Towards Design of an Automated Judge for Multi-Agent Systems

Alina Zhidkovskaya'*, Kirill Rapatskikh', Jerzy Kaminski', Grigorii Barakhsin', Anna V,
Kalyuzhnaya'’, Alexey Druzhinin?, Andrey Savchenko?, Julia Belikova?, Konstantin Polev?,
Nikolay O. Nikitin'

L AT Institute, ITMO University, Saint Petersburg, Russia
2Sber Al Lab, Moscow, Russia

Abstract

Evaluating multi-agent systems (MAS) requires nuanced
analysis across different levels of interaction, from individ-
ual agent behaviors to emergent collective dynamics. Existing
methods relying on human annotation or single LLM evalua-
tors struggle to capture this complexity. We introduce a novel
unsupervised framework that addresses this gap through a
collective of specialized LLM-based evaluators. Our architec-
ture employs a comprehensive two-tier evaluation approach.
Specialized evaluators assess individual competencies at the
agent level, including observation alignment, tool selection,
and state consistency. At the system level, dedicated eval-
uators analyze collective performance across task comple-
tion, role distribution, and complexity metrics. Each eval-
uator receives structured trace representations with explicit
task context. The proposed AutoPumpkin (Automated Per-
formance Understanding for Multi-agents Planning, Knowl-
dge Integration and Negotiation) judge aggregates key agent-
and system-level metrics alongside evaluator justifications to
determine overall MAS success (binary classification) with-
out requiring labeled training data. On the out-of-distribution
TRAIL benchmark, AutoPumpkin achieves F1 0.85, substan-
tially outperforming the TRAIL baseline (F1 0.71). On in-
distribution data, AutoPumpkin maintains competitive per-
formance (F1 0.65) compared to TRAIL (F1 0.634), demon-
strating strong cross-dataset generalization. This hierarchical
evaluation framework enables precise failure identification
and targeted optimization across both agent and system levels
while remaining scalable and interpretable.

Introduction

The deployment of multi-agent systems (MAS) for com-
plex problem-solving has accelerated rapidly, yet their eval-
uation remains challenging. Unlike single-agent systems
and standalone LLM (Large Language Model) applications,
where performance can be assessed through input-output
validation, MAS exhibit emergent behaviors arising from
inter-agent coordination, role specialization, and dynamic
task decomposition. Current benchmarks predominantly use
end-to-end metrics that compare outputs against ground
truth, supplemented by traditional NLP metrics, such as

*alina.zhdk @ gmail.com

Tanna.kalyuzhnaya@itmo.ru
Copyright © 2026, Trustworthy Agentic Al Workshop@
Association for the Advancement of Artificial Intelligence (www.
aaai.org). All rights reserved.

ROUGE (Lin 2004), BLEU (Papineni et al. 2002), and per-
plexity (Jelinek et al. 1977). These approaches cannot diag-
nose whether failures stem from individual agent incompe-
tence, coordination breakdowns, or architectural misalign-
ment.

Recent trace analysis methods address this gap.
TRAIL (Deshpande et al. 2025) introduces error tax-
onomies across reasoning, planning, and execution cate-
gories, achieving 11% combined accuracy on localization
tasks. MAST (Cemri et al. 2025) identifies 14 failure modes
through analysis of 200+ traces. While both frameworks
excel at identifying what went wrong at intermediate steps,
including coordination failures, MAST does not provide
an overall success metric. This leaves critical questions
unanswered: Did the system ultimately succeed? How
efficiently do agents coordinate? Is task decomposition
optimal?

Furthermore, evaluation methods for single-agent or
human-Al interaction scenarios inadequately address MAS-
specific phenomena. PIPA’s (Kim et al. 2025) POMDP-
based framework evaluates agent performance along mul-
tiple axes. Still, it focuses on individual agent behaviors in
task planning contexts, lacking mechanisms to assess inter-
agent coordination patterns, role distribution efficiency, or
emergent system-level properties that distinguish multi-
agent architectures from their single-agent counterparts.

We introduce a comprehensive trace analysis evaluation
framework AutoPumpkin (Automated Performance Un-
derstanding for Multi-agents Planning, Knowldge Inte-
gration and Negotiation) that addresses these gaps through
a collective of specialized LLM-based judges operating
without ground truth requirements. Our architecture imple-
ments a two-tiered assessment: agent-level evaluators an-
alyze individual competencies, including state consistency,
tool selection accuracy, and observation alignment across
execution traces, while system-level evaluators assess col-
lective dynamics, including task transfer efficiency, role dis-
tribution optimality, planning coherence, and conflict resolu-
tion mechanisms. Critically, AutoPumpkin evaluates overall
system success in addition to intermediate behavioral qual-
ity, providing a holistic assessment that determines whether
the MAS accomplished its objectives alongside fine-grained
diagnostic insights into how effectively it performed. Each
specialized judge examines targeted trace segments using

task-agnostic criteria, enabling comprehensive diagnosis of
both individual capabilities and emergent coordination pat-
terns. Experimental validation demonstrates significant im-
provements over existing methods in terms of evaluation
accuracy and diagnostic precision, providing actionable in-
sights for optimizing the design of multi-agent systems.

Related Works
Multi-Agent System Evaluation

The evaluation of multi-agent systems has traditionally re-
lied on task completion metrics that assess outcomes against
ground truth labels. AgentBench (Liu et al. 2023) intro-
duces diverse metrics, including success rate and F1 scores
across multiple domains, while recent frameworks like 7-
Bench (Yao et al. 2024) and TravelPlanner (Xie et al. 2024)
evaluate agents through task-specific success criteria. How-
ever, these approaches provide limited insight into the qual-
ity of intermediate decision-making processes, coordination
mechanisms, or the root causes of failures, which is the cru-
cial information for systematic improvement of MAS archi-
tectures.

Trace-Based Evaluation and Observability

Recent work has emphasized the importance of exe-
cution trace analysis for understanding agent behavior.
TRAIL (Deshpande et al. 2025) introduces a formal tax-
onomy of agentic errors and provides a benchmark of 148
human-annotated traces collected using OpenTelemetry in-
strumentation. Their approach focuses on localizing errors
within trace spans across three categories: reasoning, plan-
ning, and system execution. TRAIL demonstrates that mod-
ern LLMs perform poorly at trace debugging, with the best
model achieving a local accuracy of 0.546 and a category
F1 score of 0.389. Observability platforms (Langfuse, Arize
Phoenix, TruLens) support trace visualization. T-Eval (Chen
et al. 2023) introduces step-by-step evaluation of tool uti-
lization capability in LLMs, providing reference-free met-
rics for assessing retrieval and generation components. We
extend these atomic evaluation templates to multi-agent co-
ordination metrics while emphasizing comprehensive qual-
ity assessment beyond error localization.

Failure Taxonomies and Classification

MAST (Multi-Agent System Failure Taxonomy) provides
the first empirically grounded taxonomy of MAS failures,
identifying 14 distinct failure modes across three categories:
specification issues, inter-agent misalignment, and task ver-
ification (Cemri et al. 2025). Developed through Grounded
Theory analysis of over 200 conversation traces, MAST
achieves a high inter-annotator agreement F1 score (0.8 with
GPT4-0) and introduces an LLM-as-judge pipeline for auto-
mated failure detection. MAST’s classification approach fo-
cuses on identifying whether specific failure modes occur,
providing valuable diagnostic information for understanding
why systems fail. However, as a binary classification frame-
work, it does not assess the quality or efficiency of suc-
cessful behaviors, such as coordination effectiveness, role
distribution optimality, or planning coherence—dimensions

essential for optimizing well-functioning systems and most
importantly, overall system success.

Single-Agent and Interactive Planning Evaluation

PIPA proposes a unified evaluation protocol for interac-
tive planning agents grounded in the Partially Observ-
able Markov Decision Process (POMDP) framework (Kim
et al. 2025). The framework evaluates agents along multiple
axes, including state consistency, tool efficiency, observation
alignment, and task completion, providing a fine-grained
diagnosis of decision-making pipelines. Recent work on
task-oriented dialogue evaluation, such as TD-EVAL (Xiao
et al. 2024), adopts a multi-level assessment that combines
turn-level precision with dialogue-level comparisons to cap-
ture both localized errors and overall interaction quality.
While PIPA and related single-agent evaluation protocols of-
fer comprehensive assessment for task planning scenarios,
they do not address MAS-specific phenomena such as inter-
agent coordination patterns, task delegation efficiency, con-
flict resolution mechanisms, or emergent system-level prop-
erties that distinguish multi-agent architectures from their
single-agent counterparts.

Our work synthesizes these research directions by pro-
viding a comprehensive quality assessment framework that
analyzes execution traces through specialized evaluators,
capturing both individual agent competencies and system-
level coordination dynamics without requiring ground truth
labels. By combining agent-level and system-level evalua-
tion perspectives with atomic, decomposed criteria, we ad-
dress the current gap where existing methods either lack
holistic success metrics (MAST) or fail to capture MAS-
specific coordination phenomena (PIPA, single-agent eval-
uation frameworks).

Proposed approach

We propose a hierarchical LLM-as-a-judge framework, Au-
toPumpkin, for evaluating MAS. The approach decomposes
the evaluation problem into system-level and agent-level di-
mensions, with scores aggregated through the AutoPumpkin
judge (Figure 1). This decomposition enables fine-grained
analysis of MAS performance across orthogonal evaluation
criteria.

System-level metrics

System-level metrics assess the multi-agent system as a uni-
fied entity. We define five metrics capturing distinct aspects
of MAS behavior:

» SystemTaskCompletionMetric: Whether the system
successfully achieves the primary task objective. Mea-
sures task outcome validity independent of intermediate
execution steps.

* MASROolesDistributionMetric: Role specialization and
allocation across agents. Evaluates alignment between
agent capabilities and assigned roles, with consistency
across execution.

* MASTaskTransferMetric: Effectiveness of inter-agent
task handoff and information propagation. Measures con-

Let T=20. The lengths of the sides of a rectangle are the

INPUT QU ERY: zeroes of the polynomial xA{2}-3 T x+T~{2}. Compute

the length of the rectangle's diagonal.

¥
) ~

w EvalutionInput
=

. . -) OpenTelemetry - dialogue history
C - Langfuse - agent_responses
(.1.\ .. (!\ - agent_states
~— ~— _} - agents_tools_info

MULTI AGENT
SYSTEM

wis-7acents . GET TRACE FROM MAS

¥

Q TaskCompleteness Q MASTaskCompletion

Q ToolParameterExtraction Q MASRolesDistribution

Q ToolSelection Q MASTaskTransfer
Q StateConsistency Q MASComplexity
Q ObservationAlignment Q PolicyAlignment

AGENT-LEVEL SYSTEM-LEVEL
A4 \4

DEFINE 10 SCORES WITH JUSTIFICATIONS

metric: ToolSelection metric: MASComplexity

score: ideal score: fair

Q justification: The user is asking justification: The agent density is

o = to evaluate a mathematical appropriate as there's a single

0 P expression. The ‘run_code’ tool is math proxy agent interacting with
appropriate for this as it can the user. The interconnection

0 cD execute Python code to perform quality is fair; while the agent

calculations and simplifications. successfully uses Python...

METRICS:

Pumpkin Judge
DEFINE

OVERALL SeTaievel
SCORE (0/1) (5! SCores

COHERENT MAS MISALIGNED
¥ ® X
v/

score: 1 score: 0

justification: The overall performance is ideal. justification: The overall performance is poor due
All metrics are rated as 'ideal', indicating to critical failures. While OBSERVATION_ALIGNMENT
exceptional core MAS functionality. While one was consistently ideal, indicating the agent

instance of STATE_CONSISTENCY had a 'fair' accurately understood and responded to

score due to a minor ambiguity in the final observations, STATE_CONSISTENCY was only fair
explanation regarding armor types, the core due to repeated tool timeouts.

class identification and reasoning remained

sound.

Figure 1: Overview of AutoPumpkin pipeline.

text preservation and communication fidelity during tran-
sitions.

* MASComplexityMetric: Capacity to handle complex
reasoning tasks. Evaluates management of multi-step de-
composition and hierarchical problem-solving.

* PolicyAlignmentMetric: Conformance to implicit and
explicit behavioral policies. Measures adherence to sys-
tem constraints and safety guidelines.

An example of assessment based on one of these criteria can
be found at (Figure 2).
Agent-level metrics

Agent-level metrics examine the individual behavior and lo-
cal decision-making quality of each agent. We define five
metrics operating on per-agent trace segments:

"mas_roles_distribution": {
"metric_name": "mas_roles_distribution",
"scores": [
{

"item_id": "overall_score",

"score": "ideal",

"justification": "The roles are well-
balanced and clearly separated.
MathematicalAnalysisAgent focuses on theoretical
analysis, NewtonMethodImplementationAgent handles
the coding and initial execution,
NumericalComputationAgent performs detailed
numerical calculations, and
ConvergenceAnalysisAgent analyzes the results for
convergence. ValidationAgent then double-checks
the final answer. Each agent has a distinct and
appropriate specialization, and the workload is
distributed logically across the pipeline."

}
]
}

Figure 2: Example of evaluating by MASRolesDistribution
metric.

» TaskCompletenessMetric: Evaluates whether each
agent fully addresses its assigned subtask. Measures task
coverage at the individual agent level.

* ToolParameterExtractionMetric: Assesses accuracy
and completeness of parameter extraction from observa-
tions. Evaluates whether agents correctly parse tool out-
puts and environment state.

* ToolSelectionMetric: Evaluates appropriateness of tool
selection given current context. Measures whether agents
invoke semantically correct tools for their current objec-
tives.

* StateConsistencyMetric: Assesses consistency between
agent observations and inferred system state. Detects
contradictions and inconsistencies in agent reasoning.

* ObservationAlignmentMetric: Evaluates whether
agent interpretations of observations align with actual
tool outputs and semantics. Measures hallucination and
misinterpretation rates.

Non-LLM metrics

Non-LLM metrics examine quantitative aspects of multi-
agent systems that do not directly measure output quality
but significantly impact system performance and cost. We
define five such metrics:

* ToolEfficiencyMetric: Ratio of successful tool calls to
total tool call attempts.

» AgentTokensMetric: Total number of tokens consumed
per agent (input and output separately and combined).

» SystemTokensMetric: Total number of tokens con-
sumed across the entire multi-agent system.

* AgentTimeMetric: Wall-clock execution time per agent
in seconds.

* SystemTimeMetric: End-to-end wall-clock execution
time for the entire system in seconds.

AutoPumpkin judge

The AutoPumpkin Judge serves as a meta-evaluator that
synthesizes scores from all 10 metrics into a unified system
quality assessment.

The Judge produces a binary quality label £ € 0,1 in-
dicating whether the trace exhibits sufficient overall system
quality. This label serves as the ground truth for metric vali-
dation via correlation analysis with individual metric scores.

Implementation

All metric judges and the AutoPumpkin Judge are instan-
tiated using LLM inference. Metric implementations are
agnostic to the specific LLM backbone; we employ an
instruction-tuned language model for all evaluations. Each
judge is queried with a structured prompt containing the
evaluation criterion definition and the relevant evaluation in-
put.

We define a standardized trace format that captures multi-
agent execution. The EvaluationInput schema com-
prises:

* Dialogue and execution data: User queries, dialogue
history, agent responses, and agent states (inference out-
puts, tool invocations).

* System context: Agent toolsets, system policies, and
agent pool definitions necessary for semantic evaluation.

e Metadata: Agent performance metrics (token usage, la-
tency), error logs, trace identifiers, and session informa-
tion.

This format unifies diverse MAS logging formats into a
common evaluation interface. Metric computation operates
on subsets of this schema relevant to each metric: system-
level metrics process dialogue history and agent responses;
agent-level metrics extract per-agent state sequences.

Users may either implement custom parsers to populate
EvaluationInput from their logging infrastructure, or
submit raw execution logs directly.

Experimental studies
Dataset creation

We construct the AutoPumpkin evaluation dataset by col-
lecting execution traces from multi-agent systems solving
tasks from the GAIA (Mialon et al. 2023) benchmark valida-
tion split. Dataset construction follows a two-stage pipeline:
(1) trace acquisition via OpenTelemetry instrumentation,
and (2) manual ground-truth annotation.

Trace collection Execution traces are obtained from
multi-agent systems instantiated via MetaAgent, an agent
that generates task-specific MAS configurations de novo for
each question. The dataset comprises 328 traces partitioned
into two groups with distinct architectural constraints:

* Group 1 (n = 163): Systems with agent counts in range
3, 7]

* Group 2 (n = 165): Systems with agent counts in range
3,4]

Each trace is captured via OpenTelemetry instrumenta-
tion, yielding structured records of agent interactions, inter-
mediate computational steps, and final outputs.

Ground-Truth Annotation Human annotators manually
reviewed the output of each multi-agent system for every
trace in the collection. During this review process, annota-
tors verified whether the final answer generated by the sys-
tem was logically correct in relation to the reference answers
provided by the GAIA benchmark. For each trace, annota-
tors assigned a binary ground-truth label: 1 if the answer
was logically sound and matched the expected solution, and
0 otherwise. This manual verification process establishes a
reliable ground truth that reflects the actual correctness of
multi-agent system outputs.

Evaluation Framework The constructed dataset enables
quantitative evaluation of the proposed metrics. We hypothe-
size that effective metrics should exhibit a strong correlation
with the presence of correct answers in multi-agent system
traces. In other words, a well-calibrated metric should assign
higher scores to traces where the system produced correct
answers and lower scores to traces containing incorrect an-
swers. By measuring the correlation between each of the 11
proposed metrics and the binary ground-truth labels, we can
identify which metrics most reliably capture dimensions of
multi-agent system performance. Subsequently, these met-
ric scores are then aggregated using a separate LLM Judge,
which produces a final score.

Correlation Analysis of Judge-Metrics on Proposed
Dataset

We evaluate the predictive accuracy of the judge for each
metric by measuring the correlation between metric scores
and ground-truth trace correctness labels. For each metric,
we calculate the F1 score, which measures the metric’s abil-
ity to distinguish between correct and incorrect multi-agent
executions. Higher F1 scores indicate stronger correlation
with trace quality.

AutoPumpkin dataset: Large multi-agent systems
(group 1) Evaluation on traces with 3—7 agent configura-
tions (163 traces) is shown in Table 1.

AutoPumpkin dataset: Compact multi-agent systems
(group 2) Evaluation on traces with 3—4 agent configura-
tions (165 traces) is presented in Table 2.

Key findings System-level metrics consistently outper-
form agent-level metrics in predicting trace correctness. On
group 1 (large MAS), system metrics achieve F1 scores of
0.64-0.73, while agent-level metrics range from 0.45-0.52.
This trend persists in group 2 (small MAS), where system
metrics achieve F1 scores of 0.57-0.64 against agent-level
F1 scores of 0.51-0.60.

Importantly, metric performance remains comparable
across both datasets despite substantial differences in system

Maetric Level F1

SystemTaskCompletion system 0.65
MASROolesDistribution system 0.64

MASTaskTransfer system 0.64
MASComplexity system 0.73
Policy Alignment system —

TaskCompleteness agent 0.52
ToolParameterExtraction agent 0.47
ToolSelection agent 045
StateConsistency agent 0.46
ObservationAlignment agent 0.46

Table 1: Metric F1 scores on large MAS traces (AutoPump-
kin dataset gr. 1). System-level metrics demonstrate stronger
correlation with trace correctness (F1 0.64-0.73) compared
to agent-level metrics (F1 0.45-0.52).

Metric Level F1

SystemTaskCompletion system 0.64
MASROolesDistribution system 0.57

MASTaskTransfer system 0.58
MASComplexity system 0.59
PolicyAlignment system —

TaskCompleteness agent 0.60
ToolParameterExtraction agent 0.54
ToolSelection agent 0.54
StateConsistency agent 0.54
ObservationAlignment agent 0.51

Table 2: Metric F1 scores on compact MAS traces (AutoP-
umpkin dataset group 2). System-level metrics achieve F1
0.57-0.64, with agent-level metrics showing F1 0.51-0.60.

configuration (large vs. compact MAS). The relative ranking
and magnitude of metric scores are consistent across differ-
ent MAS architectures, indicating that our metrics are not
overfit to specific system designs. This generalization capa-
bility suggests that the proposed metrics can reliably eval-
uate multi-agent systems across diverse configurations and
complexity profiles.

Experiments with AutoPumpkin Judge

For the final evaluation of multi-agent systems, a AutoP-
umpkin judge was introduced. This judge takes both Agent-
level and System-level metrics as input and produces an
overall quality score. Initially, all computed metrics were
used as input; however, this approach did not guarantee op-
timal AutoPumpkin performance. To address this, a series
of experiments was conducted with different metric combi-
nations. These combinations were selected manually, since
brute-forcing all 2,036 possible combinations (2"-n-1 for
n = 11, assuming at least two metrics per combination)
would be computationally expensive. Table 3 presents the
results for the evaluated combinations. The study first fo-
cused on System-level metric combinations, followed by ex-
tending the best-performing System-level sets with Agent-
level metrics. The resulting optimal combination included

SystemTaskCompletion, MASComplexity, and ToolSe-
lection metrics.

Additional experiments investigated the impact of us-
ing different LLMs as evaluators, including the AutoPump-
kin judge. The models compared were Gemini 2.5 Flash,
DeepSeek-R1, and GPT-5. The results, summarized in Ta-
ble 4, show that DeepSeek-R1 performed the worst across
multiple metrics and produced errors more frequently than
the other models. While GPT-5 achieved the highest overall
quality score, Gemini 2.5 Flash offered the best balance be-
tween evaluation cost and performance. Therefore, all sub-
sequent experiments were conducted using Gemini 2.5 Flash
as the primary evaluation model.

During experimentation, a challenge also emerged with
the summarization prompt. For GAIA-based evaluations, the
final score needed to be converted to a binary outcome,
whereas the initial prompt was designed for a three-level
scale: poor, fair, and ideal. This introduced ambiguity, as the
fair rating did not consistently correspond to either satisfac-
tory or unsatisfactory system performance. To resolve this,
two variations of the three-level prompt were tested: (1) con-
sidering only poor as negative, and (2) treating both poor and
fair as negative. Furthermore, a binary prompt version lim-
ited to poor and ideal scores was implemented. The binary
prompt improved the overall judge score stability and align-
ment with human judgments.

Comparative Evaluation Against Existing Judges

Baseline selection A direct comparison with MAST is not
feasible due to issues with data quality. MAST reports 1242
human-annotated traces, but only 19 are manually labeled;
the remaining 1181 were annotated via LLM, introducing
significant noise. We therefore compare against TRAIL, a
benchmark with reliable ground-truth labels.

Cross-dataset evaluation We evaluate both judges on a
subset of the TRAIL dataset (111 traces). TRAIL judges
output continuous scores (0-5), which we convert to binary
via thresholds for fair comparison with binary AutoPumpkin
judge.

Threshold TRAIL Judge F1 AutoPumpkin Judge (ours) F1

<25 0.71 0.85
<3.0 0.579 0.75
< 4.0 0.58 0.43

Table 6: Evaluation on TRAIL dataset. Our AutoPumpkin
judge outperforms TRAIL baseline at decision boundaries
< 2.5 and < 3.0.

As shown in Table 6, AutoPumpkin achieves F1 0.85 at
threshold < 2.5, substantially exceeding the TRAIL base-
line (F1 0.71). This demonstrates that hierarchical metric
decomposition generalizes effectively to out-of-distribution
reasoning traces without threshold tuning.

In-distribution evaluation We evaluate both judges on
AutoPumpkin dataset using the threshold that maximizes

Table 3: Experimental results for different metric combinations used to evaluate multi-agent systems: Accuracy and F1 values

for each combination.

SYSTEM-LEVEL METRICS

Combination Accuracy Fl

SystemTaskCompletion, MASTaskTransfer 0.6524 0.6275
MASROolesDistribution, MASComplexity 0.6768 0.5546
MASComplexity, Policy Alignment 0.6707 0.6087
SystemTaskCompletion, MASComplexity 0.6829 0.6061
SystemTaskCompletion, MASRolesDistribution 0.6646 0.5985
SystemTaskCompletion, MASRolesDistribution, MASTaskTransfer 0.6646 0.5985
MASROolesDistribution, Policy Alignment 0.6402 0.5816
MASROolesDistribution, MASTaskTransfer 0.6524 0.5778
SystemTaskCompletion, MASRolesDistribution, MASTaskTransfer, MASComplexity 0.6463 0.5672
MASTaskTransfer, Policy Alignment 0.5811 0.5974
SystemTaskCompletion, Policy Alignment 0.6280 0.6303
MASTaskTransfer, MASComplexity 0.6646 0.5802

SYSTEM-LEVEL + AGENT-LEVEL METRICS

SystemTaskCompletion, MASComplexity, TaskCompleteness 0.6402 0.6093
SystemTaskCompletion, MASComplexity, ToolSelection 0.6829 0.6389
SystemTaskCompletion, MASComplexity, ToolParameterExtraction 0.6933 0.6377
SystemTaskCompletion, MASComplexity, StateConsistency 0.6585 0.6056
SystemTaskCompletion, MASComplexity, ObservationAlignment 0.6463 0.5915

Table 4: Comparison table of Gemini 2.5 Flash, DeepSeek R1, and GPT-5 on AutoPumpkin dataset using binary and non-binary

prompts.
Gemini 2.5 Flash DeepSeek R1 GPT-5
Dataset Non-binary prompt Binary prompt Non-binary prompt Binary prompt Non-binary prompt Binary prompt
poor, fair poor poor poor, fair poor poor poor, fair poor poor
AutoPumpkin (gr. 1) 0.72 0.629 0.657 0.68 0.636 0.601 0.115 0.833 0.742
AutoPumpkin (gr. 2) 0.639 0.636 0.643 0.583 0.653 0.658 0.461 0.783 0.689

Table 5: Cost-effectiveness comparison of Gemini 2.5 Flash and GPT-5 across different dataset sizes using a non-binary prompt.

F1/cost ratio measures evaluation quality per unit cost (higher is better).

Gemini 2.5 Flash GPT-5
Dataset gr. 1 Dataset gr. 2 Dataset gr. 1 Dataset gr. 2
(large MAS) (small MAS) (large MAS) (small MAS)
F1 score 0.629 0.636 0.742 0.783
Evaluation cost ($) 0.129 0.127 0.965 0.945
F1/cost ratio 4.88 4.99 0.77 0.83
TRAIL judge performance on its own benchmark (threshold Dataset TRAIL Judge F1 = AutoPumpkin Judge (ours) F1
is less than 2.5). This ensures fair cross-judge comparison. AutoPumpkin 0634 0.65

Table 7: In-distribution performance on our MAS traces at
threshold < 2.5. Comparable F1 scores despite different
evaluation paradigms.

As presented in Table 7, on the AutoPumpkin dataset, the
TRAIL judge achieves F1 0.634, while our AutoPumpkin
judge achieves F1 0.65. The comparable performance de-
spite different evaluation paradigms indicates that metric-
based decomposition is competitive with continuous scoring
approaches on in-distribution data.

Conclusions

We introduced AutoPumpkin, a hierarchical LLM-based
framework for evaluating multi-agent systems through ex-
plicit metric decomposition. AutoPumpkin combines ten
interpretable metrics—five system-level and five agent-
level—aggregated by the AutoPumpkin judge to produce bi-
nary quality assessments.

Comparative evaluation demonstrates that AutoPumpkin
outperforms existing approaches. On the out-of-distribution
TRAIL benchmark, AutoPumpkin achieves an F1 score
of 0.85, compared to the specialized TRAIL baseline (F1
score of 0.71), while maintaining competitive performance
on in-domain data (F1 score of 0.65). This strong cross-
dataset generalization indicates that hierarchical metric de-
composition captures transferable quality dimensions be-
yond domain-specific optimization.

The framework provides a foundation for interpretable,
automated MAS evaluation. Future work includes expand-
ing the pool of LLM-based evaluation metrics and construct-
ing a large-scale benchmark dataset for judge evaluation.

Acknowledgments

This work supported by the Ministry of Eco-
nomic Development of the Russian Federation (IGK
000000C313925P4C0002), agreement Nol39-15-2025-
010.

References

Cemri, M.; Pan, M. Z.; Yang, S.; Agrawal, L. A.; Chopra, B.;
Tiwari, R.; Keutzer, K.; Parameswaran, A.; Klein, D.; Ram-
chandran, K.; et al. 2025. Why do multi-agent 1lm systems
fail? arXiv preprint arXiv:2503.13657.

Chen, Z.; Du, W.; Zhang, W.; Liu, K.; Liu, J.; Zheng, M.;
Zhuo, J.; Zhang, S.; Lin, D.; Chen, K.; et al. 2023. T-eval:
Evaluating the tool utilization capability of large language
models step by step. arXiv preprint arXiv:2312.14033.

Deshpande, D.; Gangal, V.; Mehta, H.; Krishnan, J.; Kan-
nappan, A.; and Qian, R. 2025. TRAIL: Trace Rea-
soning and Agentic Issue Localization. arXiv preprint
arXiv:2505.08638.

Jelinek, F.; Mercer, R. L.; Bahl, L. R.; and Baker, J. K. 1977.
Perplexity—a measure of the difficulty of speech recogni-
tion tasks. The Journal of the Acoustical Society of America,
62(S1): S63-S63.

Kim, T.; Singh, J.; Mehri, S.; Acikgoz, E. C.; Mukherjee,
S.; Bozdag, N. B.; Shashidhar, S.; Tur, G.; and Hakkani-
Tiir, D. 2025. PIPA: A Unified Evaluation Protocol for
Diagnosing Interactive Planning Agents. arXiv preprint
arXiv:2505.01592.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74-81.

Liu, X.; Yu, H.; Zhang, H.; Xu, Y.; Lei, X.; Lai, H.; Gu,
Y.; Ding, H.; Men, K.; Yang, K.; et al. 2023. Agentbench:
Evaluating llms as agents. arXiv preprint arXiv:2308.03688.

Mialon, G.; Fourrier, C.; Wolf, T.; LeCun, Y.; and Scialom,
T. 2023. Gaia: a benchmark for general ai assistants. In The
Twelfth International Conference on Learning Representa-
tions.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311-318.

Xiao, R.; Ma, W.; Wang, K.; Wu, Y.; Zhao, J.; Wang,
H.; Huang, F.; and Li, Y. 2024. Flowbench: Revisiting
and benchmarking workflow-guided planning for llm-based
agents. arXiv preprint arXiv:2406.14884.

Xie, J.; Zhang, K.; Chen, J.; Zhu, T.; Lou, R.; Tian, Y;
Xiao, Y.; and Su, Y. 2024. Travelplanner: A benchmark for
real-world planning with language agents. arXiv preprint
arXiv:2402.01622.

Yao, S.; Shinn, N.; Razavi, P.; and Narasimhan, K. 2024.
T-bench: A Benchmark for Tool-Agent-User Interaction in
Real-World Domains. arXiv preprint arXiv:2406.12045.

