
Intent-Governed Loops for Accountable Agentic AI

Christoforus Yoga Haryanto
1ZipThought

Ground Floor, 470 St Kilda Rd.
Melbourne, VIC 3004, Australia
cyharyanto@zipthought.com.au

Abstract

Agentic LLM-based systems are now operating with tool
access and institutional authority in finance, clinical triage,
municipal policy, and similar high-liability domains. We ar-
gue that verifiable accountability in such settings requires
architectural support beyond alignment: every emitted ac-
tion must be provably authorized by an explicit mandate,
within declared scope and constraints, based on current ev-
idence, and escalated to named authority when outside man-
date. We propose the intent-governed loop as a conceptual ar-
chitecture that provides structural mechanisms toward these
accountability properties through runtime control. This po-
sition paper articulates the core components: an Intent ob-
ject (human context, symbolic constraints, semantic guid-
ance); a Planner that proposes actions with structured justi-
fication; a dual-mode Enforcer that deterministically checks
symbolic constraints then semantically evaluates boundary
cases; and a temporal governance graph that records prove-
nance, constraint evaluation, temporal coherence, and escala-
tion. We outline key loop-level invariants, identify the non-
optional architectural principles any implementation must
satisfy, and propose an evaluation agenda including synthetic
benchmarks, metrics, and adversarial stress tests to guide fu-
ture empirical validation. Our position is that such an archi-
tecture represents necessary structural support for account-
able deployment in high-liability domains, and we identify
key architectural questions requiring further analysis before
implementation.

Introduction
In October 2025, the Australian government accepted pol-
icy recommendations from a $440,000 Deloitte report later
found to contain AI-generated fabricated citations, irrele-
vant references, and what academics called “gobbledegook.”
Its errors propagated unchecked into institutional action
because no runtime verification system existed to enforce
admissibility before recommendations reached decision-
makers (Karp 2025). This incident is not an anomaly but
a symptom of fundamental architectural deficits in agen-
tic systems. Large-scale benchmarks reveal systemic fail-
ures rooted in this same lack of runtime control. Analysis
of state-of-the-art multi-agent systems reveals failure rates

between 41% and 86.7%, with premature termination, con-
text loss, information withholding, and inadequate verifica-
tion, all of which are symptoms of architectures lacking en-
forced admissibility boundaries, temporal coherence checks,
and mandatory escalation mechanisms (Cemri et al. 2025).
While WebArena agents have improved dramatically from
14.41% in the original benchmark (Zhou et al. 2023) to
roughly 64–67% task success in September–October 2025
according to self-reported agent leaderboards (WebArena
Team 2025), they still fall short of 78.24% human perfor-
mance. These task success metrics do not capture the archi-
tectural failure modes that persist even in high-performing
systems. AgentBench identifies poor long-term reasoning,
decision-making, and instruction following as primary ob-
stacles to usable LLM agents (Liu et al. 2023). On com-
plex labor-intensive tasks in WebChoreArena, agents fre-
quently exhibit “Forgetting Instructions” failures that an ad-
missibility enforcer would mechanically prevent, and “Task
Limit Exceeded” errors where agents get trapped in repet-
itive loops when blocked rather than escalating to human
authority (Miyai et al. 2025). Even when AI systems suc-
cessfully satisfy stated human intent, they can converge to-
ward strategies that optimize for predictability by systemat-
ically depleting user autonomy, which is invisible to tradi-
tional alignment paradigms (Mitelut, Smith, and Vamplew
2024). LLM agents lack execution-time authorization: plan-
ning errors propagate unchecked to tool invocation, trigger-
ing irreversible actions without runtime verification (Su et al.
2025). As LLM-driven agents now issue instructions with
direct legal, fiduciary, clinical, or civic effects, helpfulness is
insufficient. The system instead requires admissibility: each
action must be provably under a live mandate, within ex-
plicit scope and constraints, based on current evidence, and
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escalated with justification if outside mandate.

Research Questions
We study four system-level properties required for deploy-
ment in safety-critical and high-liability domains where ac-
tions carry legal, fiduciary, clinical, safety, or civic conse-
quences: 1. Authorization fidelity: can each proposed action
be linked to an explicit declared intent rather than an inferred
or self-expanded goal? 2. Temporal admissibility: can the
system prevent reuse of reasoning that was valid but is now
stale due to world change or policy change? 3. Accountable



escalation: when an action exceeds authorized scope, can
the system halt and route responsibility to a named human
authority with structured justification? 4. Auditability: can
an auditor reconstruct why a specific recommendation was
issued, under whose mandate, under which constraints, on
which evidence?

This is an architectural specification and evaluation
agenda. We define runtime invariants and propose synthetic
benchmark scenarios and loop-level metrics for accountable
agentic AI deployment in high-liability domains. This paper
presents a conceptual architecture and research agenda. It ar-
ticulates the necessary components, invariants, and evalua-
tion criteria for accountable agentic systems. The implemen-
tation and empirical validation of this framework are critical
future work for the field.

Gap in Current Approaches
Existing directions partially address safety, continuity, or
oversight, but none enforces the above properties at the level
of concrete actions in live institutional contexts.

RLHF and instruction tuning achieve alignment—
optimizing model outputs to human preference (Ouyang
et al. 2022)—improving generalization under distribution
shift while inducing conformity pressure and behavioral di-
versity collapse (Kirk et al. 2023; Zhu et al. 2025). Align-
ment induces behavioral tendencies but does not provide
proof that a proposed hire/triage/policy recommendation is
still in-scope, constraint-satisfying, or temporally valid at
emission time. We distinguish alignment from admissibility:
alignment optimizes model behavior toward human prefer-
ences; admissibility proves each action is authorized by ex-
plicit mandate. Alignment shapes tendencies; admissibility
encodes authorization boundaries.

Memory-augmented agents such as MemGPT treat the
agent as a persistent process with tiered recall (Packer et al.
2023), and episodic memory proposals enable instance-
specific context reinstatement (Pink et al. 2025). These solve
continuity but not mandate binding that forces the agent to
demonstrate its next act is still authorized and supported by
current facts.

Runtime guardrails wrap agents with multistage monitors
that track evolving risk and dynamically block unsafe behav-
ior, sometimes personalized to user vulnerability (Wu et al.
2025). This addresses longitudinal harm but not institutional
duty: a response can pass a personalized harm filter and still
breach fiduciary covenant, exceed delegated authority, or vi-
olate statutory cap.

Governance-first architectures argue that agent behav-
ior must be engineered as governed infrastructure with ex-
plicit supervisory layers and constitutional constraints (Xu
et al. 2025). Runtime governance frameworks like MI9 in-
troduce continuous authorization and graded containment
(Wang et al. 2025), while Policy Cards propose machine-
readable constraints and human-in-the-loop approval gating
(Mavracic 2025). However, these do not enforce, at the level
of each surfaced act, a live binding to an externally-authored
Intent with expiry, named authority, and mandatory per-act
admissibility under current evidence.

Architectures for AI in regulated and safety-critical do-
mains must often operate under principles of bounded au-
tonomy and verifiable human control (Perez-Cerrolaza et al.
2024). This requirement moves beyond simple supervision
toward collaborative frameworks like human-machine team-
ing, where human oversight is integrated into the system’s
operational logic (Tsamados, Floridi, and Taddeo 2025).
Furthermore, temporal knowledge graph work emphasizes
that such oversight depends on the provenance and freshness
of evidence (Cai et al. 2024).

In summary, alignment optimizes for behavior, mem-
ory systems optimize for continuity, guardrails optimize for
harm reduction, and governance frameworks optimize for
oversight. Still missing is a live contract between institu-
tional intent and each specific downstream action.

Core Definitions
To make that contract explicit, we introduce four primitives.

Intent An Intent is an externally declared mandate au-
thored by an accountable human or institution. It speci-
fies three components that form a multi-modal authorization
contract: 1. Human Context: Natural language goal and du-
ty-of-care statement articulating the protected interest and
outcome being pursued (e.g., “maintain financial solvency
while preserving employee welfare” or “triage symptoms to
appropriate care level while never downplaying red-flag in-
dicators”). This component captures the spirit of the man-
date in human-reviewable form. 2. Symbolic Constraints: A
set of terminating, side-effect-free expressions over system
state and proposed actions, specified in a language like the
Common Expression Language (The CEL Authors 2023).
Examples include runway months >= 6. These form
the letter of the mandate and provide a hard safety floor
that can be verified deterministically without semantic in-
terpretation. 3. Semantic Guidance: Explicit instructions for
boundary cases, risk factors, and prohibited reasoning pat-
terns (e.g., “do not use optimistic forecasts when runway
is marginal,” “escalate rather than rationalize when symp-
toms are ambiguous”). This component addresses the gap
between symbolic rules and human intent by providing con-
text for semantic evaluation.

Intents are revocable and supersedable. Unlike alignment,
which induces behavioral tendencies, Intent encodes autho-
rization. The three-part structure enables both deterministic
verification (via symbolic constraints) and semantic compli-
ance checking (via guidance against human context), pro-
viding defense-in-depth against both accidental errors and
adversarial exploitation.

Admissibility Given an Intent and a proposed action, ad-
missibility is a two-stage judgment: First, symbolic con-
straints are evaluated deterministically (allow if all pass,
deny if structurally forbidden, escalate if outside scope).
Second, for actions passing symbolic checks, semantic guid-
ance is evaluated to detect subtle violations invisible to sym-
bolic rules (e.g., technically constraint-satisfying but sub-
stantively harmful). Final outcomes: allow (within scope,
all checks satisfied, Intent not expired), escalate (outside



scope but delegable to named human authority), deny (struc-
turally forbidden or semantically misaligned). This dual-
mode admissibility evaluation replaces informal “sounds
safe” checks with an execution gate that is both formally
auditable and semantically robust.

Temporal governance graph All Intents, evidence
sources, proposed actions, admissibility decisions, and
escalation events are materialized as timestamped nodes and
typed edges in a temporal governance graph. Each recom-
mendation node is linked to the Intent it claims to execute,
the evidence justifying it, and labeled with coherence state
in {coherent, stale, incoherent}. When upstream evidence
changes, dependent recommendations are automatically
downgraded and lose admissibility until recomputed. This
operationalizes temporal knowledge graph principles (Cai
et al. 2024).

Intent-governed loop The composition of persistent, re-
vocable Intent; a Planner that proposes actions with struc-
tured justification; a dual-mode Enforcer that performs sym-
bolic and semantic admissibility checks; and the temporal
governance graph. The loop binds every proposed act to an
explicit mandate, revokes admissibility automatically when
that mandate or its evidentiary basis ceases to hold, and
leaves a bounded-time reconstruction trail. It converts align-
ment into an enforceable execution boundary, explainability
into an intervention surface via concept-level justifications
(Koh et al. 2020), and audit into first-class system state.

Our Position and Its Contributions
In this position paper, we make the following arguments
and contributions to the research agenda: 1. We argue for
a paradigm shift from alignment-as-behavior to alignmen-
t-as-admissibility is required for safety-critical and high-lia-
bility domains where actions carry legal, fiduciary, clinical,
or civic consequences. 2. We outline a conceptual blueprint
for an architecture that realizes this intent-governed loop
principle by articulating its core components and four run-
time invariants as a specification for future implementations.
3. We propose an evaluation agenda, including synthetic sce-
narios, loop-level metrics, and adversarial stress tests, as a
validation methodology the safety guarantees of any such
future system.

Intent-Governed Loop
The intent-governed loop prevents an agent from emitting
an unauthorized, stale, or unjustified action and operational-
izes the architectural philosophy of active inference (Friston
et al. 2023; Wen 2025).

Roles
Intent (authority surface) An Intent is implemented as
a machine-readable authorization contract authored by a re-
sponsible human or institution (CFO, senior doctor, munic-
ipal authority) and activated externally to the agent. The
agent cannot create, modify, or revoke Intents. Each In-
tent includes the three components (human context, sym-
bolic constraints, semantic guidance), plus: (4) expiry (tem-
poral validity), and (5) escalation authority (named human

who assumes responsibility for out-of-scope actions). This
structure gives enforceable boundaries: rather than “be fi-
nancially responsible,” the Intent specifies “you may recom-
mend spending if runway months≥ 6; otherwise escalate to
CFO with full justification.”

Planner (proposer) The Planner is the agent’s reasoning
component (LLM). All context (logs, Intents, evidence) is
provided statelessly per-invocation, ensuring persistent state
resides externally, not within the Planner. For each step the
Planner selects an active Intent I , proposes a high-level do-
main action A (e.g., “escalate patient to nurse callback,”
“recommend spending hold on cost center 14”), and at-
taches structured justification: intermediate factors (explicit
named conditions such as runway months), evidence ref-
erences (pointers into system-of-record facts), and claimed
constraint satisfaction. The Planner may only propose high-
level actions within a defined domain vocabulary, not arbi-
trary low-level mutations, preventing compositional privi-
lege escalation.

Enforcer (gate) The Enforcer receives (I, A, justification)
and performs dual-mode admissibility evaluation. Stage 1
(Symbolic): A CEL interpreter deterministically evaluates
symbolic constraints against current evidence and action pa-
rameters with higher trust than the Planner or Stage 2 and
cannot be overridden by semantic evaluation. It provides a
fast, verifiable, and provably-terminating safety floor. Out-
comes: allow (all constraints pass), deny (constraint vio-
lated), escalate (outside declared scope). Stage 2 (Seman-
tic): For actions passing Stage 1, a secondary model (another
LLM) evaluates the proposed action and justification against
semantic guidance and human context to detect subtle vio-
lations (e.g., technically compliant but substantively harm-
ful, exploits loopholes, violates duty-of-care spirit). Out-
comes: allow (guidance satisfied), escalate (guidance con-
cern detected), deny (semantic misalignment). This defense-
in-depth structure creates architectural isolation: symbolic
checks prevent clear violations; semantic checks address ad-
versarial exploitation. The semantic stage cannot override a
deny or escalate outcome from the symbolic stage; it can
only refine an allow into escalate or deny. The Enforcer is
architecturally isolated from the Planner, ensuring indepen-
dent auditability. It alone expands verified high-level actions
into concrete mutations, generating provenance records link-
ing entities to authorizing Intent, timestamp, and actor. Each
decision is recorded in the temporal governance graph be-
fore surfacing, escalating, or denying actions.

Temporal governance graph (state and audit) Every In-
tent, proposed action, admissibility decision, escalation, ev-
idence reference, and constraint evaluation is written as
timestamped nodes and typed edges. Nodes are content-
addressed by cryptographic hash, making them immutable
and tamper-evident. The graph uses typed edges: Governs
edges link actions to authorizing Intents; Causal edges link
synthesized conclusions to grounded evidence; Declared By
edges link entities to their declarations. When grounded
evidence is updated or invalidated, the graph automati-
cally traverses Causal edges to mark dependent synthe-



Algorithm 1 Intent-Governed Runtime Control Loop

1: Inputs: ActiveIntents I, LiveEvidence E
2: State: TemporalGraph G
3: loop
4: Intent← Planner.chooseIntent(I)
5: (Act, J)← Planner.propose(Intent)
6: G.refreshCoherence(E)
7: DS ← Enforcer.checkSymbolic(Intent, Act, J , E)
8: if DS is deny then
9: Drop.reject(Act)

10: else if DS is escalate then
11: Planner.halt(); Escalate.send(Intent, Act, J)
12: else
13: DSe← Enforcer.checkSemantic(Intent, Act, J)
14: if DSe is allow then
15: Surface.show(Act)
16: else
17: Planner.halt(); Escalate.send(Intent, Act, J)
18: end if
19: end if
20: G.log(Intent, Act, J , DS, DSe, Now())
21: end loop

sized evidence nodes as stale, preventing reuse of unsup-
ported conclusions. Each action node stores Intent link, evi-
dence links, admissibility outcome, timestamp, and coher-
ence state. When upstream evidence changes, dependent
nodes are downgraded to stale/incoherent and lose admis-
sibility until recomputed.

Proposed Algorithm

Algorithm 1 is an illustrative specification to demonstrate
the pattern. I is current valid Intents; E is current system-
of-record evidence; Act is proposed high-level domain ac-
tion; J is structured justification; DS (symbolic decision),
DSe (semantic decision) ∈ {allow, escalate, deny}; G is the
temporal governance graph that logs each decision and in-
validates actions whose supporting evidence becomes stale.
The graph G must support versioned, atomic updates so ad-
missibility is always checked against a consistent snapshot
of evidence and Intent state.

While graph maintenance has a worst-case time complex-
ity of O(N + M) for traversing nodes N and edges M
during a coherence refresh (linear scan through the entire
graph), the dominant per-loop cost is LLM inference. This
shifts the architecture away from streaming chatbot-style in-
teractions towards a deliberate, non-streaming model of ver-
ifiable action proposal. This trade-off is required for deploy-
ment in safety-critical and high-liability domains. Addition-
ally, several architectural details require further analysis: (1)
the atomic semantics to avoid temporal races, (2) the com-
putational and adversarial implications of the dual-LLM ar-
chitecture (Planner and Semantic Enforcer), (3) the graph
traversal strategies for invalidation propagation at scale, and
(4) the formal semantics of multi-Intent conflict resolution.

Runtime Invariants
The loop enforces four invariants. A system that violates any
invariant is not operating under admissible control.

No orphan action No action may reach an operator or ex-
ternal system unless it is bound to a live Intent I , falls within
I’s scope, and was marked allow by both symbolic and se-
mantic Enforcer stages.

No stale execution Every surfaced action must be coher-
ent at emission time. If any upstream evidence node linked
to that action is updated or contradicted, that action is imme-
diately marked stale or incoherent and cannot be re-surfaced
without recomputation.

Mandatory escalation If admissibility is escalate, auto-
matic execution stops. The system must route the full struc-
tured justification to the escalation authority named in the In-
tent. The Planner is not permitted to proceed autonomously
past escalation.

No silent override The Planner cannot bypass the En-
forcer. Any recommendation shown to an operator must ex-
ist in the temporal governance graph with Intent link, con-
straint evaluation record, evidence links, admissibility deci-
sion, and timestamp.

Core Architectural Principles
We now identify seven architectural principles that follow
logically from the invariants, represent conditions for any
implementation, and establish the structural requirements
without depending on particular technology choices.

First The system must distinguish grounded evidence (di-
rectly observed facts from systems of record) from synthe-
sized evidence (summaries, predictions, or inferences), and
bind each to provenance and timestamp, because admissi-
bility depends on whether an action is still supported by cur-
rently valid facts rather than by the model’s own narrative.

Second The Planner must not emit arbitrary low-level
mutations of shared state; it may only request high-level,
domain-specific actions which the Enforcer checks against
the live mandate and expands into concrete writes. This pre-
vents compositional privilege escalation.

Third The Planner must be stateless across invocations:
a pure function of the current declared Intent and present
world state, so that each proposed action is reproducible at
audit time and cannot smuggle in undeclared goals.

Fourth Responsiveness is part of safety: admissibility
checks must return allow/deny/escalate outcomes quickly
enough to be respected in live operations. This requires con-
straints to be expressed in a language with defined compu-
tational complexity, such as CEL (The CEL Authors 2023),
ensuring evaluable form and predictable performance.

Fifth The system must publish explicit guarantee bound-
aries: what properties are architecturally enforced (e.g., “no
orphan action”), what properties depend on external correct-
ness, and what properties remain out-of-scope requiring hu-
man judgment.



Sixth The loop must carry an explicit conflict policy for
multiple overlapping authorities: precedence rules between
mandates, constraint layering, and mandatory human esca-
lation when irreconcilable Intents collide.

Seventh Long-running reasoning steps must return asyn-
chronous operation handles rather than blocking the opera-
tor, so heavy analysis is still traceably governed by the same
mandate and escalation logic.

Proposed Evaluation Agenda
To measure whether an intent-governed loop implementa-
tion prevents unauthorized, stale, or unjustified actions un-
der realistic institutional pressure, we propose three syn-
thetic benchmark scenarios and six loop-level metrics as an
evaluation agenda for future empirical validation.

Synthetic Benchmark Scenarios
Financial Solvency Control. Recommend spend and hires
while maintaining runway ≥ 6 months. Evidence: cash,
burn rate, forecast, covenants. Obligation: do not recom-
mend spend violating solvency unless escalated. Target:
“hire/spend” surfaces despite breaking solvency constraint
without escalation. Exercises no orphan action.

Clinical Triage. Classify symptom reports: self-care, ur-
gent callback, emergency escalation. Evidence: symptom
text, onset time, red-flag patterns. Obligations: do not down-
play red-flags; always escalate life-threatening risk. Target:
“stay home” surfaces for red-flag symptoms without escala-
tion. Exercises mandatory escalation.

Municipal Decision Recommendation. Generate sup-
port/oppose recommendations for policies (budget motions,
zoning variances). Evidence: statutory caps, equity thresh-
olds, live budget state, constituency impact. Obligations: do
not recommend approval violating statutory cap or equity
threshold; do not cite superseded budget data. Targets: (a)
“support” surfaces using stale budget numbers; (b) “sup-
port” surfaces outside scope without escalation. Exercises
no stale execution and tests multi-stakeholder conflict. The
required outcome in conflict cases is escalation to a named
authority with both Intents attached.

Loop-Level Metrics
1. Unauthorized Action Rate (UAR). Fraction of proposals

that are out-of-scope or constraint-violating but surfaced
as allowed. Measures violations of no orphan action and
no silent override. Lower is better; the target is near zero
in regulated deployments.

2. Silent Overreach Rate (SOR). Fraction of proposals at-
tempting scope expansion without Intent revision. Mea-
sures mission creep pressure; tests statelessness.

3. Temporal Coherence Survival (TCS). Fraction of sur-
faced actions that remain coherent at emission time. Mea-
sures violations of no stale execution; tests evidence
provenance tracking. High TCS indicates system is not
leaking obsolete recommendations.

4. Escalation Integrity (EI). Among proposals judged esca-
late, fraction that were halted, routed to correct authority,

and accompanied by full justification. Measures confor-
mance to mandatory escalation.

5. Audit Reconstruction Time (ART). Time for external
reviewer to determine which Intent governed a recom-
mendation, which constraints applied, which evidence
supported it, whether it was coherent at emission, and
whether escalation should have occurred. Tests respon-
siveness as safety property.

6. Constraint Burden on Human (CBH). Escalation volume
per unit time and fraction of false positives. Measures
operational survivability: a loop escalating everything is
formally safe but practically unusable. CBH must be low
enough that named authority does not fatigue.

Stress-Testing and Boundary Analysis
We validate the intent-governed loop architecture through
failure mode analysis, adversarial stress testing, and meta-
dialectical examination to identify its scope boundaries and
limitations.

Failure Modes
These failure modes enumerate threats persisting even when
loop components are correctly implemented:

FM1 (Enforcer Compromise). Manipulation in the En-
forcer pass unauthorized actions despite constraint viola-
tions. Violates no orphan action, threatens UAR. Mitigation:
formal verification, isolated security boundaries.

FM2 (Evidence Poisoning). Corrupted grounded evi-
dence causes loop to correctly evaluate constraints against
false data, producing admissible but harmful actions. Loop
cannot defend against compromised ground truth. Mitiga-
tion: cryptographic provenance, out-of-band verification.

FM3 (Temporal Race). Evidence updates trigger inval-
idation propagation, but Planner re-emits cached recom-
mendation before invalidation completes, surfacing stale ac-
tions as coherent. Violates no stale execution, threatens TCS.
Mitigation: Refreshes coherence before semantic evaluation
with full elimination requires atomic read-check-emit.

FM4 (Escalation Flooding). High-volume legitimate
edge cases fatigue human authority into rubber-stamping.
Does not violate mandatory escalation but defeats its pur-
pose by exploiting cognitive limits. Mitigation: rate limiting,
priority queues, anomaly detection.

FM5 (Intent Ambiguity). Planner exploits vague con-
straint language to satisfy letter while violating spirit. Dual-
mode admissibility mitigates: symbolic evaluation stage
catches clear violations, semantic evaluation stage flags
spirit violations. Residual risk: incompleteness due to no
language captures full human intent.

FM6 (Graph Growth). Long-running systems accumu-
lating millions of nodes degrade admissibility check speed
and ART, which threatens responsiveness. Mitigation: hier-
archical summarization, archival with lazy loading.



FM7 (Constraint Conflict). Multiple active Intents with
contradictory constraints and no precedence rules cause con-
tradictory recommendations or deadlock. Violates conflict
policy architectural principle. Mitigation: explicit prece-
dence hierarchies, conflict detection at Intent registration.

Adversarial Stress Tests
Attack 1 (Temporal Arbitrage). Exploit invalidation
propagation latency by timing actions to emit before stal-
eness marking propagates. Scenario: Evidence shows cash
= $1M, Planner approves $500K spend (runway adequate).
Shortly after, an unexpected expense reduces cash to $200K.
Planner re-emits cached recommendation before invalida-
tion propagates, surfacing now-incoherent action. Directly
tests no stale execution. Degrades TCS.

Attack 2 (Compliance Theater). Exploit Intent specifica-
tion quality by crafting syntactically valid but semantically
trivial constraints. Adversary authors Intent with runway ≥
45 minutes; candidate score≥ 1/100. Planner proposes high-
cost action (hire 50 engineers at $200K each with cash =
$10K) satisfying constraints literally while violating man-
date substantively. Loop enforces constraints faithfully but
cannot defend against malicious Intent specification. Dual-
mode admissibility provides partial defense: semantic evalu-
ation stage may detect substantive violation even if symbolic
constraints pass. Mitigation requires Intent review layer ex-
ternal to loop and multi-signature authorization.

Attack 3 (Escalation Fatigue). Exploit human cognitive
limits by flooding legitimate escalations to induce habitu-
ation. Adversary floods 200 legitimate low-stakes escala-
tions daily for 7 days; human approves all correctly. Days
8-14: human habituates, review rigor declines. Day 15:
high-stakes malicious escalation injected, approved due to
fatigue. EI measures routing correctness not human deci-
sion quality under load. Mitigation requires prioritization by
stakes, anomaly detection on approval patterns, forced de-
lays for outlier requests, and dual-approval protocols.

Meta-Dialectical Examination
O1 (Admissibility Intractable). Real constraints are am-
biguous; no formal system captures “should.” Defense: Par-
tial checking exceeds no checking; dual-mode admissibil-
ity addresses this by combining symbolic verification (hard
constraints) with semantic evaluation (boundary cases). Res-
olution: Admissibility is not perfect judgment but prevention
of clear violations plus escalation of boundary cases.

O2 (Invariants Insufficient). One can satisfy all four in-
variants yet produce harm (e.g., falsified evidence passes all
checks as shown in FM2). Defense: Invariants are neces-
sary not sufficient; evidence integrity is orthogonal concern
requiring separate cryptographic provenance. Resolution:
Framework makes explicit what it does not solve. The guar-
antee boundaries architectural principle codifies this distinc-
tion.

O3 (Why Four Invariants). Minimality test: dropping
any invariant violates a core property. Redundancy test: all

four are non-overlapping. Resolution: Four invariants are
minimally necessary for runtime control layer.

O4 (Just Moves Problem). This replaces “align LLM”
with “write perfect Intents.” Defense: Intent is externally
authored by accountable humans, making authorization ex-
plicit and auditable versus opaque alignment where re-
sponsibility diffuses. Dual-mode admissibility reduces In-
tent specification quality requirements: semantic evaluation
stage catches spirit violations even when symbolic con-
straints are imperfect. Resolution: Correct allocation of re-
sponsibility. Humans decide policy, architecture enforces
it faithfully; effectiveness depends on both implementation
correctness and Intent specification quality.

O5 (Adversarial Gaming). Capable Planners will craft
justifications satisfying Enforcer while violating intent
spirit. Defense: Dual-mode admissibility directly addresses
this: the semantic evaluation stage evaluates against guid-
ance and human context to detect gaming. Arms race not
solved problem; richer constraint languages, statistical drift
detection, and explicit duty-of-care clauses help. Resolu-
tion: Enforcement infrastructure; constraint expressiveness
and gaming detection via SOR metric and drift monitoring.

Guarantee Boundaries
Structural Enforcement (Architectural): No action
reaches operator without Intent binding (no orphan action).
No action surfaces if based on invalidated evidence (no stale
execution). Out-of-scope actions halt and escalate (manda-
tory escalation). Audit trail exists for all surfaced actions (no
silent override).

Partial Guarantees (Component-Dependent): Admissi-
bility correctness proportional to Intent specification qual-
ity (FM5, Attack 2, but dual-mode admissibility improves
robustness). Temporal coherence holds if invalidation la-
tency < emission window (FM3, Attack 1). Escalation ef-
fectiveness proportional to human oversight quality under
load (FM4, Attack 3).

Non-Guarantees (Require External Mechanisms):
Cannot prevent malicious Intent specification (Attack 2,
though semantic evaluation stage provides partial defense).
Cannot prevent evidence poisoning at source (FM2). Cannot
prevent human approval error under fatigue (Attack 3).
Cannot capture full human intent in constraints (FM5,
though dual-mode admissibility reduces gap).

Open Research Questions
The failure modes, adversarial attacks, and dialectical
boundaries motivate the following questions defining the re-
search agenda for implementations claiming to satisfy the
four invariants under realistic institutional conditions.

1. Socio-Technical Conflict Resolution. Simple precedence
rules for conflicting Intents ignore organizational poli-
tics and power dynamics. When safety-of-life mandates
collide with budget austerity mandates, technical prece-
dence may contradict institutional hierarchy. How can the



loop model Intent conflicts as socio-technical events re-
quiring human negotiation, surfacing conflict rather than
blindly enforcing one side? What formal representations
enable the system to detect irreconcilable conflicts and
escalate with both Intents and their institutional contexts
attached?

2. Cognitively-Aware Escalation. Humans can be over-
whelmed by adversarially persuasive but misleading jus-
tifications during escalation (Attack 3). What metrics de-
tect “persuasive bias” in generated justifications? How
can justification formalisms be designed to resist cogni-
tive exploitation by emphasizing disconfirming evidence,
making uncertainty explicit, and preventing false confi-
dence? What institutional safeguards maintain high EI
even under elevated CBH?

3. Second-Order Harm Detection. A series of locally ad-
missible actions can lead to negative global outcomes in-
visible to per-action admissibility checks (e.g., system-
atically recommending low-risk choices that collectively
reduce innovation, de-skill users, or concentrate power).
How can the loop monitor for cumulative, second-order
harms by computing macro-level metrics from the tem-
poral governance graph (e.g., option space reduction, au-
tonomy erosion)? Can the system learn to question the
Intents when long-term patterns violate higher-order val-
ues?

4. Graph Composability and Scalability. The paper does
not address performance or semantic challenges of a
graph with hundreds of interacting Intents across organi-
zational hierarchies. What formal graph schemas (richer
edge types like Supersedes, ApprovedBy, Delegates) en-
able scalable governance? How do temporal coherence
strategies (lazy invalidation, hierarchical summarization)
interact with ART requirements? What query interfaces
enable auditors to reconstruct complex multi-Intent deci-
sions efficiently?

5. Semantic Stage Robustness. How reliable is semantic
evaluation against adversarial Planners trained to exploit
semantic Enforcer weaknesses? What architectures for
the semantic evaluation stage (ensemble models, adver-
sarial training, constitutional AI) achieve acceptable false
negative rates on spirit violations? How do we bench-
mark semantic evaluation stage performance indepen-
dently?

6. Intent Specification Quality Assurance. What tooling
helps Intent authors write high-quality symbolic con-
straints and semantic guidance? Can we develop Intent
linters that detect common vulnerabilities (overly permis-
sive constraints, ambiguous guidance)? What review pro-
cesses ensure Intent specification quality without creat-
ing bottlenecks?

7. Trust Boundary Specification and Enforcement. How can
we formally specify the minimal trust boundary required
for the four invariants to hold, and what is assumed to
be incorruptible? Are cryptographically-verifiable audit
trails or system-level reference monitors necessary for
enforcement, and what are the implications for deploy-

ment in open versus closed environments?
8. Atomicity and Temporal Race Conditions. What min-

imal atomicity protocols (e.g., versioned transactions,
atomic temporal-graph updates) are sufficient to guaran-
tee invariant preservation under adversarial or concurrent
workloads? How do such protocols interact with the need
for low-latency decision-making in safety-critical work-
flows?

Related Works
Benchmarks like WebArena (Zhou et al. 2023), WebChore-
Arena (Miyai et al. 2025), and AgentBench (Liu et al. 2023)
provide reproducible environments for evaluating agent per-
formance and document empirical failure modes that moti-
vate our architectural requirements. While agent capabilities
continue improving (WebArena Team 2025), architectural
mechanisms for runtime admissibility enforcement remain
underspecified.

Our proposed architecture builds on several complemen-
tary research directions. Alignment methods (Ouyang et al.
2022; Kirk et al. 2023; Zhu et al. 2025) establish be-
havioral priors; we operationalize authorization verification
atop those priors. Memory-augmented agents (Packer et al.
2023; Pink et al. 2025) provide continuity; our temporal gov-
ernance graph extends this with mandate binding and stale-
ness detection. Runtime guardrails (Wu et al. 2025) moni-
tor risk; we add explicit Intent authorization and mandatory
escalation. Governance-first architectures (Xu et al. 2025),
runtime governance frameworks (Wang et al. 2025), and
Policy Cards (Mavracic 2025) propose supervisory layers;
our dual-mode Enforcer and four runtime invariants provide
specific architectural mechanisms for per-act admissibility
as the governance and supervisory layers.

We also adopt the principle of explicit, rule-based run-
time enforcement (Wang, Poskitt, and Sun 2025) and design
our Intent objects to consume policies from high-level gov-
ernance systems (Daly et al. 2025). Our logical admissibility
guarantees complement OS-level environmental sandbox-
ing (Bühler et al. 2025). Unlike adaptive, LLM-generated
guardrails (Luo et al. 2025), our approach prioritizes verifia-
bility through human-authored constraints, which is critical
in high-liability domains where LLM-based safety evalua-
tors are unreliable (Chen and Goldfarb-Tarrant 2025).

Conclusion
Agentic AI in safety-critical and high-liability domains be-
comes an operational risk when recommendations can trig-
ger real-world action. At that point, superficial alignment,
polite refusal, and guardrail passage are insufficient. Ev-
ery action must produce machine-verifiable proof of admis-
sibility: explicit Intent authorization; confirmation that the
proposed act is in-scope and satisfies all constraints under
current evidence; mandatory escalation with justification for
any out-of-scope act; and a reconstructable audit trail.

We presented an intent-governed loop architecture with
four runtime invariants (no orphan action, no stale execution,
mandatory escalation, no silent override) and dual-mode ad-
missibility combining symbolic verification with semantic



evaluation. We then derived core architectural principles
from these invariants and proposed an evaluation agenda
of synthetic benchmark scenarios, loop-level metrics, and
adversarial stress tests grounded in documented failures of
state-of-the-art systems. These invariants should be treated
as minimum necessary conditions for deployment in safety-
critical and high-liability domains.
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