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Abstract

Video Question Answering (VideoQA) demands models that
jointly reason over spatial, temporal, and linguistic cues.
However, the task’s inherent complexity often requires multi-
step reasoning that current large multimodal models (LMM:s)
perform implicitly, leaving their internal decision process
opaque. In contrast, large reasoning models (LRMs) explic-
itly generate intermediate logical steps that enhance inter-
pretability and can improve multi-hop reasoning accuracy.
Yet, these models are not designed for native video under-
standing, as they typically rely on static frame sampling. We
propose UpstreamQA, a modular framework that disentan-
gles and evaluates core video reasoning components through
explicit upstream reasoning modules. Specifically, we em-
ploy multimodal LRMs to perform object identification and
scene context generation before passing enriched reasoning
traces to downstream LMMs for VideoQA. We evaluate Up-
streamQA on the OpenEQA and NExTQA datasets using two
LRMs (04-mini, Gemini 2.5 Pro) and two LMMs (GPT-4o,
Gemini 2.5 Flash). Our results demonstrate that introducing
explicit reasoning can significantly boost performance and in-
terpretability of downstream VideoQA, but can also lead to
performance degradation when baseline performance is suffi-
ciently high. Overall, UpstreamQA offers a principled frame-
work for combining explicit reasoning and multimodal under-
standing, advancing both performance and diagnostic trans-
parency in VideoQA in several scenarios.

1 Introduction

Video Question Answering (VideoQA) is a challenging task
that requires large multimodal models (LMMs) to have a
comprehensive understanding of video inputs and be capa-
ble of answering various questions about them (Zhong et al.
2022). These models must be capable of inferring semantic,
spatial, temporal, and causal relationships between different
entities in the video.

Despite significant advancements, LMMs continue to
face substantial limitations regarding weak grounding of
question-specific frames, high sensitivity to adversarial per-
turbations, and disproportionate over-reliance on certain
modalities when performing VideoQA tasks (Xiao et al.
2025; Winterbottom et al. 2020). Traditionally, VideoQA
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has relied on end-to-end architectures, however their black-
boxed nature hinders the transparency of their internal rea-
soning processes (Min et al. 2025).

Recently, a new type of model has been introduced: Large
Reasoning Models (LRMs). These models rely on System 2
thinking—Ilogical, deliberate decision-making—as opposed
to the quick, intuitive reasoning of System 1 thinking (Li
et al. 2025). LRMs can be leveraged in VideoQA to improve
accuracy, as they are capable of facilitating intermediate rea-
soning of questions and incorporating a deeper understand-
ing of spatial, temporal, and causal relationships of video
content.

We perform an exploratory study of how explicit rea-
soning influences VideoQA performance. We introduce a
framework for evaluating various upstream tasks processed
by LRMs can influence the downstream VideoQA perfor-
mance. Concretely, our contributions are as follows:

1. We introduce UpstreamQA, a novel framework for
evaluating explicit reasoning as upstream modules for
VideoQA, providing more insight on the intermediate
processes in such a complex task.

2. We perform experiments across two upstream tasks—
object identification and scene context generation—as
well as two LRMs and two LMMs, reporting results of
their effect on VideoQA performance.

3. We find that although explicit reasoning improves inter-
pretability of logical decision making processes, perfor-
mance differences are model- and dataset-dependent.

2 Related Works

In recent years, Large Multimodal Models (LMMs) that ef-
fectively combine visual and linguistic data have driven sig-
nificant improvements on VideoQA benchmarks (Xue et al.
2024). SOTA approaches on these benchmarks improve fac-
tual grounding by incorporating strategies such as Retrieval-
Augmented Generation (RAG) (Jeong et al. 2025; Ren et al.
2025).

Recently, many approaches have worked to modularize
frameworks, including TraveLER (Shang et al. 2024) and
LLoVi (Zhang et al. 2024), in an attempt to decompose
the complex task of VideoQA into several smaller subtasks.
These approaches integrate auxiliary large language mod-
els (LLMs) to perform tasks such as refining the question



or captioning frames (Dong et al. 2025; Zhang et al. 2024;
Min et al. 2025). ENTER is another modular framework
that demonstrates better interpretability in the reasoning pro-
cess through generated event graphs (Ayyubi et al. 2025).
MoReVQA introduces a multi-stage system which produces
intermediate outputs applied to specific tasks at each stage
(Min et al. 2025).

Our framework takes a similar modularized approach to
evaluate explicit reasoning on particular upstream tasks. We
simplify these multi-stage frameworks into a linear, two-
stage process in order to better isolate the effect of the rea-
soning module on downstream VideoQA performance. Our
approach is also designed to be task-agnostic, where the
drop-in reasoning module can be evaluated over any up-
stream reasoning task.

2.1 Explicit Reasoning in LLMs

LRMs are a class of LLMs designed to perform multi-step
reasoning rather than directly producing answers (Li et al.
2025). These models output intermediate logical reasoning
steps to make their thinking process more transparent. Cur-
rent state-of-the-art (SOTA) LRMs include OpenAI’s GPT-
5, Google DeepMind’s Gemini 2.5 Pro, and Anthropic’s
Claude Opus 4.1 (OpenAl 2025a; Google DeepMind 2025;
Anthropic 2025).

Recent works demonstrate that enabling explicit reason-
ing via chain-of-thought, tree-of-thought, or reinforcement
learning-based reasoning, substantially boosts task perfor-
mance and interpretability (Xu et al. 2025). This is largely
because introducing explicit reasoning facilitates stronger
factual grounding and reduces hallucinations. ReasVQA
uses a pipeline that generates explicit reasoning, refines the
reasoning, then learns from it (Liang et al. 2025). They find
that noisy or incorrect reasoning hinders performance. Sim-
ilarly, Zang et al. (2023) focus on causal reasoning, remov-
ing confounders (irrelevant information) by modeling causal
graphs. UpstreamQA presents a novel evaluation framework
to evaluate explicit reasoning for VideoQA, which, to the
best of our knowledge, has not been done.

3 Methods

Our method follows a two-stage pipeline. First, we em-
ploy reasoning modules to perform distinct upstream video
analysis tasks. Specifically, we input 50 uniformly-sampled
frames along with an upstream task objective into a mul-
timodal LRM to generate a structured reasoning output.
Second, the output is provided to an LMM, that performs
the equivalent base VideoQA task but with additional up-
stream reasoning. We then evaluate the effect of upstream
reasoning modules on VideoQA performance using metrics
based on accuracy. In this work, we focus specifically on
object identification and scene context generation as the up-
stream tasks, although our framework itself is designed to
be task-agnostic. The object identification upstream task fo-
cuses on generating a structured inventory of the objects,
their attributes (e.g., color, material, etc.), and spatial rela-
tionships with one another in a given video (Krishna et al.
2016). Additionally, the scene context generation upstream

task is aimed at recognizing the overall scene category (e.g.,
kitchen) and generating a comprehensive description of the
environment (e.g., environmental details, ambiance, etc.)
(Zhou et al. 2014; Venugopalan et al. 2015).

The outputs of these subtasks are then passed to an LMM
along with the original video-question pair, producing our
final VideoQA output. Figure 1 illustrates the entire pipeline.
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Figure 1: Overview of our OpenEQA and NExTQA
framework. An explicit reasoning model is used to per-
form a specific upstream task, and the output is passed to the
LMM along with the original video and question/answers.

3.1 Datasets

Our experiments are conducted across two datasets: NEx-
TQA and OpenEQA (Xiao et al. 2021; Majumdar et al.
2024). Both datasets are preprocessed by uniformly sam-
pling 50 frames from each video in the dataset, paired along-
side the audio data for the video (OpenAl 2025c). The LMM
receives a combined input of the sampled frames, audio data,
the output from the processed upstream task, and a natural
language question prompt. We utilize zero-shot prompting
to evaluate the models. All prompts are provided in Section
B of the Appendix.

NExXxTQA NExTQA is a VideoQA dataset containing
5,440 videos and around 52,000 manually annotated
question-answer pairs in the form of either multiple-choice
QA or open-ended QA. Videos in the dataset show object in-
teractions in daily life, taken from the VidOR dataset (Shang
et al. 2019; Thomee et al. 2016).

In this work, we experiment on only the multiple-choice
subset, and evaluate performance using accuracy (percent-
age of correct answers selected). Due to computational con-
straints, we limited the question set to 2,500 questions, each
of which correspond to one of the 298 videos containing the
fewest frames in the NEXTQA dataset (Xiao et al. 2021). All
of the questions from the filtered dataset are between 10-20
seconds long.

OpenEQA  OpenEQA is a modern dataset for the task of
Embodied Question Answering (EQA), where an agent must



navigate a 3D environment and answer natural language
questions about it (Majumdar et al. 2024; Das et al. 2017).

In this work, we specifically use the Episodic Memory
EQA (EM-EQA) variant of OpenEQA, which uses episode
histories collected from two real-world sources: HM3D and
ScanNet (Ramakrishnan et al. 2021; Dai et al. 2017). EM-
EQA presents pre-recorded first-person walkthroughs of
various environments, which more directly align with a stan-
dard VideoQA task, as they consist of continuous sequences
that can be processed as standard video input.

In OpenEQA, videos of the given environments are cap-
tured in RGB-D frames, allowing for spatial memory. In-
cluded are 1,636 human-generated questions regarding 187
scenes based on real-world environments.

We utilize the same evaluation method and correctness
metric (LLM-Match) introduced by OpenEQA. To evalu-
ate outputs, an independent LLM (GPT-4) is used to score
outputted answers compared to the ground truth (OpenAl
2024a). Scores are aggregated using the following formula:

1 noi—1
(2
C:NZ T x 100% (1)
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Given a question ();, a human-annotated answer A}, and
model output A;, the LLM is prompted to provide a score
o; € {1,...,5}. On this scale, a score of 1 denotes an incor-
rect response, while a score of 5 denotes a correct response.
Any intermediate value represents similarity to the upper or
lower bound of the scale. This process continues for N ques-
tions, where N represents the total number of questions.

3.2 Experiments

Our experiments are conducted across two different LRMs,
two LMMs, and two distinct VideoQA datasets. All mod-
els are used off-the-shelf with no additional training or fine-
tuning.

Baselines We evaluated baselines by using standalone
LMMs. The models used were GPT-40 and Gemini 2.5
Flash (OpenAl 2024b; Google DeepMind 2025). Both mod-
els take text, images, and audio inputs, while Gemini 2.5
Flash additionally supports video input natively. The base-
lines are evaluated on “vanilla” VideoQA, meaning no up-
stream task outputs are provided. All prompts are provided
in section B of the Appendix.

Experiments We evaluated the addition of explicit reason-
ing modules by introducing them along with the base LMMs
to help with upstream tasks. The reasoning modules used
were o4-mini—a smaller, lightweight LRM—and Gemini
2.5 Pro, which is a larger, more powerful LRM (OpenAl
2025b; Google DeepMind 2025). LRMs were evaluated on
different upstream tasks and their contribution to perfor-
mance on downstream VideoQA tasks, being used as a “drop
in” module to assist the LMM. Essentially, additional con-
text is passed into the baseline, providing more information
to answer the questions effectively.

4 Results

Our results show that the effect of upstream reasoning on
downstream VideoQA is dependent on the dataset and base
model used. Table 1 reports the overall results from our ex-
periments across all LRM and base model combinations, as
well as both upstream tasks.

On OpenEQA, we find that introducing explicit reason-
ing significantly improves performance when Gemini 2.5
Flash is used as the base LMM. Specifically, Gemini 2.5
Flash achieves a baseline overall LLM-Match Score of 58.8,
which increases to 67.1 and 67.8 when using Gemini 2.5
Flash for object identification and scene context generation,
respectively. We observe comparable improvements when
using o4-mini as the LRM.

Interestingly, GPT-40—which has an estimated 1.8 tril-
lion parameters—scored significantly worse than the base-
line when combined with an LRM (Lin et al. 2025). GPT-40
already exhibited strong performance on standard VideoQA,
outscoring Gemini 2.5 Flash by 8.9 points on the baseline.

In NEXTQA, we observe performance gains from up-
stream reasoning in GPT-40, but not for Gemini 2.5 Flash.
GPT-40 achieves a baseline accuracy of 62.32%, and com-
bining GPT-40 with o4-mini for the object identification up-
stream task increases the accuracy to 67.48%. Using Gemini
2.5 Pro as the reasoning model for the same object identifica-
tion upstream task increases accuracy to 67.08%. For scene
context generation, GPT-40 and 04-mini combined achieve
an improved accuracy of 67.68% (+5.36%).

In contrast, Gemini 2.5 Flash begins with a baseline accu-
racy of 78.32%, much higher than GPT-40. Combining with
the reasoning models for object identification leads to slight
degradation in overall accuracy, to 77.44% for o4-mini (-
0.88% accuracy) and 78.00% for Gemini 2.5 Pro (-0.32%).

These results over both datasets show that introducing up-
stream explicit reasoning does not always improve down-
stream VideoQA performance, and that the impact of rea-
soning is primarily dependent on the dataset and choice of
base LMM. When baseline task performance is sufficiently
high, we find that introducing explicit reasoning is not al-
ways helpful and can even lead to performance degradation.

4.1 Impacts by Question Type

In this section, we present additional analysis on OpenEQA
to evaluate the performance of the LRMs on their assigned
upstream task (Majumdar et al. 2024). In particular, we hy-
pothesize that the performance of the LRM on the upstream
task plays a critical role in determining downstream impacts.

We utilize the change in performance across two ques-
tion categories—object recognition and world knowledge—
as a proxy for the relative performance difference between
the base LMM and the LRM on the relevant upstream task.
OpenEQA does not provide ground-truth labels for object
identification or scene context generation; instead, questions
are categorized into seven distinct question types which
can be used to evaluate a model’s performance on specific
facets of VideoQA. Object recognition questions evaluate
a model’s ability to recognize objects that appear in the
episodic history, whereas world knowledge questions assess



LMM LRM

OpenEQA (LLM-Match Score) NEXTQA (Accuracy %)

GPT-40
Gemini 2.5 Flash

Object Identification

GPT-40 o4-mini
GPT-40 Gemini 2.5 Pro
Gemini 2.5 Flash o4-mini

Gemini 2.5 Flash Gemini 2.5 Pro

Scene Context

GPT-40 0o4-mini
GPT-40 Gemini 2.5 Pro
Gemini 2.5 Flash o4-mini
Gemini 2.5 Flash Gemini 2.5 Pro

67.7 62.32%
58.8 78.32%
55.7 67.48%
59.7 67.08%
63.6 77.44%
67.1 78.00%
48.1 67.68%
47.8 64.96 %
66.7 77.20%
67.8 77.16%

Table 1: Results on the OpenEQA and NExTQA datasets with distinct LMM and LRM pairs. The LRMs perform an
upstream task of either object recognition or scene context. Scores for OpenEQA and NExTQA are provided in the table, with

notable score improvements shown in bold.

amodel’s ability to leverage external background knowledge
about the world (Majumdar et al. 2024). We select object
recognition and world knowledge because they most directly
align with our upstream tasks of object identification and
scene context generation, respectively. In our analysis, we
stratify LLM-Match scores for the object recognition and
world knowledge question types to better isolate the effects
that reasoning modules have on OpenEQA performance.

Figure 2 reports the results stratified by question type
for Gemini 2.5 Flash on OpenEQA. The full set of results
for both models are presented in Table 2 in the Appendix.
For object identification, we find that performance on ob-
ject recognition questions improves significantly when rea-
soning is used. As a control, we also provide the change in
scores for world knowledge questions when object identifi-
cation is the upstream task and find that performance stays
relatively stagnant. Curiously, we observe similar trends for
scene context generation, wherein object recognition perfor-
mance improves while world knowledge remains stagnant.
These results suggest that the benefit of explicit upstream
reasoning largely lies in its ability to provide factual ground-
ing and not so much understanding; for more structured
questions such as object recognition, reasoning is helpful,
whereas it may not be as helpful for broader questions about
world knowledge.

5 Discussion

In this work, we introduce a novel two-stage framework for
evaluating explicit reasoning in VideoQA across the NEx-
TQA and OpenEQA datasets. The modularity of our frame-
work allows for greater flexibility, allowing for experimen-
tation with different model and task combinations. Further-
more, our framework also allows for greater interpretability
of the models and by exposing intermediate reasoning steps
rather than relying solely on end-to-end evaluation metrics.

The results of our experiments reveal the effect of our
framework on VideoQA accuracy on certain tasks, while

LLM-Match Scores by Question Type

Object Identification Scene Context Generation

Gemini 2.5 Flash Gemini 2.5 Flash

m— Gemini 2.5 Flash + 2.5 Pro e Gemini 2.5 Flash + 2.5 Pro
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i

All Categori Object Recognition ~ World Knowledge All Categori Object Recognition  World Knowledge

LLM-Match Score
5

o

Question Type Question Type

Figure 2: LLM-Match Scores stratified by question cat-
egory on OpenEQA using Gemini 2.5 Flash as the base
model. Results are reported for both upstream tasks: object
identification (left) and scene context generation (right). Up-
stream reasoning improves overall accuracy and accuracy on
object recognition questions while world knowledge ques-
tion performance remains relatively stagnant.

leading to performance degradation on others. This indi-
cates that selective integration of modular reasoning via
UpstreamQA can yield substantial improvements in task-
specific VideoQA performance.

Limitations & Future Work Our work presents promis-
ing preliminary findings for better understanding the role of
explicit reasoning models in improving complex tasks like
VideoQA. Additional experiments are necessary to account
for various confounding factors, such as upstream task per-
formance. The scope of our evaluation was limited to zero-
shot VideoQA, although comparisons to other methods such
as chain-of-thought prompting are also necessary.

Future expansions of this work may consider exploring
further usage of modular reasoning to encompass other core



video reasoning components and their effect on VideoQA
performance. Moreover, subsequent research may addition-
ally investigate why performance degradation occurs on cer-
tain models while significant performance improvements are
observed on others.
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A Extended Results

LMM LRM All Questions Object Recognition World Knowledge
GPT-40 - 67.7 71.4 62.4
Gemini 2.5 Flash _— 58.8 56.2 69.2
Object Identification

GPT-40 04-mini 55.7 56.7 60.7
GPT-4o0 Gemini 2.5 Pro 59.7 62.6 64.9
Gemini 2.5 Flash 04-mini 63.6 60.7 68.8
Gemini 2.5 Flash Gemini 2.5 Pro 67.1 68.7 68.9
Scene Context

GPT-40 o4-mini 48.1 43.7 54.8
GPT-4o0 Gemini 2.5 Pro 47.8 43.1 55.5
Gemini 2.5 Flash 04-mini 66.7 69.3 68.1
Gemini 2.5 Flash Gemini 2.5 Pro 67.8 67.9 70.1

Table 2: LLM-Match scores on the OpenEQA dataset with distinct LMM and LRM pairs. The LRMs perform an upstream
task of either object recognition or scene context. The scores are for all questions, object recognition questions, and world
knowledge questions. The object recognition and world knowledge questions are stratified from the OpenEQA dataset, which
originally has seven questions types. Both question types are stratified since we hypothesize that they will display the most
significant score differences through our framework. Notable score improvements are represented in bold.

B Prompts

In this section we present the prompts used in our experiments. Figure 3 represents the baseline prompt passed into GPT-40 and
Gemini 2.5 Flash without any upstream task augmentation. {question} in Figure 3 denotes where the question sourced from
the dataset is input.

The prompts for the two upstream tasks, object identification and scene context generation, are presented in Figures 4 and
5, respectively. Figure 6 shows the prompt used for processing QA questions along with upstream reasoning, which is passed
into the LMM. In figure 6, {upstream_task} represents the upstream input, {question} represents the question sourced from
the dataset, and {upstream_task_placeholder} represents a task-differentiating variable, since the same prompt was used for
different upstream tasks.

Example outputs for an object identification or scene context generation task are presented in Figures 7 and 8, respectively.

Baseline VideoQA Prompt

You are an embodied Al assistant. Your task is to answer a question about a given environment from images using your own
knowledge.

*Primary Goal:** Apply your general and functional knowledge to reason about what is possible or true based on the context
using your given inputs.

**CRITICAL RULES:** - **Be direct and brief.** Your answer should be as short as possible.

- For questions that can be answered with ”Yes” or "No”, you MUST answer with only ”Yes” or ”"No”.

- **Do not explain your reasoning or mention the provided context.** Avoid phrases like "Based on the context...” or
”Observing the images...”.

- ¥*Don’t overanalyze, many of the answers are simple and are not extremely detailed or have a lot of adjectives**

- **Very short statements are also acceptable**

**User Query:** {question} A:

Figure 3: Prompt for standalone LMMs to run baselines.



Object Identification Prompt

*Note* This is an upstream task of object identification and their spatial layout.

Use reasoning to analyze the provided sequence of images from a first-person perspective. Your goal is to generate a compre-
hensive, structured, and factual description of the object inventory and spatial layout. Be as detailed as possible.

Provide your analysis in the following structured format:

Object Inventory:

Major Items: List prominent furniture and appliances. For each item, specify its attributes (color, material, shape) and its loca-
tion relative to the room and other objects (e.g., ”A rectangular wooden desk is against the far wall, to the left of the window™).
Minor Items: Detail smaller objects such as decorations, electronics, containers, or personal items found on surfaces or shelves.
Describe their key features and placement.

Figure 4: Upstream task prompt for LRMs to identify objects in the inputted frames.

Scene Context Prompt

*Note* This is an upstream task of scene context.

Use reasoning to analyze the provided sequence of images from a first-person perspective. Your goal is to generate a compre-
hensive, structured, and factual description of the scenes. Be as detailed as possible.

Provide your analysis in the following structured format:

Scene Overview:

Identification and Purpose: Identify the type of room or space (e.g., office, bedroom, kitchen). Describe its likely purpose.
Architectural Details: Note the materials and styles of the floor, walls, and ceiling. Mention significant structural elements like
windows, doors, or stairs.

Ambiance: Briefly describe the overall condition and atmosphere (e.g., tidy, cluttered, modern, rustic, well-lit, dimly lit).

Figure 5: Upstream task prompt for LRMs to generate scene context of the inputted frames.

VideoQA Prompt with Included Upstream Reasoning
You are an embodied Al assistant. Your task is to answer a question by synthesizing information from images, an upstream
task, and your own knowledge.

**Primary Goal:** Use the upstream task as a helpful source for the current state of the environment.
*Secondary Goal:** Apply your general and functional knowledge to reason about what is possible or true based on the
context using your given inputs.

**CRITICAL RULES:**

- Be direct and brief. Your answer should be as short as possible

- For questions that can be answered with Yes” or "No”, you MUST answer with only ”Yes” or "No”

- Do not explain your reasoning or mention the provided context. Avoid phrases like “"Based on the context...” or "Observing
the images...”

- Don’t overanalyze, many of the answers are simple and are not extremely detailed or have a lot of adjectives

- Very short statements are also acceptable

- The upstream task is designed to help you answer questions—not give you the answer

- Important information may be missing from the upstream task, so make sure you still use your general and functional
knowledge to reason

**Upstream Task:**
This is the upstream task of {upstream_task_placeholder} for the given scenes.
{upstream_task}

**User Query:** {question}
A:

Figure 6: Upstream task prompt for LRMs to generate scene context of the inputted frames.




Example Object Identification Output
Based on the sequence of images, here is a detailed analysis of the object inventory and spatial layout of the interconnected
kitchen, dining, and living areas.

Object Inventory

Major Items:

Refrigerator: A tall, white refrigerator is located at the edge of the kitchen area, to the left of a bifold closet door.

Stove/Oven: A white, freestanding electric range with an oven is positioned to the right of the main kitchen counter space.
Dining Table: A large rectangular dining table with a mottled brown and gray tabletop sits between the kitchen and living areas.
Dining Chairs: At least two wooden dining chairs with dark brown frames, brown leather-like upholstered seats, and high,
slatted backs are positioned at the dining table.

Sofa: A plush, brown fabric sofa with multiple throw pillows is situated against the far right wall of the living room.
Armchair: A matching plush, brown fabric armchair is located in the corner to the left of the TV console.

Rocking Chairs: Two rocking chairs with dark wood frames are present. One, with a white/beige cushioned seat and a white
throw blanket, is next to the sofa. Another, with similar light-colored cushions, is next to a tall shelving unit.

TV Console / Fireplace: A dark brown wooden media console with glass-front cabinets and a central electric fireplace insert is
placed against the teal accent wall, beneath the television.

Tall Shelving Unit: A very tall, dark wood, open-back shelving unit with multiple shelves stands against the gray wall, acting
as a partial divider between the dining and living areas.

Trunk Coffee Table: A vintage-style rectangular trunk, light-colored with a dark printed design (possibly a map or historical
illustration), serves as a coffee table in front of the TV console.

Kitchen Cabinets: Off-white or cream-colored kitchen cabinets are visible, with a set of upper and lower cabinets to the right
of the stove.

Minor Items:

Microwave: A white microwave oven sits on a small wooden stand on the kitchen countertop.

Pot Rack: A large, wooden, ceiling-mounted pot rack is installed above the kitchen peninsula. Numerous pots and pans,
including copper and stainless steel ones, hang from it.

Wall Shelves:** Two wooden shelves are mounted on the light green kitchen wall below the pot rack. The lower shelf holds a
neat row of clear glass jars with lids.

Potted Plants: Several potted plants are throughout the space. A large, leafy green plant is in the corner of the dining area by a
window. Another tall, thinner plant is next to it. A smaller plant is on the floor near the kitchen peninsula.

Television: A large, widescreen flat-panel TV is mounted on the teal accent wall above the media console.

Air Conditioner: A white, ductless mini-split air conditioner unit is mounted high on the teal wall, above and to the right of the
TV.

Lighting: A floor lamp with a silver-toned base and a white upward-facing shade stands between the tall shelving unit and the
armchair. A ceiling-mounted light fixture with a bell-shaped glass shade is visible above the dining area.

Clocks: A round, black-rimmed analog clock is on the gray wall near the exterior door. Another round, white-faced clock is
visible on top of the refrigerator.

Wall Decor: Several framed pictures adorn the walls. Two small, square-framed pictures are on the teal wall. A larger,
rectangular framed picture of a winter scene hangs on the off-white wall next to a doorway. A small, irregularly shaped piece
of wood art is on the gray wall by the dining area.

Curtains: Sheer, white, gathered curtains are on the windows in the dining area. Darker gray or black curtains are on the
window in the living area corner.

Small Tables: A small, slatted wooden coffee table is next to the armchair by the tall shelf. A small end table with a crisscross
base is next to the sofa.

Rugs: A small, dark, striped rug is on the floor by the exterior door. A small area rug with a dark border is under the trunk
coffee table.

Closet Door: A white, two-panel bifold door is located between the refrigerator and the dining area wall.,

Figure 7: Example output of generated object identification.



Example Scene Context Qutput
Scene Overview:

Identification and Purpose
Open-plan living space combining a small dining area, a kitchenette, and a lounge.

Functions include meal preparation and dining (nearest the kitchen), casual seating and media viewing (farther in), and general
circulation to a loft via a narrow staircase.

Architectural Details

Flooring: Light-toned, wide-plank wood or wood-look laminate laid continuously throughout.

Walls: Predominantly light gray paint with white trim; one full accent wall in the lounge is painted teal.

Ceiling: Flat, painted white over the dining and kitchen zone; vaulted wood-paneled section over the lounge.
Windows & Doors:

Two double-hung windows dressed with semi-sheer lace curtains in the dining corner.

A white paneled exterior door (with glazed upper section) opens near a side wall.

Interior doorways (one near the lounge leads to a bedroom) feature white trim.

A shallow closet with bifold white doors sits adjacent to the kitchen entrance.

Staircase: A compact, dark-stained wooden ladder-style stair rises against the teal wall to a loft or mezzanine level.
Kitchen Fixtures: Light oak cabinetry, open shelving for glassware and cookware, a wall-mounted pot rack made of rough-hewn
wood, white range and refrigerator, microwave on a countertop.

Ambiance

Lighting: Bright natural daylight filters through the lace curtains; ambient light is supplemented by a pendant lamp over the
dining table and floor lamps in the lounge.

Furnishings & Decor:

Dining: A small rectangular table with two high-back chairs and leaf-patterned placemats.

Lounge: Two upholstered glider chairs, a leather-look loveseat, a low TV stand with flat-screen, and a rustic storage trunk used
as a coffee table.

Accessories: Several potted plants cluster by the window, framed prints on the walls, a wall clock, and a decorative wall plaque.
Condition & Style: The space feels cozy and lived-in, leaning toward a rustic-eclectic style. It is generally tidy, though numerous
decorative items and plants create a slightly busy, homey atmosphere.

Figure 8: Example output of generated scene context.



