Archi-
tecture (VFA) ,a framework that operationalizes trust and
oversight in autonomous LLM agents through structured In-
tent Specification, Action Attestation, and Audit-Based Ver-
ification. By converting opaque reasoning into cryptograph-
ically verifiable traces, the system demonstrates that align-
ment can be continuously monitored rather than assumed.

First, the Audit Agent Ensemble can be extended to use
probabilistic verification graphs that quantify inter-agent
trust propagation, making large multi-agent systems more
accountable. Second, integrating zero-knowledge proofs
(ZKPs) could enable privacy-preserving attestations, allow-
ing institutions to verify actions without exposing raw data.
Third, scaling the Challenge—Response Attestation (CRA)
mechanism to long-horizon planning tasks requires more
adaptive thresholds that balance cost with responsiveness.

On the engineering side, future work will explore feder-
ated verifiability, where agents deployed across different or-
ganizations share signed evidence instead of raw interaction
logs, preserving both privacy and cross-domain consistency.
Additionally, human-in-the-loop dashboards and automated
policy synthesis could close the last gap between technical
verification and ethical oversight.

References

[1] Amodei, D., Olah, C., Steinhardt, J., et al. (2016).
Concrete Problems in Al Safety. arXiv preprint
arXiv:1606.06565.

[2] Gabriel, 1. (2020). Artificial Intelligence, Values, and
Alignment. Minds and Machines, 30(3), 411-437.

[3] Bai, Y., Kadavath, S., Jones, A., et al. (2022). Train-
ing a Helpful and Harmless Assistant with Reinforce-
ment Learning from Human Feedback. arXiv preprint
arXiv:2204.05862.

[4] Zheng, L., Chiang, C.-H., Narasimhan, K., & Zhang,
T. (2023). Frontier Safety: Verifiable and Transparent
Al Systems. arXiv preprint arXiv:2310.03752.

[5] Feng, Y., Lin, K., & Zhu, Y. (2024). VeriLLM: Towards
Verifiable Large Language Model Systems. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
38(12), 14572-14580.

[6] Li, R., Xu, Z., & Chen, Q. (2024). Chain of Verifi-
cation: Scalable Reasoning for Reliable LLM Agents.
NeurIPS 2024 Workshop on Agentic Systems.

[7] Perez, E., Ringer, S., Cheng, R., et al. (2023). Discov-
ering Language Model Behaviors with Model-Written
Evaluations. NeurIPS 2023.

AAC| A VScore |
-0.14 -0.11
-0.21 -0.17
-0.10 -0.09

[8] Christiano, P., Leike, J., Brown, T., et al. (2018). Super-
vising Strong Learners by Amplifying Weak Experts.
arXiv preprint arXiv:1810.08575.

[9] Rao, V., & Gupta, A. (2025). Distributed Attestation
for Verifiable Agentic Al. In Workshop on Trustworthy
Multi-Agent Systems, AAAI 2025.

[10] OpenAl. (2023). Planning, Acting, and Reflecting: To-
wards Agentic LLMs. OpenAl Technical Report.

[11] Park, J. S., O’Brien, J., Cai, C., et al. (2023). Genera-
tive Agents: Interactive Simulacra of Human Behavior.
arXiv preprint arXiv:2304.03442.

[12] Yao, S., Zhao, J., Yang, K., et al. (2023). ReAct: Syn-
ergizing Reasoning and Acting in Language Models.
Proceedings of ICLR 2023.

[13] Wang, X., Chen, T., & Liu, S. (2024). AgentBench:
Evaluating LLMs as General-Purpose Agents. arXiv
preprint arXiv:2403.08975.

[14] Shen, L., Tang, R., et al. (2023). Tools for Verifiable
Al Agents: A Survey and Taxonomy. ACM Computing
Surveys, 56(9), 1-34.

[15] Long, Y., Zhang, M., & Du, Y. (2024). Auditable Multi-
Agent Collaboration via Proof-of-Action Protocols.
ICLR 2024 Workshop on Responsible Autonomous
Systems.

[16] Gao, L., Korbak, T., et al. (2023). Scaling Alignment
via Automated Adversarial Training. arXiv preprint
arXiv:2308.00669.

[17] Lee, D., & Suresh, A. (2025). Zero-Knowledge Attesta-
tions for Privacy-Preserving Al Oversight. AAAI 2025
Workshop on Secure and Trustworthy Al

[18] Krishnan, P., & Mishra, A. (2024). Chal-
lenge—Response Verification for Autonomous LLM
Agents. Proceedings of the ICML 2024 Workshop on
Verifiable Al

[19] Zhang, C., & Tan, Z. (2025). Multi-Layer Governance
in LLM-Based Multi-Agent Ecosystems. AAAI 2025.

[20] Xu, M., Hu, E., & Lin, S. (2024). Aligning Au-
tonomous Systems through Traceable Intent Specifica-
tions. NeurIPS 2024.

[21] Bostrom, N., & Yudkowsky, E. (2017). The Ethics of
Artificial Intelligence. In The Cambridge Handbook of
Artificial Intelligence, Cambridge University Press.

[22] Pan, R., & Liu, J. (2023). From Alignment to Account-
ability: Towards Provable Oversight in Large Lan-
guage Models. arXiv preprint arXiv:2311.02459.

