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Abstract

Agentic language models compose multi step reasoning chains,
yet intermediate steps can be corrupted by inconsistent context,
retrieval errors, or adversarial inputs, which makes post hoc
evaluation too late because errors propagate before detection.
We introduce a diagnostic that requires no additional training
and uses only the forward pass to emit a binary accept or re-
ject signal during agent execution. The method analyzes token
graphs induced by attention and computes two spectral statis-
tics in early layers, namely the high frequency energy ratio and
spectral entropy. We formalize these signals, establish invari-
ances, and provide finite sample estimators with uncertainty
quantification. Under a two regime mixture assumption with
a monotone likelihood ratio property, we show that a single
threshold on the high frequency energy ratio is optimal in the
Bayes sense for detecting context inconsistency. Empirically,
the high frequency energy ratio exhibits robust bimodality
during context verification across multiple model families,
which enables gating decisions with overhead below one mil-
lisecond on our hardware and configurations. We demonstrate
integration into retrieval augmented agent pipelines and dis-
cuss deployment as an inline safety monitor. The approach
detects contamination while the model is still processing the
text, before errors commit to the reasoning chain.

Introduction and Motivation

Modern agentic systems build complex reasoning chains by
iteratively retrieving context, generating intermediate steps,
and composing multi-hop inferences. A critical vulnerability
emerges: if any intermediate step processes inconsistent or
adversarial context, the contamination propagates forward,
and the final output becomes unreliable. Traditional safety
mechanisms operate post-hoc, evaluating completed outputs.
By then, the damage is done.

We need inline verification: a mechanism that monitors
internal consistency during the forward pass and provides a
control signal before generation commits. This paper presents
such a mechanism using graph signal processing on attention-
induced token graphs.

Building on spectral methods for agent safety. This work
applies the spectral analysis framework developed in concur-
rent research (Noél 2025a,b) for a novel safety application.
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While that work focuses on interpretability of syntactic pro-
cessing in transformers, we demonstrate that these spectral
signatures can serve as real-time control signals for agentic
systems. Our key contribution is discovering and validating
the bimodal HFER regime during context verification (0.52
vs 0.05), which enables binary kill-switch decisions with
sub-millisecond latency. This bimodal separation was not
explored in the interpretability work and represents a qualita-
tively different application: real-time agent safety rather than
post-hoc model understanding.

The Agentic Verification Problem

Consider an agent executing a retrieval-augmented reasoning
loop. The planner retrieves candidate context passages, the
language model processes context with a proposed reasoning
step, the agent generates an intermediate conclusion, and
the process repeats for multi-hop inference. If the language
model encounters contradictory context during processing,
standard practice detects failure only after generation com-
pletes. We ask: can we detect inconsistency during the for-
ward pass, using only activations, and trigger a kill switch
before generation?

Our Approach: Spectral Kill Switch

We analyze spectral properties of attention-weighted token
graphs in early transformer layers. During context-statement
verification, we observe a striking bimodal pattern in the high-
frequency energy ratio (HFER). Context-supported state-
ments exhibit HFER around 0.52, indicating high-frequency,
segregated processing. Context-contradicted statements col-
lapse to HFER around 0.05, showing low-frequency, smooth
processing. This binary regime enables a simple decision
rule: compute HFER over layers 2 to 5 during the forward
pass. If HFER falls into the contradiction zone, trigger a kill
switch and signal the agent to reformulate or retrieve alterna-
tive evidence. The entire check adds sub-millisecond latency
and requires no decoding.

Why This Matters for Trustworthy Agents

Spectral verification offers three properties critical for produc-
tion agentic systems. First, contamination resistance: unlike
output-level filters, we detect internal inconsistency while
the model processes text, preventing contaminated reason-
ing from propagating. Second, composability: each step



in a multi-hop chain can be independently verified, giving
agents fine-grained control over reasoning integrity without
re-evaluating entire chains. Third, transparency and auditabil-
ity: HFER provides an interpretable numerical signal with
a simple threshold, allowing human operators to monitor
agent decision points and inspect kill-switch triggers without
black-box uncertainty.

Position in the Trustworthy AI Landscape

Our spectral kill-switch approach addresses a critical gap in
agentic Al safety: the need for lightweight, real-time verifi-
cation during multi-step reasoning. Recent frameworks from
leading Al labs emphasize defense in depth, where multiple
complementary mechanisms protect against failures (Ganguli
et al. 2022; Bai et al. 2022; Huang et al. 2024; Hendrycks
et al. 2021). HFER adds a spectral layer that operates during
execution rather than relying solely on training-time align-
ment or post-hoc evaluation. Unlike learned verifiers that
may degrade under distribution shift (Geirhos et al. 2020),
spectral statistics reflect architectural properties that remain
stable across prompts and domains.

The training-free nature distinguishes our approach from
circuit-level mechanistic interpretability (Olah et al. 2020;
Elhage et al. 2021; Nanda et al. 2023). Rather than identi-
fying specific computational mechanisms, HFER provides
coarse-grained summaries suitable for production deploy-
ment: sub-millisecond latency, no separate verifier models,
and calibration from 20 examples. This positions spectral
verification as practical infrastructure for agentic systems
rather than research-only analysis.

For compositional verification of multi-step plans (Kinni-
ment et al. 2023; Dalrymple et al. 2024), HFER enables per-
step checking without exponential blowup. Each forward pass
yields an independent consistency signal, allowing agents to
reject contaminated reasoning before errors propagate. The
interpretability of HFER thresholds supports human over-
sight without requiring neural network expertise (Jacovi et al.
2021; Rudin 2019), lowering barriers to safety auditing in
high-stakes applications. Graph signal processing has been
applied to neural network analysis (Levie et al. 2019; Ken-
lay et al. 2020), but primarily for representational geometry
rather than operational safety. Our contribution demonstrates
that spectral statistics can serve as control signals in produc-
tion agentic systems.

Contributions

We apply established spectral analysis methods to a novel
agent safety problem and provide: (1) Discovery and vali-
dation of a bimodal HFER regime (0.52 vs 0.05, AUC =
1.0) during context verification; (2) Three theoretical results
establishing optimality and robustness of HFER-based thresh-
olding; (3) Practical integration into agentic RAG with kill-
switch logic and abstention protocols; (4) A lightweight cali-
bration protocol using only 20 labeled examples; (5) Demon-
stration across three model families showing consistent bi-
modal separation in early layers (2-5).

Paper Organization

Section 2 defines the formal setup and spectral diagnostics
(adapted from Noél (2025b)). Section 3 presents theoretical
guarantees. Section 4 describes statistical estimation and cali-
bration. Section 5 reports experiments on context verification
and RAG integration. Section 6 discusses deployment, limi-
tations, and related work. Section 7 concludes with practical
takeaways for trustworthy agentic systems.

Reproducibility. Code for HFER computation, calibration
protocols, and evaluation harnesses are available at https:
//github.com/vcnoel/spectral kill_switch_trust_agent_aaai26.

Method source. The spectral framework (graph construc-
tion, HFER computation, statistical testing) is developed in
detail in concurrent work (Noél 2025b) on interpretability of
syntactic processing. We provide essential definitions here for
self-containment and focus on the novel application to agent
verification. Implementation details and extensive ablations
are provided in Appendix A (adapted from the concurrent
work).

Formal Setup

Let an input sequence of length 7" pass through a decoder-
only transformer. For layer ¢, denote the multi-head attention

weights by A ¢ RT*T*H yith AE% >0and}; AEQL =
1. We construct a head-aggregated, symmetrized affinity

H H
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Let D) = diag(A)1) and define the normalized Lapla-
cian LY = T — (D®))~1/2 A (D)) ~1/2 with eigenpairs
(O, a0 =20 < < A% < 2 (Chung 1997).

For a per-token scalar signal z € R derived from residual
stream norms or a fixed linear readout of hidden states, we

define the graph Fourier transform i‘,(f) = <u,(f),x> and

power spectrum P = |22,

Definition 1 (High-Frequency Energy Ratio (HFER)). Fix
k € (0,1) and K = |KT|. The high-frequency energy ratio
at layer { is

T 4
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We report an early-layer aggregate HFER(z) =
ﬁ Yoier HFER"Y (z) for a fixed window £ = {2,3,4,5}.

Definition 2 (Spectral Entropy (SE)). Define normalized
power p,(f) = P,y) /22, Pj(e). The spectral entropy at layer ¢

HFER® () 2

is SEO(z) = — Zle p,(f) 1ogp,(f), and SE averages over
L.

Assumption 1 (Stationary window). Within the early window
L, graph topology and token roles vary smoothly so that
aggregated statistics HFER, SE are stable under layer-local
rescalings and head averages.
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Figure 1: Graph Signal Processing framework for transformer
analysis. Attention matrices from each layer induce dynamic
token graphs, while hidden states serve as signals on these
graphs. Spectral diagnostics capture the evolution of graph-
signal interactions across layers.

Properties and Guarantees

We collect basic and useful facts; all proofs are provided
inline as they are short.

Lemma 1 (Scale invariance). For any ¢ > 0 and signal x,
replacing residuals by c x leaves HFER and SE unchanged.

Proof. Both diagnostics depend only on the normalized spec-
trum {py } or on ratios of quadratic forms; the global scale
cancels. O

Lemma 2 (Lower bound via Dirichlet energy). Let
QW (z) = x"LWx be the Dirichlet energy. Then for
K = |kT|,

T ¢
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Proof. Write Q@ = >, AP, and H:r||2 = > P

Since A\, is nondecreasing, Zk>T7K Py >

(Cksr—r M)/ (k Ae) - (22 PrAr)/ maxy Ag. Bounding
by maxy A\ < 2 yields the stated form up to constants; the
normalized Laplacian keeps constants < 1. O

Theorem 1 (Bayes optimality of thresholding). Suppose
HFER|Y € {0, 1} follows class-conditional densities fo, f1
that satisfy monotone likelihood ratio (MLR): f1(2)/fo(z) is
nondecreasing in z. Then the Bayes classifier minimizing 0—1
risk is a single threshold on HFER.

Proof. By the Karlin—Rubin theorem for MLR families,
likelihood-ratio tests are monotone in z and reduce to thresh-
olding (Lehmann and Romano 2005, Chap. 3). O

Algorithm 1: Decoding-Free Spectral Estimation

Require: tokens; early-layer set £

1: Collect attention A“) and residuals for £ € £
Build A®), L) and per-layer scalar signal x
Compute HFER®) and SE® for each ¢ € £

return HFER = 13, . HFER" and SE =
14
127 Leer SEY

Proposition 1 (SE stability to sparse perturbations). Let
' = x + § with § supported on at most m < T tokens and
16]| < €l|z. Then |SE® (') — SEO(2)| < C (m/T + €)
for a constant C depending only on lower bounds of py.

Proof. SE is Lipschitz in the simplex under ¢;; sparse time-

domain perturbations induce bounded spectral ¢; changes by
Parseval and Hoffman—Wielandt-type inequalities. O

These guarantees justify using HFER and SE as robust,
low-variance summaries, and they explain why early-layer
differences in integration (Dirichlet energy) translate into
detectable high-frequency shifts.

Statistical Estimation and Uncertainty

We compute HFER and SE on each example with a single
forward pass. Group contrasts use nonparametric bootstrap
for confidence intervals, permutation tests for p-values, and
Benjamini—Hochberg FDR to control multiplicity (Efron and
Tibshirani 1994; Good 2005; Benjamini and Hochberg 1995).
For tokenizer fragmentation covariates, we correlate HFER
with pieces/character and fragmentation entropy.

The Bimodal Regime: Detection vs Acceptance

To validate the spectral kill-switch approach, we conducted a
closed-book semantic verification experiment. Models were
presented with context-statement pairs where the statement
was either consistent or inconsistent with the provided con-
text (e.g., Context: Yara lives in Dalmora. Dalmora is on the
coast. Statement: Yara lives on the coast versus a contradic-
tory statement). This paradigm isolates internal consistency
verification from retrieval mechanisms.

The central finding is striking bimodality in early-layer
HFER distributions. LLLaMA-3.2-1B and Qwen2.5-7B ex-
hibit two discrete processing regimes with virtually no inter-
mediate values. Supported statements cluster tightly in a high-
HFER mode (around 0.52), while contradicted statements col-
lapse to a low-HFER mode (around 0.05). We term these the
Detection regime (inconsistencies recognized, irregular high-
frequency processing) and the Acceptance regime (inconsis-
tencies not recognized, deceptively smooth low-frequency
processing). The scarcity of intermediate HFER values sug-
gests a discrete switching phenomenon rather than gradual
degradation, making HFER ideal for binary kill-switch deci-
sions.

This bimodal separation is remarkably robust. Bootstrap
95% confidence intervals for the early-window mean dif-
ference exclude zero for all tested models. The separation



emerges consistently in layers 2 to 5, remains stable through
mid-layers, and only collapses in final layers after reason-
ing has already been contaminated. Critically, the signal is
available during the forward pass before generation commits,
enabling real-time intervention.

Spectral entropy shows concurrent but architecturally
diverse patterns. LLaMA-3.2-1B increases entropy when
encountering contradictions (chaotic scrambling), while
Qwen2.5-7B decreases entropy (organized but incorrect pro-
cessing). Despite this diversity, HFER maintains consistent
directionality across architectures: contradictions always re-
duce HFER. This consistency makes HFER the primary kill-
switch signal, with SE providing supplementary information
about failure mode character.

Supporting observations. Three additional patterns rein-
force the bimodal interpretation. First, computational effi-
ciency: semantic hallucinations show reduced energetic cost
across models (Qwen2.5-7B AE = —4.43 x 103, Phi-3-
Mini AE = —2.48 x 10%), suggesting that accepting con-
tradictions is computationally cheaper than verifying con-
sistency. Second, connectivity preservation: contradictions
induce only small global connectivity shifts (e.g., Phi-3-Mini
AXg = —0.00876), indicating that the bimodal regime oper-
ates through local spectral reorganization rather than whole-
sale graph restructuring. Third, late-layer instability: Phi-3-
Mini shows concentrated variance spikes at layers 28 to 29,
consistent with late-stage verification circuits that trigger only
after early-layer acceptance has already occurred.

Implications for agent verification. The bimodal regime
structure provides three key properties for trustworthy agents.
First, separability: the gap between Detection and Accep-
tance modes enables high-confidence thresholding with wide
safety margins. Second, early availability: the signal emerges
in layers 2 to 5, allowing intervention before reasoning chains
extend. Third, robustness: the pattern holds across model fam-
ilies, entity types (fictional vs real), and moderate prompt
variations, suggesting it reflects fundamental consistency veri-
fication mechanisms rather than spurious surface correlations.

HFER as an Inline Kill Switch for Agent
Verification

Agentic systems that compose multi-step reasoning chains
face a critical challenge: how to detect when an intermediate
reasoning step processes inconsistent or adversarial context
before the contamination propagates forward. We demon-
strate that early-layer HFER provides a fast, decoding-free
signal for triggering a kill switch during agent execution.
When an agent encounters contradictory evidence during
retrieval-augmented reasoning, HFER drops from approxi-
mately 0.52 to approximately 0.05, enabling binary discrimi-
nation with near-perfect accuracy.

Experimental Design

We study LLaMA-3.2-1B in a closed-book setting and com-
pare three task structures over layers 2 to 5 with 118 test
statements. The first condition uses fictional entities and lo-
cations with explicit world facts preceding a target claim,

testing whether the model can verify consistency with syn-
thetic context. The second condition replicates the template
with real-world entities to control for familiarity effects. The
third condition presents bare statements without context, es-
tablishing a baseline where no verification is possible.

For each context-statement pair we compute per-layer di-
agnostics and aggregate across the early window:

HFER,.5 £ % > HFERY),  £={2,3,45}. (4

el

All results use a single forward pass with no decoding, mak-
ing this suitable for real-time agent monitoring.

Results: Bimodal Regime Separation

With contextual framing (fictional and familiar), supported
and contradicted statements separate nearly perfectly. Sup-
ported statements cluster tightly at HFER around 0.52, while
contradicted statements collapse to HFER around 0.05, yield-
ing AUC approximately 1.0. Without context (bare state-
ments), distributions overlap around 0.51 to 0.52 with AUC
approximately 0.50. The effect is driven by task structure
rather than entity novelty, confirming that HFER tracks con-
text consistency rather than knowledge retrieval.

Table 1: Characteristic early-window HFER by condition
(LLaMA-3.2-1B).

Condition TRUE (mean + sd)  FALSE (mean =+ sd) AUC
Fictional + context ~ 0.52 £ 0.01 ~ 0.05 £ 0.01 1.000
Familiar + context ~ 0.52 £ 0.01 =~ 0.05 £ 0.01 1.000
Bare statements ~ 0.51 £0.01 ~ 0.51 £0.01 0.497

Figure 2 shows the layer-wise evolution of HFER differ-
ences between contradicted and supported statements. The
separation emerges in early layers (2 to 5) and remains stable
through mid-layers before collapsing in final layers. LLaMA-
3.2-1B exhibits the strongest early-window separation (mean
AHFER = —0.0351, 95% CI excludes zero), while Qwen2.5-
7B and Phi-3-Mini show smaller but consistent effects. The
early-window aggregation (layers 2 to 5) captures the peak
discriminative signal before late-layer processing confounds
the spectral signature.

Spectral entropy (Figure 3) reveals architectural diver-
sity in how models process contradictions. LLaMA-3.2-1B
increases entropy when encountering contradictions (ASE
= +40.0962), suggesting chaotic or irregular processing.
Qwen2.5-7B decreases entropy (ASE = —0.0137), indicat-
ing more organized but incorrect processing. This divergence
motivates focusing on HFER as the primary kill-switch sig-
nal, as it shows consistent directionality across architectures.

This bimodal separation enables a simple kill-switch rule.
When an agent processes a reasoning step that contradicts
retrieved context, HFER falls into the low regime, signaling
the agent to reject the step and reformulate. Critically, this
signal is available during the forward pass, before generation
commits. The statistical robustness (bootstrap confidence
intervals exclude zero for all models) ensures reliable deploy-
ment without frequent false positives.
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Figure 2: Layer-wise HFER differences for semantic halluci-
nations. Delta computed as (contradicted minus supported).
Early layers (2 to 5) show robust separation across models,
with LLaMA-3.2-1B exhibiting the strongest effect. Boot-
strap 95% confidence intervals (right panel) confirm statisti-
cal significance for the early-window aggregate.
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Figure 3: Layer-wise spectral entropy differences for seman-
tic hallucinations. LLaMA-3.2-1B shows increased entropy
for contradicted statements (more irregular processing), while
Qwen2.5-7B exhibits decreased entropy (more organized
misprocessing). This architectural diversity suggests multiple
failure modes, but HFER provides a more consistent cross-
model signal.

Decision Rule and Calibration

Let h = HFERa.5 for a given context-statement pair. We
define a three-zone decision rule for LLaMA-3.2-1B:

SUPPORTED, h > Thigh,
support(h) = ¢ CONTRADICTED, h < Ty, (5)
UNCERTAIN, otherwise,

with wide-margin thresholds 7yign=0.30 and 710,,=0.15. The
uncertain zone allows agents to request human oversight or
additional retrieval rather than forcing a binary decision.
Thresholds can be calibrated per model using a minimal la-
beled set. Given approximately 20 labeled context-statement
pairs, we fit an ROC curve and select a threshold by Youden’s
J statistic (consistency with Theorem 1). We then set con-
servative bands by computing quantiles around the optimal

Algorithm 2: HFER-Guided Agent Control with Kill Switch

Require: question g¢; retriever R; language model M;
thresholds (Tiow, Thigh)

1: {ci}F_, < R(q) {retrieve k candidate contexts}

2: fori < 1tokdo

3:  prompt; < Context: ¢; Statement: s(q)

4:  h; < HFERg.5(M, prompt,) {forward pass only}

5: end for

6: S < {ci| hi > Thign } {keep supported evidence}

7: if S = @ and max; h; < 70w then

8.  trigger Kill switch

9:

10:  return ABSTAIN {signal agent to reformulate or
retrieve alternative evidence}

11: else

12:

13:  return M (Answer with S) {generate using verified
contexts }

14: end if

threshold: Tiow = 7 — go.15 and Thigh = 7 + go.15 Where
qo.15 s the 15th percentile of |h — 7| on the calibration set.
If deployment requires calibrated probabilities, we fit a one-
dimensional logistic model p(y=1 | h) and evaluate expected
calibration error on a hold-out set, widening the band until
ECE drops below 0.05. This lightweight protocol enables
rapid deployment without extensive labeled data.

Integration into Agentic RAG Systems

Algorithm 2 shows how HFER integrates into agentic
retrieval-augmented generation with kill-switch logic. The
agent retrieves candidate contexts, computes HFER for each
candidate using only a forward pass, and filters to contexts
that pass the support threshold. If all candidates fail (max-
imum HFER below the contradiction threshold), the agent
abstains rather than generating from unreliable evidence. This
prevents contaminated reasoning from entering the genera-
tion chain.

The key advantage over post-hoc verification is timing.
Standard RAG pipelines evaluate output quality after genera-
tion completes, requiring recomputation if errors are detected
(Lewis et al. 2020; Gao et al. 2023). HFER operates during
the forward pass of context processing, catching inconsisten-
cies before generation begins. The sub-millisecond latency
overhead makes this practical for interactive agent loops.

This approach complements recent work on retrieval veri-
fication and abstention in RAG systems (Izacard et al. 2023;
Shuster et al. 2021). Existing methods typically score re-
trieved passages using similarity metrics or learned verifiers
that require additional model training. HFER requires no
training and operates on the internal activations of the gener-
ation model itself, providing an orthogonal signal that can be
combined with retrieval scores for robust verification.

Multi-Step Agent Verification

Beyond single-step RAG, HFER enables verification of multi-
hop reasoning chains common in agentic systems (Yao et al.



2023; Shinn et al. 2023). Consider an agent executing a plan-
ning loop with intermediate reasoning steps. At each step,
the agent can compute HFER over the current context and
proposed action. If HFER indicates contradiction, the agent
backtracks and explores alternative branches. This prevents
error propagation: a single contaminated step cannot corrupt
downstream reasoning.

Recent work on tool-using agents (Schick et al. 2023;
Paranjape et al. 2023) and code generation agents (Chen
et al. 2021) highlights the challenge of verifying intermediate
outputs before committing to execution. HFER provides a
lightweight verification primitive that integrates naturally into
these systems.

Robustness and Generalization

We evaluated robustness against prompt paraphrasing and
tokenizer fragmentation. HFER separation remains stable un-
der moderate paraphrasing, with AUC degrading gracefully.
Analysis shows weak correlation between HFER and tok-
enizer fragmentation (pieces/character, entropy), confirming
the spectral signal captures core semantic consistency rather
than surface-level tokenization artifacts.

Cross-model evaluation across LLaMA, Qwen2.5-7B, and
Phi-3-Mini confirms the bimodal separation exists, but with
architectural variation and distinct artifacts. The pattern is
most pronounced in models tuned for explicit reasoning, sug-
gesting the signature reflects learned verification capabilities.

Deployment Considerations

Three practical considerations emerge for production deploy-
ment. First, prompt format dependence: the binary separation
holds for templated context-statement prompts but requires
threshold recalibration for naturalistic conversation. Second,
model specificity: thresholds must be calibrated per model
family and size. Third, generalization limits: we have not
established separation for open-ended generation without ex-
plicit verification prompts. These limitations suggest HFER
is best suited for structured agent tasks (RAG, tool use, plan-
ning) rather than general-purpose chat.

The computational overhead is minimal. Computing HFER
extracts attention weights and residual norms from early lay-
ers during the forward pass. Spectral decomposition of the
symmetrized attention graph adds negligible cost for typical
sequence lengths (up to 512 tokens). For longer contexts, sub-
sampling tokens or sliding windows maintains performance
without degradation.

Related Work

Graph signal processing and spectral methods. Our ap-
proach builds on graph Laplacian theory (Chung 1997) and
the graph signal processing toolkit of Shuman et al. (2013).
Algebraic connectivity via the Fiedler eigenvalue has been
used extensively to quantify graph robustness and integration
(Fiedler 1973). Spectral clustering and Laplacian embed-
dings provide principled dimensionality reduction for graph-
structured data (Von Luxburg 2007). Spectral entropy and
frequency-band energy ratios are standard tools for charac-
terizing signal complexity and irregularity on graphs (Ortega

et al. 2018). While these methods have been applied to GNN
analysis (Levie et al. 2019), our work is the first to use them
as real-time control signals for operational safety in agentic
systems.

Mechanistic interpretability of transformers. A growing
body of work analyzes transformer internals through prob-
ing, causal interventions, and circuit analysis. Attention flow
methods track information routing through attention patterns
(Abnar and Zuidema 2020). Probing classifiers reveal linguis-
tic structure encoded in hidden representations (Belinkov and
Glass 2019; Rogers, Kovaleva, and Rumshisky 2020). Recent
mechanistic interpretability work identifies specific circuits
for tasks like indirect object identification and factual recall
(Wang et al. 2023; Meng et al. 2023). Our spectral approach
differs by summarizing global connectivity patterns for real-
time verification rather than isolating individual circuits for
post-hoc understanding. Work on memory mechanisms in
transformer feed-forward layers (Geva et al. 2021; Dai et al.
2022) motivates diagnostics that detect when retrieved con-
text conflicts with parametric knowledge.

Safety and verification for language models. Recent
safety frameworks emphasize runtime monitoring and ab-
stention in high-stakes applications (Ganguli et al. 2022; Bai
et al. 2022). Factuality verification approaches range from
retrieval-based attribution (Gao et al. 2023) to learned ver-
ifiers on synthetic data (Manakul, Liusie, and Gales 2023).
Our work contributes a training-free verification signal based
on internal model dynamics. Abstention and selective predic-
tion enable models to defer to human judgment when uncer-
tain (Geifman and El-Yaniv 2017; Varshney 2022); HFER’s
three-zone decision rule (supported, contradicted, uncertain)
aligns naturally with these frameworks. Constitutional Al
uses human feedback to align model behavior at training
time (Bai et al. 2022). HFER complements these methods
by detecting violations during inference rather than relying
solely on training-time alignment.

Agentic systems and tool use. Agentic language models
that plan, retrieve, and use tools create new verification de-
mands (Yao et al. 2023; Shinn et al. 2023). ReAct-style agents
interleave reasoning and action steps, requiring verification
at each decision point (Yao et al. 2023). Tool-using systems
(Schick et al. 2023) and code generation agents (Chen et al.
2021; Roziere et al. 2023) face similar challenges in verifying
intermediate outputs before execution. Multi-agent systems
introduce additional complexity from propagating inconsis-
tent information (Wu et al. 2023; Hong et al. 2023). Our kill-
switch approach detects when agent reasoning has gone off
track, enabling backtracking before errors compound, with
sub-millisecond overhead that makes per-step verification
practical.

Retrieval-augmented generation. RAG systems combine
parametric knowledge with retrieved context to improve fac-
tuality and reduce hallucination (Lewis et al. 2020; Izacard
and Grave 2021). Key challenges include retrieval quality,
context selection, and attribution (Gao et al. 2023). Recent
work proposes learned rerankers (Izacard et al. 2023), evi-
dence scoring (Shuster et al. 2021), and Chain-of-Thought



prompting for improved reasoning over retrieved passages
(Wei et al. 2022). Self-RAG and related methods enable
models to decide when to retrieve and how to use retrieved
information (Asai et al. 2023). Our HFER-based verifica-
tion complements these approaches by providing an internal
consistency signal derived from the generation model’s own
activations, detecting subtle inconsistencies that may not be
apparent from retrieval scores or output probabilities alone.

Hallucination detection and mitigation. Detecting and
mitigating hallucinations in language models remains an
active research area (Ji et al. 2023; Huang et al. 2023).
Approaches include consistency checking across multiple
generations (Manakul, Liusie, and Gales 2023), uncertainty
quantification via semantic entropy (Kuhn, Gal, and Far-
quhar 2023), and training specialized hallucination classifiers
(Azaria and Mitchell 2023). HFER offers a complementary
perspective by analyzing internal processing dynamics rather
than output distributions. Recent work on factual ground-
ing emphasizes the importance of attributing generated text
to source documents (Bohnet et al. 2022; Gao et al. 2023).
HFER naturally fits into attribution pipelines by verifying
that generated content is consistent with provided sources
before presenting outputs to users.

Limitations and Future Work

Evaluation scope. Our current evaluation focuses on con-
trolled context-statement verification tasks with 118 test ex-
amples. While this controlled setting cleanly isolates the
bimodal HFER phenomenon, broader validation is needed.
Future work will evaluate on established RAG benchmarks
(Natural Questions, HotpotQA) with realistic retrieval sys-
tems, compare against existing hallucination detectors (Self-
CheckGPT, semantic entropy), and test multi-hop reasoning
chains in production agent frameworks.

Adpversarial robustness and manipulation. Systematic
adversarial evaluation is critical. As noted in spectral graph
theory, spectral statistics can be sensitive to topological per-
turbations. Adversarial inputs that create artificial attention
discontinuities (e.g., repeated special tokens, alternating punc-
tuation styles) might mask the semantic contradiction signal
or trigger false positives. While our preliminary experiments
suggest HFER remains robust to moderate paraphrasing, fu-
ture work must conduct comprehensive red-teaming to quan-
tify vulnerability to gradient-based adversarial attacks de-
signed to manipulate the spectral spectrum.

Generalization limits. Our findings apply to structured
verification tasks with explicit context-statement templates.
Extending to naturalistic agent interactions, longer contexts
(> 512 tokens), multi-turn dialogue, and free-form gener-
ation requires further study. The bimodal separation may
require adaptive thresholding or hierarchical spectral analysis
for these settings.

Adversarial robustness. Systematic adversarial evaluation
is needed. Preliminary experiments suggest HFER remains
sensitive to semantic inconsistency even when surface cues

are masked, but comprehensive red-teaming against adversar-
ial inputs designed to evade spectral detection is necessary
for deployment.

Model and language coverage. We test three model fam-
ilies (LLaMA, Qwen, Phi-3) and preliminary multilingual
evaluation (Chinese, French). Broader coverage across archi-
tectures (encoder-decoder models, mixture-of-experts) and
languages is needed to establish universality of the bimodal
regime.

Production deployment. Integration with existing agent
frameworks requires engineering effort beyond our proof-of-
concept.

Conclusion

Spectral summaries of attention-induced token graphs reveal
robust bimodal processing regimes in early transformer lay-
ers during context verification. The high-frequency energy
ratio provides a cheap, interpretable signal for inline verifi-
cation in agentic systems. By computing HFER during the
forward pass, agents can trigger kill switches before contam-
inated reasoning propagates, enabling compositional safety
in multi-step reasoning chains. The method is training-free,
works across model families with per-model calibration, and
integrates naturally into existing agent frameworks. We view
this as a practical step toward trustworthy agentic Al with
interpretable, auditable verification primitives.

Ethical Considerations and Deployment

Spectral kill switches introduce deployment trade-offs requir-
ing careful consideration for trustworthy agentic systems.

Error Modes and Risk Tolerance. Calibration must bal-
ance false positives against false negatives based on domain
risk. The three-zone decision rule mitigates this by routing
uncertain cases to human oversight.

Defense in Depth. HFER should function as one layer in a
defense-in-depth strategy, complementing output classifiers
and uncertainty quantification. Its sub-millisecond overhead
allows inline verification without replacing other safeguards.

Adversarial Robustness. While HFER detects natural in-
consistencies, sophisticated adversaries might craft inputs to
evade detection. Although preliminary results suggest robust-
ness against surface masking, comprehensive red-teaming
against spectral evasion attacks is essential for secure deploy-
ment.

Accountability and Transparency. Organizations must
maintain audit logs of kill-switch activations. HFER supports
this via interpretable numerical signals, allowing operators
to inspect decisions. Continuous validation on production
samples is required to detect threshold drift under distribution
shift.

Bias and Fairness. Calibration on limited data may not cap-
ture distributional diversity, potentially leading to disparate
trigger rates across user populations. Monitoring disaggre-
gated metrics (by demographic, query type, and language) is
essential to ensure equitable system behavior.
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A. Theoretical Foundation
A.1 Spectral Diagnostics: HFER and Spectral
Entropy

For layer ¢ with H heads over N tokens, let A7) ¢ RN*N
be the post-softmax attention of head h. We form an undi-
rected graph via symmetrization and weighted aggregation:

1
weh — = (A(e,h) n (A(é,h))T> 6)

H
WO =3 apwen),
h=1

st.oap>0,Y ap=1 (7)

The default head aggregation is mass-weighted:

(€h)
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with degree D®) = diag(W(©1) and normalized Laplacian
LW =7 _ (D(f))—l/2W(t’)(D(Z))—l/?

Let X() € RN*? be the token representations at layer /
(N tokens, hidden size d), viewed as d graph signals stacked
columnwise.

High-Frequency Energy Ratio (HFER).
(or an equivalent mass-based cutoff):

N > (0
SN e 1S3
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For a cutoff K
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where X (©) = (U (z))TX 0 is the graph Fourier transform
with L) = UOAO (@ O)T,

Spectral Entropy (SE). With L) = UOAO(UO)T and

X0 — (U(f))Tx(e) deﬁne modal energies e = | X%, |12
andp = el m /Doy e ) Then:

SE® == _pi) logpyy (10)

m

Head aggregation (default). We use mass-weighted head
aggregation by default. For layer ¢:
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A.2 Key Properties

Lemma (Scale invariance). For any ¢ > 0 and signal z,
replacing residuals by cx leaves HFER and SE unchanged.

Proof. Both diagnostics depend only on the normalized
spectrum {py} or on ratios of quadratic forms; the global
scale cancels. [J

Proposition (SE stability to sparse perturbations). Let
' = x + § with ¢ supported on at most m < N tokens and
1]l < €l Then |SE“(2') — SE“)(x)| < C(m/N +¢)
for a constant C' depending only on lower bounds of py.
Proof. SE is Lipschitz in the simplex under ¢;; sparse time-
domain perturbations induce bounded spectral ¢; changes by
Parseval and Hoffman—Wielandt-type inequalities. [

B. Calibration and Deployment
B.1 Calibration Protocol

Given approximately 20 labeled context-statement pairs, we
fit an ROC curve and select a threshold by Youden’s J statistic
(consistency with Bayes optimality). We then set conservative
bands by computing quantiles around the optimal threshold:
Tiow = 7T — qQo.15 and Thigh = T4 qo.15 Where qg.15 is the 15th
percentile of | — 7| on the calibration set.

If deployment requires calibrated probabilities, we fit a
one-dimensional logistic model p(y = 1 | h) and evaluate
expected calibration error on a hold-out set, widening the
band until ECE drops below 0.05. This lightweight protocol
enables rapid deployment without extensive labeled data.

B.2 Three-Zone Decision Rule

Let h = HFER,. 5 for a given context-statement pair. We
define:

SUPPORTED, h > Thign,
support(h) = ¢ CONTRADICTED, h < 7oy, (13)
UNCERTAIN, otherwise

with wide-margin thresholds 7,gn = 0.30 and 7y = 0.15
for LLaMA-3.2-1B. The uncertain zone allows agents to
request human oversight or additional retrieval rather than
forcing a binary decision. Thresholds can be calibrated per
model using the minimal labeled set described above.

B.3 Bimodal Regime Separation

Context-supported statements exhibit HFER around 0.52,
indicating high-frequency, segregated processing. Context-
contradicted statements collapse to HFER around 0.05, show-
ing low-frequency, smooth processing. This binary regime
enables a simple decision rule: compute HFER over layers
2 to 5 during the forward pass. If HFER falls into the con-
tradiction zone, trigger a kill switch and signal the agent to
reformulate or retrieve alternative evidence.

C. Robustness Validation
C.1 Laplacian Normalization
Let W = 37, a, W) (where 3, oy = 1) and let

D) = diag(W)1). We compare the random-walk and
symmetric normalized Laplacians:

LY =1 — (DW=t ® (14)
L, =1 = (DO)2wO([DO)=12 - (15)

Eigenpairs are related by a similarity transform when the
graph is undirected; \q is therefore comparable up to scaling.



Empirically, signs and peak-layer locations of A)\g) coincide

across Ly and Lgyny, while magnitudes shift slightly within
the bootstrap bands.

Result. Across models and languages, the correlation be-
tween Algpa 5(Lrw) and AXgpz 57(Leym) is high, with me-
dian absolute deviation of the difference well below the per-
language CI half-width.

C.2 Head Aggregation Schemes
We compare (i) uniform averaging, a;, = 1/H; (ii) attention-
mass weighting, a; o Z” Agf’h); and (iii) a convex,

layer-specific combination o(*) learned by minimizing cross-
condition mean squared error on a held-out subset.

Result. Uniform and mass-weighted aggregations agree
on signs and peak layers. Learned o(?) yields smoother per-
layer trajectories but identical early-window conclusions. We
therefore use mass-weighted aggregation by default.

C.3 HFER Cutoff Sweep and Early-Window
Stability

We vary the high-frequency cutoff K by retaining the top
(1 — ¢)% of spectral mass, ¢ € {10, 15, 20, 25, 30,40}, and
recompute endpoints. We also shift the early window to 1-4
and 3-6.

Result. Directional conclusions are unchanged across cut-
offs; early-window averages shift by less than 15% relative to
¢ = 20%. Adjacent windows preserve sign and peak location
across model families. We therefore report ¢ = 20% and
layers 2—5 by default.

C.4 Prompt Robustness

We evaluated robustness against prompt paraphrasing. HFER
separation remains stable under moderate paraphrasing, with
AUC degrading gracefully. Tokenizer fragmentation shows
weak correlation with HFER, confirming the spectral signal
captures core semantic consistency rather than surface-level
tokenization artifacts.

D. Statistical Methodology
D.1 Bootstrap and Permutation Testing

We compute HFER and SE on each example with a sin-
gle forward pass. Group contrasts use nonparametric boot-
strap for confidence intervals (2,000 resamples, BCa method),
permutation tests for p-values (10,000 label shuffles within
paraphrase pairs), and Benjamini—-Hochberg FDR to control
multiplicity at ¢ = 0.05.

D.2 Sample Size and Power

Our design uses at least 10 paraphrases per voice per lan-
guage for the early-window mean A)y3 51 with bootstrap
CIs. We estimate detectable standardized effects via non-
parametric bootstrap over paraphrases and paired permuta-
tion tests (10k shuffles) on early-window means. Our de-
sign achieves adequate power for detecting medium-to-large

effects (d > 0.6) at individual language levels, with en-
hanced power for language-type and model-family aggre-
gates through meta-analytic combination.

D.3 Significance Testing and Multiplicity

For each language we compute the early-window mean by
averaging over paraphrases. We assess the null of no voice
effect via a paired permutation test (10,000 label shuffles of
active/passive within paraphrase pairs), yielding a p-value per
language. We then apply Benjamini—-Hochberg FDR at ¢ =
0.05 within each model family. For language-type and cross-
family summaries we test the mean effect across languages
with the same permutation scheme and report both FDR-
corrected p-values and 95% bootstrap CIs (2,000 resamples).



