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Abstract

While Large language models (LLMs) have demonstrated
strong reasoning capabilities, solving complex tasks in in-
teractive environments requires more than single-round re-
sponses; they must learn to act strategically, reflect on feed-
back, and iteratively refine their responses. In this paper, we
propose Multi-round Reinforcement Learning (MRRL) for
LLMs, a novel post-training framework to complete tasks
through strategic interactions with environments while learn-
ing to revise their responses by reflecting on and integrating
the environment feedback. Beyond environment rewards, our
MRRL leverages text-based feedback from the environment,
which provides richer and more explicit guidance toward task
completion. We formalize the LLM interaction process as a
Markov Decision Process (MDP) and derive the proximal pol-
icy gradient update for MRRL. To help the LLM reflect on
and leverage environmental feedback, we propose the Feed-
back Reflection Imitation Learning algorithm, which uses an
LLM to generate feedback reflection and alleviate the dis-
tribution gap for imitation learning from successful trajecto-
ries. We conduct extensive experiments across diverse tasks,
including text-based games, mathematical problems, search
tasks, and logical puzzles, validating that our MRRL achieves
stable multi-round RL training for LLMs in various environ-
ments. Furthermore, MRRL reduces the number of interaction
rounds needed to complete tasks, unleashing the full potential
of LLMs in multi-round reasoning. Our code is available at
https://github.com/xiaobo-yang/TinyAgentZero.

Introduction
Large language models (LLMs) (Achiam et al. 2023;
DeepSeek-AI et al. 2024; Team et al. 2024; Grattafiori et al.
2024) have recently achieved remarkable performance across
a wide range of reasoning tasks (Huang and Chang 2023;
Hao et al. 2025), particularly through techniques such as
chain-of-thought (CoT) prompting (Wei et al. 2022; Chu
et al. 2024), which enables structured, step-by-step reasoning.
After being pretrained on massive and diverse text corpora
via next-token-prediction (Brown et al. 2020), these models
are capable of generating coherent, contextually appropriate
responses, often matching or surpassing human-level per-
formance on complex benchmarks (Cobbe et al. 2021; Jain
et al. 2025; MAA 2024). Such results highlight the promise

of LLMs as general-purpose reasoning engines, particularly
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when tasks can be framed as few-shot language prompts.
While existing literature primarily focuses on the reason-

ing capabilities of LLMs within a single response, many
complicated sequential decision-making tasks, such as text-
based games, searching, and planning, require multi-round
interactions. In these settings, LLMs must learn to reflect on
the resulting feedback or state transition and generate suc-
cessive responses accordingly. While LLMs have exhibited
strong capability in single-shot reasoning tasks, they are not
inherently able to learn from feedback or to improve their
performance over multiple rounds of interactions, leading to
limited performance in tasks that require exploration, revi-
sion, and learning from failure.

To address this limitation, we propose Multi-round Re-
inforcement Learning (MRRL), a post-training framework
to enable LLMs to act strategically with interactive environ-
ments. Beyond environment rewards, our MRRL leverages
text-based feedback from the environment, which provides
richer and more explicit guidance toward task completion.
We formalize the LLM-environment interaction as a Markov
Decision Process (MDP), in which each generated response
corresponds to an action, and environment feedback is treated
as part of the state transition and reward signals. We derive
the proximal policy gradient update for MRRL, which can be
simply implemented using feedback masking. Furthermore,
we introduce the Feedback Reflection Imitation Learning
algorithm, which encourages LLM to learn from successful
LLM-environment interaction trajectories that consist of both
high-quality responses and feedback reflections. Specifically,
the feedback reflections are generated by instructing a refer-
ence LLM to rephrase the raw environmental feedback. This
approach reduces the distribution gap between the raw feed-
back and the LLM’s generation policy, thereby stabilizing
the imitation learning process.

We conduct extensive experiments across a diverse set
of interactive tasks that require reasoning, planning, and
feedback-driven adaptation. Our results show that MRRL
enables stable and effective multi-round reinforcement learn-
ing for LLMs. Our proposed MRRL consistently outperforms
multiple baselines in success rate. Moreover, our MRRL ef-
fectively reduces the number of interaction rounds across
various scenarios, demonstrating the potential of LLMs for
multi-round reasoning tasks in interactive environments.
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Figure 1: An illustration of our proposed MRRL framework. At each round, the LLM policy πθ generates a response conditioned
on the interaction history. The environment evaluates this response and returns text-based feedback, such as a comment on
its correctness, along with a scalar reward. A reference policy πref then produces a reflection based on the feedback to guide
subsequent learning. During training, feedback masking disables gradients from environment feedback tokens in the RL loss,
while enabling gradient flow across all tokens in successful rollouts for the imitation loss. Mask values equaling 1 or 0 indicate
whether gradient backpropagation is enabled or disabled.

Related Works
LLM Reasoning with RL
The integration of reinforcement learning into LLMs be-
gan with Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al. 2022), which fine-tunes models using
preference data collected from human annotators to align
outputs with human values. This approach has become foun-
dational for aligning generative models with intended behav-
ior. Building on this foundation, reinforcement learning has
also been applied to enhance chain-of-thought (CoT) prompt-
ing (Wei et al. 2023), enabling LLMs to perform more struc-
tured, multi-step reasoning. More recently, large-scale RL-
based post-training has led to state-of-the-art performance in
complex reasoning tasks (Jaech et al. 2024), demonstrating
the scalability and effectiveness of RL for reasoning-oriented
capabilities. This paradigm has also been extended to open-
weight models, broadening access and reproducibility in the
community (Guo et al. 2025). A notable recent trend is the
development of zero-setting approaches, which apply RL
directly to base LLMs without requiring task-specific fine-
tuning. This strategy supports generalization and simplifies
deployment pipelines, inspiring a wave of reproducible, open-
source efforts such as DAPO (Yu et al. 2025) and Open Rea-
soner Zero (Hu et al. 2025). These works collectively reflect
a growing interest in leveraging reinforcement learning to
unlock and stabilize complex reasoning behaviors in LLMs.

LLM Agent with Multi-round RL
Recent work on language agents has explored how LLMs
interact with tools and environments over extended decision
sequences. ReAct (Yao et al. 2023) enhances the capabilities
of Large Language Models (LLMs) by enabling them to inter-
act with external environments and make decisions in a more
dynamic and informed way. The Berkeley Function-Calling
Leaderboard (Yan et al. 2024) categorizes these interactions
into two paradigms: multi-step tool use and multi-round en-

vironment interaction. In multi-step settings, LLMs invoke
tools, such as code interpreters (Feng et al. 2025) or search
engines (Jin et al. 2025), multiple times to solve a single
query, a process known as tool-integrated reasoning (Gou
et al. 2023). Recent studies have applied reinforcement learn-
ing to improve tool-use strategies (Liu et al. 2023; Song et al.
2025; Feng et al. 2025; Qian et al. 2025), enabling models
to generalize across tasks. Multi-round settings, in contrast,
involve extended interactions between LLMs, users, and envi-
ronments, posing challenges in maintaining context, adapting
to feedback, and planning. Approaches in this space range
from training LLMs for human-AI collaboration (Zhou et al.
2025) to grounding them in interactive environments (Wang
et al. 2025). RL-based approaches have also treated LLMs
as decision-making agents for long-horizon tasks (Feng et al.
2024; Zhai et al. 2024; Zhou et al. 2024; Liu et al. 2024).
In this work, we enable LLM post-training in a ReAct style
and use the term multi-round interaction to refer to scenarios
where an LLM generates a sequence of responses, receives
feedback from the environment after each round, and strate-
gically revises its behavior based on that feedback.

Preliminaries
Markov Decision Process. A Markov Decision Process
(MDP) provides a formal framework for modeling multi-
round decision-making, where an agent interacts iteratively
with the environment across multiple rounds to accom-
plish a specific task. An MDP is defined by the tuple
(S,A, ρ, P, r, γ, T ), where S is the set of states; A is the
set of valid actions; ρ(·) is the probability measure of the
initial state s0 ∈ S in the environment; for any state-action
pair (s, o) ∈ S ×A, P (·|s, o) represents a probability mea-
sure over S, where P (s′|s, o) indicates the probability of
transitioning from the current state s to the next state s′ upon
taking action o; R(s, o) : S × A 7→ [0, 1] is reward func-
tion, where a larger value indicates a higher degree of task
accomplishment and a value of 1 signifies successful task



completion; γ ∈ [0, 1] is a discount factor; T is the largest
possible interaction round. Suppose πθ is a policy param-
eterized by θ in this MDP, such that for any s ∈ S and
o ∈ A, πθ(·|s, o) is a probability measure over S . At the t-th
interaction step, the agent selects an action ot+1 in state st

according to the policy, i.e., ot+1 ∼ πθ(·|st). The agent then
transitions to the next state st+1 following the state transi-
tion probability st+1 ∼ P (·|st, ot+1), and receives a reward
rt+1 ≜ R(st+1, ot+1) based on the chosen action. The objec-
tive of the agent is to learn an optimal policy that maximizes
the expected return, that is, the expected sum of discounted
rewards over time:

max
θ

J(πθ) ≜ E s0∼ρ(·),
ot∼πθ(·|st−1),

st∼P (·|st−1,ot)

[
T∑

t=1

γtR(st, ot)

]
. (1)

RL-based LLM Post-Training. RL-based LLM post-
training methods focus on refining a pre-trained LLM πθ

by adapting it to specific tasks or domains (e.g., text-based
games, tool usage) using reinforcement learning algorithms.
Suppose V is a finite texty token vocabulary, and we denote
the space of all token sequences as V ∞ ≜ ∪∞

L=1V
L. In these

scenarios, the training data consists of query-answer pairs
(q, a) ∈ V ∞ × V ∞ sampled from an underlying distribu-
tion (q, a) ∼ D. For each query q, the LLM πθ aims to
generate text-based response o ∼ πθ(·|q) that leads to the
ground truth answer a. Therefore, this solution generation
process of the LLM can be modeled as a one-round MDP
(S,A, ρ, P,R, γ, T ) with T = 1. The state space S ⊂ V ∞

represents the current context, which is either the query alone
or the query concatenated with the LLM’s generated answer.
The action space A ⊂ V ∞ consists of all possible generated
sequences. For any query q and LLM-generated answer o, the
next state is defined as the concatenation of q and o, denoted
by [q, o]. As a result, the transition probability P (· | q, o) is
deterministic and is equivalent to δ[q,o](·), the Dirac delta
measure centered at [q, o]. Let a denote the ground-truth
answer for query q. The reward is defined as R(o, a), a [0, 1]-
valued verification function, where a higher value indicates
better alignment between o and a, and a value of 1 denotes a
correct answer. The objective of LLM RL post-training is:

max
θ

J(πθ) ≜ E(q,a)∼D,o∼πθ(·|q) [R(o, a)] . (2)

Group Relative Policy Optimization. Group Relative Pol-
icy Optimization (GRPO) (Shao et al. 2024) has become one
of the most popular policy gradient algorithms (Kaelbling,
Littman, and Moore 1996; Schulman et al. 2017; Sutton et al.
1999) for optimizing (2). At each optimization step, GRPO
updates the parameters of the LLM policy using gradient
ascent on a surrogate training objective JGRPO(πθ). To com-
pute this objective, we first generate a group of G rollout sam-
ples from a frozen LLM πold, denoted by {o1, o2, . . . , oG},
where each rollout is sampled from oi ∼ πold(·|q). This
LLM is typically a past snapshot of πθ. We then evaluate the

following expression:

JGRPO(θ) = E (q,a)∼D
{oi}Gi=1∼πold(·|q)

[
1

G

G∑
i=1

r̂i(θ)− βKLi(θ)

]
,

r̂i(θ) ≜ min (ri(θ)Ai, clipϵ (ri(θ))Ai) ,

KLi(θ) ≜
πref(oi|q)
πθ(oi|q)

− log(
πref(oi|q)
πθ(oi|q)

)− 1,

Specifically, ri(θ) ≜ πθ(oi|q)/πold(oi|q) denotes the prob-
ability ratio, clipϵ(·) is the clipping function that trun-
cates any real-value into the range [1 − ϵ, 1 + ϵ], Ai ≜
(R(oi, a) − mean({R(oi, a)}Gi=1))/std({R(oi, a)}Gi=1) de-
notes the group normalized reward and each R(oi, a) de-
notes the reward on the i-th rollout sample. ϵ ∈ (0, 1) is
the clipping threshold hyperparameter, β > 0 is the penalty
weight, and KLi(θ) is the KL-divergence between πθ and
πref , where πref is another frozen LLM that is usually set
as the initialization of πθ (e.g. the SFT model or pretrained
base model) (Shao et al. 2024). Intuitively, GRPO optimizes
the target LLM policy πθ to increase the likelihood of gen-
erating high-quality answers, prioritizing samples oi with
large group-normalized rewards Ai. The clipping operator
and the KL-divergence penalty are applied to prevent exces-
sively large updates during training, thereby stabilizing the
optimization process.

Methodology
In this section, we introduce Multi-Round Reinforcement
Learning (MRRL), a reinforcement learning framework that
enables LLMs to complete tasks through strategic interac-
tions with the environment, while also learning to revise their
responses by reflecting on and integrating the feedback. We
first derive the proximal policy gradient update for MRRL
and demonstrate how it can be efficiently implemented us-
ing feedback masking. In Section Preliminaries, we extend
MRRL with feedback reflection imitation, enabling LLMs to
learn task-specific knowledge from environmental feedback
and to reflect on their interactions with the environment.

Multi-Round RL for LLM
MRRL Objective. MRRL considers using LLM to inter-
act with an environment for multiple rounds to accomplish
the specific task. Beyond environment rewards, our MRRL
leverages text-based feedback from the environment, which
provides richer and more explicit guidance toward task com-
pletion. For instance, in a game-playing scenario, we aim
to solve a text-based puzzle in multiple rounds via LLM:
at each round, the LLM generates the next move and re-
ceives execution feedback from the puzzle verifier, which
indicates whether the current move is valid or if the final
goal has been achieved. Suppose the target task involves find-
ing the answer a to each query q, where each query-answer
pair is sampled from an underlying distribution (q, a) ∼ D.
The multi-round interaction can be formalized as an MDP
(S,A, ρ, P,R, γ, T ) with T > 1. Specifically, A ⊂ V ∞

is the action space, consisting of all possible answers gen-
erated by the LLM. S ⊂ V ∞ represents the state space,
where each state s ∈ S consists of the full LLM context,



Algorithm 1: Multi-Round RL with Feedback Reflection Imitation Learning

# main loop of MRRL training
for query in dataloader:

traj, mask, rewards = [query], [zeros_like(query)], []
for t in range(T):

resp = llm.generate(traj) # Generate rollout samples for each query
feedback_raw, reward = env.interact(resp) # receive environment feedback
reflection_prompt = traj + [resp, feedback_raw, reflection_inst]

feedback_reflection = llm_ref.generate(reflection_prompt) # feedback reflection

traj = traj + [resp, feedback_reflection]
mask = mask + [ones_like(resp), zeros_like(feedback_reflection)] # feedback masking
rewards.append(reward)

loss = ppo_loss(traj, mask, rewards) + lam * imitation_loss(traj, rewards)
loss.backward() # update LLM
optimizer.step()

including the query, all previous answer attempts, and the en-
vironment feedback. For any query-answer pair (q, a), and an
LLM-generated answer o, R(o, a, f) is the reward function
defined above. The key distinction compared to conventional
RL-based LLM post-training is that the transition probabil-
ity P (·|s, o) is no longer deterministic, as it depends on the
distribution of the environment feedback.

For each query-answer pair (q, a), the LLM interacts
with the MDP to address q within T rounds. Let ot be the
LLM-generated answer and f t be the environment feed-
back at the t-th round. The state is defined as the tempo-
rary context, i.e., st ≜ [q, o1, f1, . . . , ot, f t]. At round t,
the LLM generates a new response based on the current
context, i.e., ot ∼ πθ(·|st−1), which is then sent to the
environment to receive corresponding textual feedback, de-
noted by f t ∼ P (·|st−1, ot). The state is then updated by
appending the latest answer and feedback to the existing
context, i.e., st ≜ [st−1, ot, f t] = [q, o1, f1, . . . , ot, f t],
and the initial state is defined as s0 ≜ q. Meanwhile, a
reward R(ot, a, f t) is computed, and the LLM proceeds
to the next round to make another attempt at solving the
task. If the LLM generates the correct answer at round t,
the interaction is terminated, and the remainder of the tra-
jectory is padded with placeholders. This iterative process
produces an answer-feedback trajectory for query q, denoted
by τ ≜ [o1, f1, . . . , fT−1, oT ] ∼ (πθ(·|q), P (·|·, ·)), where
πθ generates answers and P returns environment feedback.
MRRL aims to maximize the expected return, formally de-
fined as:

JMRRL(πθ) ≜ E (q,a)∼D
τ∼(πθ(·|q),P (·|·,·))

[
T∑

t=1

γtR(ot, a, f t)

]
. (3)

The key distinction between conventional single-round RL-
based LLM post-training and MRRL is that, while each
rollout trajectory in single-round RL contains only LLM-
generated tokens, each MRRL trajectory includes both LLM-
generated tokens oti and environment feedback tokens f t

i .
This requires a carefully designed policy gradient estimator
to ensure the LLM effectively learns to generate high-quality
answers throughout the multi-round interaction trajectory.

MRRL Optimization. Proposition 1 presents the proximal
policy gradient estimator for (3), which enables approximate

updates of πθ in the direction of the MRRL policy gradient
∇θJMRRL(πθ).

Proposition 1 (Proximal Policy Gradient Estimator of
MRRL). Under the previous conditions, a proximal policy
gradient estimation is given by ∇θĴMRRL(πθ), where the
MRRL training objective is

ĴMRRL(πθ) ≜ E (q,a)∼D
{τi}Gi=1∼(πold(·|q),P (·|·,·))

[
1

G

G∑
i=1

T∑
t=1

r̂i,t(θ)

]
,

(4)

where r̂i,t(θ) ≜ min
(
rti(θ)Â

t
i, clipϵ (r

t
i(θ)) Â

t
i

)
, rti(θ) ≜

πθ(o
t
i|s

t−1
i )/πold(o

t
i|s

t−1
i ) denotes the ratio factor. Ât

i is im-
plemented as one of the generalized advantage estimators
(Schulman et al. 2016), such as the group normalized tra-
jectory return Ât

i ≜ (Ri −mean({Ri}Gi=1))/std({Ri}Gi=1)

with Ri ≜
∑T

t=1 γ
tR(oti, a, f

t
i ) denoting the return of τi.

The proof of Proposition 1 is detailed in Appendix. To
compute the MRRL training objective (4), at each optimiza-
tion step, we first sample a batch of query-answer pairs from
the underlying dataset (q, a) ∼ D. For each query q, we
sample G trajectories {τi}Gi=1 ∼ (πold(·|q), P (·|·, ·)) from a
T -round interaction with the MDP, using the rollout policy
πold. The parameters of πold are frozen during sampling and
periodically synchronized with those of πθ. After calculating
the return of each trajectory Ri, we obtain Ât

i via group-level
reward normalization. Finally, we calculate the ratio terms
rti(θ) over the LLM-generated answer tokens and plug them
into (4).

MRRL with Feedback Masking. Unlike conventional
single-round RL optimization methods such as GRPO (Shao
et al. 2024) or PPO (Schulman et al. 2017), which com-
pute the policy gradient over all tokens in the rollout tra-
jectories, Proposition 1 explicitly excludes terms associated
with environment feedback tokens by zeroing out their corre-
sponding likelihood ratios: the MRRL training objective (4)
does not contain any πθ(f

t
i |s

t−1
i , oti)/πold(f

t
i |s

t−1
i , oti) fac-

tors. As outlined in Algorithm 1, we implement this using a
feedback masking strategy: after computing the trajectory
probability πθ(τ |q) with a single forward pass of the target



LLM πθ, the output probabilities corresponding to environ-
ment feedback tokens f t

i are masked as zero before stepping
into the standard proximal policy gradient update steps. The
rationale behind feedback masking is that the sampling of
environment feedback is externally determined and indepen-
dent of the LLM’s parameters. As such, it does not contribute
to the policy gradient. Masking these tokens is essential to
ensure that the LLM focuses on optimizing its own generated
outputs while mitigating the risk of overfitting to environ-
ment feedback, which may be noisy and non-stationary. This
principle is validated by our derivation in the Appendix and
the results presented in the Experiments Section.

MRRL with Feedback Reflection Imitation
While Proposition 1 facilitates the optimization of the MRRL
objective, the feedback masking mechanism prevents the
LLM from directly utilizing the information contained in
the environment feedback. In many multi-round task-solving
scenarios, such feedback is crucial for refining responses,
and ignoring it can hinder the model’s ability to identify and
correct errors in previous answers.

MRRL with Imitation Learning. To address this limita-
tion, we propose training the model to simultaneously learn
how to interact with the environment and how to incorporate
environment feedback into the LLM policy. This involves
enabling the LLM to interpret feedback, reflect on it, and
identify potential errors and opportunities for improvement.
Specifically, we propose the MRRL with Imitation Learn-
ing (MRRL w/ IL) framework, which enables the LLM to se-
lectively imitate the positive interaction trajectories, namely,
complete interactions that lead to successful outcomes. The
modified training objective is defined as follows:

ĴMRRL(πθ) ≜ E (q,a)∼D
{τi}Gi=1∼(πold(·|q), P (·|·,·))[

1

G

G∑
i=1

T∑
t=1

r̂i,t(θ)︸ ︷︷ ︸
Reinforcement Learning Loss

− λ

|T |
∑
τi∈T

1

|τi|
log πθ(τi|q)︸ ︷︷ ︸

Imitation Learning Loss

]
, (5)

where T denotes the success trajectories among the G roll-
out samples, λ > 0 is the penalty weight of the imitation
loss. The difference compared to (4) are highlighted in blue.
Intuitively, (5) encourages the model to maximize the like-
lihood of successful trajectories, effectively imitating both
high-quality responses and the associated environment feed-
back. By maximizing the likelihood of generating the entire
trajectory, including both LLM-generated and feedback to-
kens, the model learns to produce better answers and interpret
and incorporate feedback for iterative refinement.

MRRL with Feedback Reflection Imitation. However,
directly adding imitation loss to MRRL can be problematic,
as it may cause the model to overfit to the environment feed-
back. This is particularly risky when the feedback is irregular
or noisy, for example, text describing partial progress on a
puzzle, or raw output from an external tool. As the underlying
distribution of the environment feedback may differ signif-
icantly from the LLM’s generation distribution, the model
may struggle to learn meaningful patterns from the feedback.

To mitigate this issue, we propose a novel feedback reflec-
tion mechanism that leverages a reference LLM to reflect
on the environment feedback and generate a more informa-
tive version of it, which can be used to guide the subsequent
interactions.

At the t-th round of interaction, after generating an
answer ot and receiving raw environment feedback f t,
the model samples a feedback reflection f̂ t ∼ πref(· |
[st−1, ot, inst, f t]). Here, πref is a reference LLM with
frozen parameters, which can be instantiated as either an
SFT model or the initial checkpoint of πθ. inst ∈ V ∞

is a fixed instruction prompting the model to reflect on
the feedback and its prior response. The reflection f̂ t is
then appended to the context to guide the next round of
interaction. We denote the resulting trajectory as τ+ ≜
[o1, f̂1, . . . , f̂T−1, oT ] ∼ (πold(· | q), P (· | ·, ·), πref(· | ·)),
where the notation compactly represents the sampling pro-
cess: πold generates answers, P provides environment feed-
back, and πref produces feedback reflections. The state is
redefined as st ≜ [q, o1, f̂1, . . . , ot, f̂ t]. This defines the
MRRL with Feedback Reflection Imitation (MRRL w/
FRI) training objective, expressed as:
ĴMRRL(πθ) ≜ E (q,a)∼D

{τ+,i}G
i=1∼(πold(·|q),P (·|·,·),πref (·|·))[

1

G

G∑
i=1

T∑
t=1

r̂i,t(θ)︸ ︷︷ ︸
Reinforcement Learning Loss

− λ

|T |
∑
τi∈T

1

|τ+,i|
log πθ(τ+,i|q)︸ ︷︷ ︸

Imitation Learning Loss

]
,

(6)
The key distinction from the original objective in (5) is that
the raw feedback f t is replaced by its reflection f̂ t in the
trajectory, and both the MRRL loss and imitation loss are
computed over the modified trajectory τ+,i instead of the
original τi. This has two advantages: 1. The reflected feed-
back, generated by the reference LLM, filters out irrelevant
or noisy details (e.g., irregular formatting from tool outputs
or puzzle interpreters), helping the target policy better extract
essential information from the environment feedback; and 2.
The distribution of the LLM-generated feedback reflections
are closer to that of the target model’s outputs, which makes
imitation learning more effective. This setup encourages the
model to learn how to reflect on feedback and iteratively im-
prove its responses, mimicking a multi-round reasoning pro-
cess. A Pytorch-style pseudo-code of our proposed method
is outlined in Algorithm 1.

Experiments
Datasets or Environments
We evaluate MRRL across four benchmark domains designed
to stress-test multi-round reasoning under distinct challenge
regimes:

Sokoban: Sokoban (Schrader 2018) is a grid-based puzzle
game requiring agents to push crates to target positions while
avoiding irreversible deadlocks. This environment evaluates
spatial planning, recovery from erroneous actions, and long-
horizon strategy adaptation through incremental environment
feedback (e.g., invalid move notifications, crate positions).
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There are 4 houses, numbered from 1 to 4. Each house has a different owner, and
each person has 3 characteristics. These possible characteristics are as follows:

- Pet: Goldfish, Hamster, Rat, Fish
- Favorite Music Genre: Funk, Pop, Indie, Jazz
- Favorite Sport: Skateboarding, Soccer, Skiing, Swimming

1. Goldfish is nearby Rat
2. Rat is nearby Pop
3. Fish is between Swimming and Skiing
4. Jazz is on the right of Soccer
5. Pop is between Skiing and Indie
6. Skiing is either on the far left or far right

(b) An example of Zebra Logic puzzle with 4 houses, 3 attributes, and 6 clues. One should use logical
deduction to get the solution based on the background and the clues.

Figure 2: An illustration of environments. All environments are text-based and implemented with the standard APIs of
Gym (Brockman et al. 2016).

Question Answering (QA): Using Natural Questions
(NQ) (Kwiatkowski et al. 2019), we simulate a search-
augmented QA setup where the agent iteratively refines
queries, retrieves passages, and synthesizes answers. The
environment provides feedback via retrieved text relevance
scores and answer correctness signals, testing open-domain
reasoning and evidence integration.

Mathematical Reasoning: We employ the Deepscaler
dataset (Luo et al. 2025), featuring 40K problems spanning
multiple data sources. Each problem is paired with a stepwise
verifier that returns partial credit for intermediate results,
enabling the model to revise solutions iteratively.

Zebra Logic Puzzles: Zebra (Lin et al. 2025) is a con-
strained satisfaction benchmark with natural language de-
scriptions of entity-attribute relationships. The environment
validates proposed solutions against implicit rules, returning
where the error happens in the solution to guide iterative
deduction.

For QA, math, and Zebra tasks, we implement interactive
environments where the agent submits answers and receives
structured feedback (e.g., retrieval scores, partial correctness,
and constraint violations).

Experimental Setup

We measure performance using the following metrics: suc-
cess rate, response length,, and average environment inter-
actions. To explore how model capacity influences MRRL’s
performance, we experiment with three models of varying
sizes: DeepSeek-R1-Distill-Qwen-1.5B (Guo et al. 2025),
Qwen2.5-7B, and Qwen2.5-14B-Instruct (Yang et al. 2024).
We extend the VERL framework (Sheng et al. 2024), a re-
inforcement learning platform, by adding a modular patch
to support multi-round interactions. This approach preserves
compatibility with VERL’s latest updates without altering its
core structure. Each model is trained on a single node with
8× NVIDIA 80G H800 GPUs. More details on experimental
settings can be found in the Appendix.

Main result
The first two rows in Figure 3 present normalized rewards
for MRRL variants during training and inference across four
environments: Sokoban, Mathematical Reasoning, Search
Tasks, and Zebra Logic Puzzles. During training, MRRL w/
FRI consistently achieves higher asymptotic rewards than the
baseline MRRL model, with pronounced gains in Sokoban
and Zebra puzzles. This advantage stems from FRI’s ability to
leverage multi-round interactions to refine reasoning chains,
enabling more effective policy optimization.

In inference, MRRL w/ FRI demonstrates superior general-
ization, outperforming baselines in Mathematical Reasoning
and Search Tasks. Structured feedback in these domains fa-
cilitates precise refinement of reasoning trajectories, yielding
higher-quality solutions with fewer steps. These findings
highlight that FRI not only accelerates training convergence
but also enhances robustness during deployment, enabling
large language models (LLMs) to produce high-quality solu-
tions across diverse interactive settings. More results can be
seen in Appendix.

Response Length
The third row in Figure 3 illustrates the evolution of re-
sponse length during MRRL training across four environ-
ments. In Sokoban, MRRL exhibits a steady reduction in
response length, reflecting improved spatial planning effi-
ciency through iterative feedback. Mathematical Reasoning
shows rapid early-stage reductions, indicating the frame-
work’s ability to internalize error patterns and streamline
derivations. Search Tasks demonstrate early stabilization of
response lengths, driven by rapid adaptation to structured
tool feedback. Zebra Logic Puzzles, however, require pro-
longed refinement, as the model distills complex constraint
propagation into concise logical deductions.

Across all environments, MRRL w/ FRI achieves the short-
est final response lengths, requiring fewer tokens than the
baseline by integrating paraphrased feedback into the agent’s
behavioral distribution. This reduction correlates with fewer
redundant reasoning steps and faster task resolution, partic-
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Figure 3: Performance during training, including normalized training reward, normalized validation reward, AIME24 accuracy
pass@1, response length, and the number of rounds to success in different environments.

ularly in noisy feedback settings (e.g., partial puzzle states
in Sokoban). These trends underscore MRRL’s ability to bal-
ance response quality with computational efficiency, a critical
advancement for real-time LLM applications.

Enviroment Interaction Analysis
We also analyze the number of environment interaction steps
in the last row in Figure 3. MRRL w/ FRI achieves the lowest
average interaction steps per successful task, with significant
reductions in Zebra Puzzles, Sokoban, and Mathematical
Reasoning compared to the baseline. This efficiency arises
from FRI’s mechanism to paraphrase raw feedback into the
LLM’s intrinsic behavioral distribution, filtering task-specific
noise (e.g., partial puzzle states or unstructured tool outputs)
and accelerating the internalization of actionable heuristics.
For example, in Zebra Puzzles, FRI agents streamline multi-
round constraint propagation into structured deductions, min-
imizing redundant exploration.

These results demonstrate MRRL’s ability to optimize in-
teraction efficiency while maintaining robustness, a key con-
tribution for real-world deployment where computational and
API costs are critical. By reducing interaction steps and re-
sponse lengths, MRRL w/ FRI advances the scalability of
LLMs in interactive, feedback-driven environments.

Ablation Study
We perform ablation studies on Zebra Logic Puzzles by vary-
ing λ, the weight of the feedback reflection imitation loss in
MRRL. As shown in Figure 4, increasing λ leads to higher
and more stable training rewards. Notably, even with λ = 0.3,
where training is less stable, the final performance surpasses
the baseline (λ = 0), indicating that the feedback reflection
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Figure 4: Ablation study on the weight of feedback reflection
imitation loss.

imitation loss helps the LLM learn more effectively from the
full trajectory.

Conclusion

We propose Multi-round Reinforcement Learning with Feed-
back Reflection Imitation (MRRL w/ FRI), a framework that
enhances LLMs’ strategic reasoning in interactive settings.
In addition to environment rewards, MRRL incorporates text-
based feedback to provide richer task guidance. A reference
LLM generates feedback reflections, enabling the target pol-
icy to learn from successful interaction trajectories. Experi-
ments on text-based games, mathematical reasoning, search
problems, and logic puzzles show that MRRL stabilizes multi-
round RL and reduces interaction steps, demonstrating its
effectiveness in interactive reasoning tasks.
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Appendix
Implementation Details

We list the hyperparameters for training in different environments, as shown in table 1.

Hyper-parameter Sokoban Search Math Zebra

Global batchsize 2048 1024 1024 1024
Mini batchsize 64 1024 128 32
Number of rollout per sample 32 1 128 32
Rollout temperature 0.8 0.5 0.85 0.4
Top-p 1 1 1 1
Top-k N/A N/A N/A N/A
Rollout max round 5 4 2 3
Prompt length 2048 2048 2048 800
Response length per turn 800 500 4096 3000
Feedback length per turn 800 500 4096 800
Actor learning rate 3e-7 1e-6 1e-6 1e-7
Critic learninig rate 1e-5 1e-5 1e-5 N/A
Critic warm up step 0 0 7 N/A
GAEγ 1 1 1 N/A
GAEλ 1 1 1 N/A
Gradient clipping 1 1 1 1
Clip ratio low 0.2 0.2 0.2 0.2
Clip ratio high 0.2 0.2 0.28 0.28
KL-divergence coefficient 0 0.001 0 0
γ 1 1 1 1
λ 0.1 0.1 0.1 0.3

Table 1: Training Hyper-parameters.

To optimize GPU memory utilization, we employ gradient checkpointing and Fully Sharded Data Parallel (FSDP) (Zhao et al.
2023) with CPU offloading (Ren et al. 2021). The lower and higher clipping ranges are 0.2 and 0.28, consistent with the VAPO
framework (Yuan et al. 2025).

Derivation of Proximal Policy Gradient Estimator of MRRL

Proof of Proposition 1. To derive the proximal policy gradient estimator of MRRL, we only need to get the policy gradient of
the MRRL objective, i.e., ∇θJMRRL(πθ). Then, we can follow the derivations in PPO (Schulman et al. 2017) to obtain the
proximal policy gradient estimator

By definition, ∇θJMRRL(πθ) is given by

∇θJMRRL(πθ) (7)

=∇θE(q,a)∼D,τ∼(πθ(·|q),P (·|·,·))

[ T∑
t=1

γtR(ot, a, f t)

]
(8)

=∇θ

∫∫ ( T∑
t=1

γtR(ot, a, f t)

)
pθ(τ)pD(q, a)dτd(q, a) (9)

=

∫∫ ( T∑
t=1

γtR(ot, a, f t)

)
∇θ log pθ(τ)pθ(τ)pD(q, a)dτd(q, a) (10)

=E(q,a)∼D,τ∼(πθ(·|q),P (·|·,·))

[( T∑
t=1

γtR(ot, a, f t)

)
∇θ log pθ(τ)

]
, (11)

where pθ(τ) ≜ πθ(o
T |sT−1)

∏T−1
t=1

(
P (f t|st−1, ot)πθ(o

t|st−1)
)
.



Notice that

∇θ log pθ(τ) (12)

=∇θ

(
log πθ(o

T |sT−1) +

T−1∑
t=1

(
logP (f t|st−1, ot) + log πθ(o

t|st−1)

))
(13)

=

∇θ log πθ(o
T |sT−1) +

T−1∑
t=1

(
∇θ logP (f t|st−1, ot)︸ ︷︷ ︸

=0, Feedback Masking

+∇θ log πθ(o
t|st−1)

) (14)

=

T∑
t=1

(
∇θπθ(o

t|st−1)

πθ(ot|st−1)

)
. (15)

Therefore, the policy gradient is

∇θJMRRL(πθ) = E(q,a)∼D,τ∼(πθ(·|q),P (·|·,·))

[(
T∑

t=1

∇θπθ(o
t|st−1)

πθ(ot|st−1)

)( T∑
t=1

γtR(ot, a, f t)

)]
. (16)

Following derivations in (Schulman et al. 2017), the proximal policy gradient estimator of (16) is:

∇θĴMRRL(πθ) ≜E(q,a)∼D,{τi}G
i=1∼(πold(·|q), P (·|·,·))[

1

G

G∑
i=1
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i )
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i, clipϵ
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t−1
i )

)
Ât

i

)]
, (17)

where Ât
i is implemented as one of the generalized advantage estimators (Schulman et al. 2016).

Extra Experimental Results
Our experimental setup can be viewed as: LLM model + RL algorithm + single-round/multi-round(SR/MR). Our paper
benchmarks MRRL w/ FRI against MRRL and SRRL with the same baseline model. In the same setting of MRRL, there are a
few works on training LLM / VLM in an interactive environment with multiple rounds [1,2,3], as mentioned in Reviewer ewh2’s
comment and also others mentioned in lines 83-84 of our paper. However, they were trained based on different state-of-the-art
(SOTA) LLM models at their time. We want to study whether using our MRRL w/ FRI to train the LLM model can improve the
performance of the model on the corresponding environment.

To better illustrate this point, we further supplemented the experiment. Taking into account the reviewer’s suggestion to add
an error bar, we repeated the experiment using three different random seeds for each setting. The new experimental results are
shown in Table 2.

LLM Model RL Algorithm Environment Train Reward Test Reward

Qwen2.5-7B-Base - Search - 0.1765 ± 0.0111
Qwen2.5-7B-Base MRRL w/ FRI Search 0.4404 ± 0.0160 0.4082 ± 0.0091
DeepSeek-R1-Distill-Qwen-1.5B - Math - 0.0778 ± 0.0157
DeepSeek-R1-Distill-Qwen-1.5B MRRL w/ FRI Math 0.5088 ± 0.0312 0.3111 ± 0.0157
Qwen2.5-7B-Base - Sokoban - -0.3780 ± 0.8796
Qwen2.5-7B-Base MRRL w/ FRI Sokoban 7.3698 ± 0.5182 7.6074 ± 0.1713
Qwen2.5-14B-Instruct - Logic puzzle - 0.3461 ± 0.0323
Qwen2.5-14B-Instruct MRRL w/ FRI Logic puzzle 0.8040 ± 0.0058 0.4238 ± 0.0125

Table 2: Model Performance Comparison.

To further demonstrate the universality of our approach, in addition to the experiments shown in Figure 3 of the paper, we
further reproduce our approach on different LLM models. The results show that the MRRL with FRI algorithm is effective across
multiple LLM models. The experimental results are shown in Table 3.

In addition to the ablation experiments on the Zebra (Logic Puzzle) environment presented in our paper (Section 5.6), we
further conducted ablation experiments on the Math environment. We do the ablation among MRRL w/ FR(only use feedback



LLM Model RL Algorithm Environment Train Reward Test Reward

DeepSeek-R1-Distill-Qwen-1.5B - Math - 0.0778 ± 0.0157
DeepSeek-R1-Distill-Qwen-1.5B MRRL w/ FRI Math 0.5088 ± 0.0312 0.3111 ± 0.0157
Qwen2.5-7B-Base - Math - 0.0000 ± 0.0000
Qwen2.5-7B-Base MRRL w/ FRI Math 0.2897 ± 0.0337 0.2444 ± 0.0314
Qwen3-4B - Math - 0.2222 ± 0.0157
Qwen3-4B MRRL w/ FRI Math 0.4749 ± 0.0433 0.4444 ± 0.0157
Qwen2.5-3B-Base - Search - 0.1615 ± 0.0102
Qwen2.5-3B-Base MRRL w/ FRI Search 0.3408 ± 0.0332 0.3311 ± 0.0200
Qwen2.5-7B-Base - Search - 0.1765 ± 0.0111
Qwen2.5-7B-Base MRRL w/ FRI Search 0.4404 ± 0.0160 0.4082 ± 0.0091
Qwen2.5-7B-Instruct - Search - 0.3168 ± 0.0016
Qwen2.5-7B-Instruct MRRL w/ FRI Search 0.4674 ± 0.0082 0.3772 ± 0.0060
Qwen2.5-7B-Base - Sokoban - -0.3780 ± 0.8796
Qwen2.5-7B-Base MRRL w/ FRI Sokoban 7.3698 ± 0.5182 7.6074 ± 0.1713
Qwen2.5-7B-Instruct - Sokoban - 1.4994 ± 0.1484
Qwen2.5-7B-Instruct MRRL w/ FRI Sokoban 7.6018 ± 0.3635 7.6275 ± 0.1167

Table 3: Model Performance Across Different Environments.

LLM Model RL Algorithm Environment Train Reward Test Reward (AIME24 pass@1)

DeepSeek-R1-Distill-Qwen-1.5B MRRL w/ FRI Math 0.5088 ± 0.0312 0.3111 ± 0.0157
DeepSeek-R1-Distill-Qwen-1.5B MRRL w/ IL Math 0.3607 ± 0.0859 0.1778 ± 0.0314
DeepSeek-R1-Distill-Qwen-1.5B MRRL w/ FR Math 0.4336 ± 0.1162 0.2889 ± 0.0157
DeepSeek-R1-Distill-Qwen-1.5B MRRL Math 0.4359 ± 0.0437 0.2333 ± 0.0544
DeepSeek-R1-Distill-Qwen-1.5B - Math - 0.0778 ± 0.0157

Table 4: Ablation Study on Math Environment.

reflection), MRRL w/ IL and MRRL w/ FRI on math environment, repeating the experiment with 3 different random seeds for
each algorithm, and the result in Table 4.

The results show that the MRRL algorithm itself can improve the task effect of the model through training, and the MRRL
w/FRI algorithm can bring additional performance improvement compared to the MRRL algorithm. If feedback reflection
is not used and only imitation learning (i.e., MRRL w/IL) is used, performance may decrease, which confirms our intuition.
MRRL w/FR using only feedback reflection can also bring certain performance improvement compared to MRRL, but the best
performance improvement comes from MRRL w/FRI.

Case Study

Case Study: Multi-round Interaction on Zebra Logic Puzzle

Query:

You are solving a Zebra puzzle (also known as Einstein’s Puzzle).

## Description
In this puzzle, you need to match attributes to objects based on given clues.
Each attribute (like houses, colors, drinks, etc.) must be matched to exactly one item in each category.

## How to Solve
1. Use logical deduction to eliminate impossible combinations and determine which attributes go together
2. After give the answer, you can reflect on the answer by trying to check whether the answer remains unfilled or
self-consistent and find out potential logic mistakes against a certain clue.



## Format Your Answer
Provide your solution in this format:
<answer>
— House — Attribute 1 — Attribute 2 — ... —
— — — — — — — — —
— 1 — [value1] — [value2] — ... —
— 2 — [value1] — [value2] — ... —
— ... — ... — ... — ... —
</ answer>

## Puzzle:
There are 4 houses, numbered from 1 to 4. Each house has a different owner, and each person has 3 characteristics.
These possible characteristics are as follows:
- Favorite Movie Genre: Western, Science, Romance, Thriller
- Favorite Music Genre: Pop, Techno, Gospel, House
- Favorite Food: Lettuce, Banana, Kale, Cherry

Clues:
1. The person who likes Cherry as their Favorite Food is either on the left or right of the person who likes Lettuce as their
Favorite Food, no on in between
2. The person who likes Thriller as their Favorite Movie Genre is either on the left or right of the person who likes
Western as their Favorite Movie Genre, no on in between
3. The person who likes Techno as their Favorite Music Genre is located on the right of the person who likes Romance as
their Favorite Movie Genre, no one in between
4. The person who likes House as their Favorite Music Genre is located on the far left
5. The person who likes Banana as their Favorite Food is the same person who likes Pop as their Favorite Music Genre
6. The person who likes Cherry as their Favorite Food is the same as the person who likes Gospel as their Favorite Music
Genre
7. The person who likes Lettuce as their Favorite Food is located on the far right
8. The person who likes Thriller as their Favorite Movie Genre is either on the left or right of the person who likes
Romance as their Favorite Movie Genre, no on in between

Always output: <think>[Your thoughts] </ think><think>[Your thoughts] </ think><answer>[your an-
swer] </ answer><think>[Your reflections] </ think><answer>[your answer] </ answer>with no extra text. Strictly
follow this format. Once you believe that you should think more, you can output another thinking step after a thinking
step since consecutive thinking steps are allowed. But provide the final answer after the last thinking step.

—————————————————————————————————-
LLM Response at Round 1:

<think>From the clues, we can start by placing the attributes that have the most specific locations. Clue 4
tells us that the person who likes House as their Favorite Music Genre is located on the far left, so House is in House 1.
Clue 7 tells us that the person who likes Lettuce as their Favorite Food is located on the far right, so Lettuce is in House
4. </ think>

<think>Clue 5 tells us that the person who likes Banana as their Favorite Food is the same person who likes
Pop as their Favorite Music Genre. Since House 1 is already taken by House (Music Genre), Banana and Pop cannot be
in House 1. Lettuce is in House 4, so Banana and Pop cannot be in House 4 either. This means Banana and Pop must be
in either House 2 or House 3. </ think>

<think>Clue 6 tells us that the person who likes Cherry as their Favorite Food is the same as the person who
likes Gospel as their Favorite Music Genre. Cherry and Gospel cannot be in House 1 (House) or House 4 (Lettuce), so
they must be in either House 2 or House 3. Since Banana and Pop are already in either House 2 or House 3, Cherry and
Gospel must be in the other house. </ think>

<think>Clue 1 tells us that the person who likes Cherry is either on the left or right of the person who likes
Lettuce, with no one in between. Since Lettuce is in House 4, Cherry must be in House 3. This means Gospel is also in



House 3. Therefore, Banana and Pop must be in House 2. </ think>

<think>Clue 2 tells us that the person who likes Thriller is either on the left or right of the person who likes
Western, with no one in between. Since House 1 and House 4 are already filled, Thriller and Western must be in Houses
2 and 3. Since House 3 already has Cherry and Gospel, Thriller must be in House 2 and Western in House 3. </ think>

<think>Clue 3 tells us that the person who likes Techno is located on the right of the person who likes Ro-
mance, with no one in between. Since House 1 is House (Music Genre), Romance must be in House 2 and Techno in
House 3. </ think>

<think>Clue 8 tells us that the person who likes Thriller is either on the left or right of the person who likes
Romance, with no one in between. This is consistent with our current arrangement, where Thriller is in House 2 and
Romance is also in House 2. </ think>

<answer>
— House — Favorite Movie Genre — Favorite Music Genre — Favorite Food —
— — — — — — — — —
— 1 — Western — House — - —
— 2 — Thriller — Pop — Banana —
— 3 — Romance — Techno — Cherry —
— 4 — - — - — Lettuce —
</ answer>

<think>After reviewing the solution, I notice that House 1 and House 4 are missing some attributes. Let’s
fill in the remaining attributes. House 1 must have Western as the Movie Genre and House as the Music Genre. House 4
must have Science as the Movie Genre and Lettuce as the Food. </ think>

<answer>
— House — Favorite Movie Genre — Favorite Music Genre — Favorite Food —
— — — — — — — — —
— 1 — Western — House — - —
— 2 — Thriller — Pop — Banana —
— 3 — Romance — Techno — Cherry —
— 4 — Science — - — Lettuce —
</ answer>

—————————————————————————————————-
Raw Feedback at Round 1:

Re-examining:
House 1: Favorite Food: - is not in original attributes. Favorite Movie Genre: Western is correct. Favorite Music Genre:
House is correct.
House 2: Favorite Food: Banana is correct. Favorite Movie Genre: Thriller is correct. Favorite Music Genre: Pop is
correct.
House 3: Favorite Food: Cherry is correct. Favorite Movie Genre: Romance is correct. Favorite Music Genre: Techno
should be in another house.
House 4: Favorite Food: Lettuce is correct. Favorite Movie Genre: Science should be in another house. Favorite Music
Genre: - is not in original attributes.

—————————————————————————————————-
Feedback Reflection Instruction at Round 1:

Please pretend not to know the ground truth, and do the re-examination in mind. Then reflect on the previous
thinking and answer by pointing out the potential logic mistakes against a certain clue or without self-consistency. Never
leak ground truth explicitly and implicitly. Never give certain solutions since they will leak the ground truth. Never give
the revised answer. Always output: <think>[the reflection] </ think>with no extra text.



—————————————————————————————————-
Feedback Reflection at Round 1:

<think>Upon re-examining the solution, I notice that House 3 has Techno as the Favorite Music Genre, but
Clue 3 states that the person who likes Techno is located on the right of the person who likes Romance, with no one in
between. This means Techno should be in House 4, not House 3. Additionally, House 1 is missing its Favorite Food,
which should be Kale since it’s the only remaining option. House 4 is missing its Favorite Music Genre, which should be
Techno, as it’s the only remaining option. These adjustments would make the solution self-consistent with all the clues.
</ think>

—————————————————————————————————-
LLM Response at Round 2:

<think>Re-evaluating the placement of Gospel and the remaining attributes, let’s go through the clues again
carefully. Clue 6 tells us that the person who likes Cherry as their Favorite Food is the same as the person who likes
Gospel as their Favorite Music Genre. Since Cherry is in House 3, Gospel must also be in House 3. This means the
remaining Music Genre for House 4 must be Pop, but Pop is already in House 2. Therefore, the remaining Music
Genre for House 4 must be the only one left, which is Techno. However, Techno is already in House 3. This in-
dicates a mistake in the placement of Techno. Let’s re-evaluate the placement of Techno and the other attributes. </ think>

<think>Clue 3 tells us that the person who likes Techno is located on the right of the person who likes Ro-
mance, with no one in between. Since Romance is in House 2, Techno must be in House 3. This is consistent with our
current arrangement. However, Clue 6 tells us that the person who likes Cherry is the same as the person who likes
Gospel, and Cherry is in House 3. Therefore, Gospel must be in House 3. This leaves Pop for House 2 and House for
House 1. </ think>

<think>Revisiting the remaining attributes, House 1 must have Western as the Movie Genre, House as the
Music Genre, and the only remaining Food, which is Kale. House 4 must have Science as the Movie Genre, Techno as
the Music Genre, and Lettuce as the Food. </ think>

<answer>
— House — Favorite Movie Genre — Favorite Music Genre — Favorite Food —
— — — — — — — — —
— 1 — Western — House — Kale —
— 2 — Thriller — Pop — Banana —
— 3 — Romance — Gospel — Cherry —
— 4 — Science — Techno — Lettuce —
</ answer>

<think>After re-evaluating the solution, I have filled in the remaining attributes and ensured that all clues are
satisfied. The solution is consistent with all the given clues, and each house has a unique combination of attributes. </
think>

<answer>
— House — Favorite Movie Genre — Favorite Music Genre — Favorite Food —
— — — — — — — — —
— 1 — Western — House — Kale —
— 2 — Thriller — Pop — Banana —
— 3 — Romance — Gospel — Cherry —
— 4 — Science — Techno — Lettuce —
</ answer>

—————————————————————————————————-
Raw Feedback at Round 2:

The answer is correct.


