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Abstract

Deploying small language models (7-9B parameters) as au-
tonomous agents requires trust in their reasoning, not just
their outputs. We reveal a critical reliability crisis: 50-69%
of correct answers from these models contain fundamen-
tally flawed reasoning—a “Right-for-Wrong-Reasons” phe-
nomenon invisible to standard accuracy metrics. Through
analysis of 10,734 reasoning traces across three models and
diverse tasks, we introduce the Reasoning Integrity Score
(RIS), a process-based metric validated with substantial inter-
rater agreement (κ = 0.657). Conventional practices are
challenged by our findings: while retrieval-augmented gener-
ation (RAG) significantly improves reasoning integrity (Co-
hen’s d = 0.23–0.93), meta-cognitive interventions like self-
critique often harm performance (d = −0.14 to −0.33) in
small models on the evaluated tasks. Mechanistic analysis
reveals RAG succeeds by grounding calculations in external
evidence, reducing errors by 7.6%, while meta-cognition am-
plifies confusion without sufficient model capacity. To enable
deployment, verification capabilities are distilled into a neural
classifier achieving 0.86 F1-score with 100× speedup. These
results underscore the necessity of process-based verification
for trustworthy agents: accuracy alone is dangerously insuffi-
cient when models can be right for entirely wrong reasons.

Introduction
Autonomous agents powered by small language models (7-
9B parameters) promise democratized AI deployment: run-
ning on consumer hardware, responding in milliseconds,
and operating at marginal cost. Yet a fundamental ques-
tion threatens this vision: Can we trust their reasoning? We
present evidence of a critical reliability crisis: even when
producing correct outputs, these models exhibit fundamen-
tally flawed reasoning 50–69% of the time, a phenomenon
we term “Right-for-Wrong-Reasons” (RWR).

Consider an agent tasked with financial calculations.
Given “What is 15% of 80?”, it responds: “Step 1: To find
15% of 80, I multiply 80 by 0.2. Step 2: 80 × 0.2 = 12.
Answer: 12.” While correct, the reasoning is mathemati-
cally wrong—using 0.2 instead of 0.15. In autonomous op-
eration, such hidden failures compound catastrophically: an
agent might approve transactions, make medical recommen-

dations, or control systems based on coincidentally correct
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but fundamentally flawed logic.

This problem is particularly acute for the small models
that will power most deployed agents. Unlike frontier mod-
els confined to centralized servers, 7-9B parameter mod-
els enable edge deployment, privacy preservation, and cost-
effective scaling. However, their limited capacity makes
them vulnerable to reasoning failures that accuracy metrics
cannot detect. Current evaluation paradigms judge only final
outputs, creating a dangerous blind spot: agents that appear
reliable in benchmarks but fail unpredictably in deployment.

This paper presents a large-scale study of reasoning in-
tegrity in small language models, extending prior diag-
nostics to agentic contexts, analyzing 10,734 reasoning
traces across three models (Llama-3-8B, Mistral-7B, Qwen-
2.5-7B) and three diverse tasks (mathematical reasoning,
multi-hop QA, and commonsense reasoning). We address
three critical questions: (RQ1) How severe is the hid-
den reasoning failure problem in small models deployed
as agents?; (RQ2) Which interventions improve reason-
ing integrity—do popular approaches like self-critique and
retrieval-augmentation help?; and (RQ3) What mechanisms
explain why interventions succeed or fail, and how can we
detect failures efficiently?

Our analysis suggests that understanding why interven-
tions succeed or fail is more important than what they do.
We show that while retrieval-augmentation (RAG) sub-
stantially improves reasoning integrity (d = 0.23–0.93), pri-
marily by reducing calculation errors through external evi-
dence, meta-cognitive prompts consistently harm perfor-
mance (d = −0.14 to −0.33) by amplifying internal con-
fusion. Our contributions include the Reasoning Integrity
Score (RIS) (κ = 0.657), large-scale evidence of 50–69%
hidden reasoning flaws across 10,734 traces, and a deploy-
able verifier (0.86 F1, 100× speedup) for real-time trust as-
sessment.

These results have immediate implications for deploying
trustworthy agents. We provide actionable guidance: prior-
itize RAG for small models on fact-grounded tasks where
retrieval is feasible, avoid meta-cognitive prompting in sub-
10B models for knowledge-intensive tasks, and implement
process-based verification as a non-negotiable safety layer.



Related Work
Process vs. Outcome Evaluation. Recent work recog-
nizes that outcome-based evaluation masks reasoning fail-
ures (Lightman et al. 2023; Yuan et al. 2025). However,
these focus on training improvements rather than detecting
hidden failures in deployed models, and none quantify the
prevalence of right-for-wrong-reasons behavior we reveal.

Small Model Reliability. The challenges of sub-10B pa-
rameter models are well-documented (Magesh et al. 2024;
Kalai et al. 2025; Cheng et al. 2024), including hallucina-
tions and factual inaccuracies. Yet prior work lacks system-
atic measurement of hidden failures—when models produce
correct outputs through flawed reasoning—which we show
affects 50-69% of “successful” cases.

Intervention Strategies. While RAG (Wang et al. 2025;
Chen, Myrzakhan, and Lee 2025) and meta-cognitive tech-
niques like self-critique (Gou et al. 2023; Yang et al. 2024b)
are common, limited prior work has systematically com-
pared their effects on reasoning integrity rather than accu-
racy. We provide evidence that meta-cognition can actively
harm reasoning quality (d = −0.14 to −0.33) while RAG
consistently helps (d = 0.23–0.93).

Gap. Despite growing deployment of small models as
agents, few large-scale studies have quantified hidden rea-
soning failures, systematically compared intervention ef-
fects on process quality, or explained the mechanisms. Our
10,734-trace analysis fills this critical gap for trustworthy
agent deployment.

Methodology
To systematically investigate the Right-for-Wrong-Reasons
(RWR) phenomenon in small language models, we con-
ducted a large-scale empirical study. Our methodology en-
compasses dataset selection, model choices, trace genera-
tion, intervention implementation, reasoning evaluation via
RIS, error classification, and statistical validation. All trace
generation experiments were conducted via the OpenRouter
API, while trace analysis and distilled model training were
performed locally.

Datasets and Models
We selected three diverse benchmarks: GSM8K (Cobbe
et al. 2021) (1,319 mathematical word problems), Hot-
potQA (Yang et al. 2018) (1,000 multi-hop QA samples),
and ARC (Clark et al. 2018) (1,119 commonsense science
questions). These were subsampled to balance computa-
tional feasibility while maintaining diversity.

We evaluated three popular open-source small models:
Llama-3-8B (Dubey et al. 2024), Mistral-7B (Jiang et al.
2023), and Qwen-2.5-7B (Yang et al. 2024a). Models were
used in their base instruction-tuned variants with greedy de-
coding (temperature=0).

Reasoning Trace Generation
For each model-dataset pair, we generated reasoning traces
under four conditions (baseline + three interventions), yield-
ing 10,734 traces total (3 models × 3 datasets, with approx-
imately 298 samples per condition per dataset). Traces were

prompted to produce step-by-step reasoning in a structured
format: ”Step 1: [reasoning] Step 2: [reasoning] ... Final An-
swer: [output]”, adapted from standard Chain-of-Thought
templates (Wei et al. 2022).

Interventions
We implemented three lightweight interventions: (1)
Retrieval-Augmented Generation (RAG), which provided
oracle ground-truth context (e.g., Wikipedia snippets for
HotpotQA) with the prompt: “Use the provided context to
reason step by step.”; (2) Self-Critique, which prompted the
model to review its reasoning: “Critique your previous rea-
soning for errors and provide a corrected version if needed.”;
and (3) Verification Prompts, which added to the initial
prompt: “Verify each step for accuracy before proceeding
to the next.”

Reasoning Integrity Score (RIS)
RIS measures process quality by scoring each reasoning step
on a 0.0-1.0 scale: 1.0 (fully correct), 0.5 (partial flaw),
0.0 (wrong). Steps were extracted via regex parsing. For
each trace, RIS = average step score. Scoring used three in-
dependent LLM judges (GPT-4o-mini, Claude-3.5-Sonnet,
Gemini-1.5-Flash) with a detailed rubric. Inter-rater reliabil-
ity was validated on 500 steps (Fleiss’ κ = 0.657, substan-
tial agreement). Final RIS used majority vote. A trace was
classified as “flawed” if RIS < 0.8, a threshold determined
via sensitivity analysis. We tested thresholds from 0.7 to 0.9
and selected 0.8 as it optimized the balance between sensi-
tivity (detecting flawed reasoning) and precision (avoiding
false alarms).

Error Analysis
To uncover mechanisms, we manually categorized 1,000
flawed steps into four types: Calculation Error (wrong
arithmetic, numbers, or fact application), Hallucination
(fabricated information), Logical Leap (invalid inference),
or Other. Distributions were computed per condition rela-
tive to baseline. We also measured error position (normal-
ized 0–1), context misuse (fraction of retrieved facts incor-
rectly applied), and correlations using Pearson’s r.

Distilled Verification System
To enable efficient deployment, we trained a lightweight
MLP classifier to predict flawed traces (RIS < 0.8) us-
ing hybrid features: Sentence-BERT embeddings (384D
from all-MiniLM-L6-v2) + 7 structural metrics (e.g., step
count, trace length). The model (391 input features, 5 lay-
ers, ∼300k params) was trained on 80% of traces (strati-
fied split) using Focal Loss (γ = 2.0, α = 0.25), AdamW
(lr = 5 × 10−4), and early stopping. Evaluation on 20%
held-out test data yielded 0.86 macro F1, with 0.88 pre-
cision on “flawed” class, achieving ∼100× speedup over
LLM judging (5–10ms inference on CPU).

Statistical Analysis
Statistical power was computed post-hoc, with substantial
variation across intervention types: RAG effects showed ex-
cellent power (0.95-1.00), self-critique effects showed good



power (0.76-0.99), and verification effects showed mixed
power (0.56-0.96). We report only findings that met the con-
ventional 0.75 threshold for adequate power, though some
verification effects approached this threshold.

Results
Our analysis of 10,734 reasoning traces reveals pervasive
hidden failures in small language models and clear patterns
in intervention effectiveness. We present our key empirical
findings, validated by statistical analysis.

Prevalence of Hidden Reasoning Failures
As shown in Table 1, the Right-for-Wrong-Reasons problem
is severe: 50–69% of correct final answers exhibit flawed
reasoning (RIS < 0.8). The issue varies by model and task,
with Qwen-2.5-7B showing the highest average rate (69.3%)
despite its relative strength, potentially due to more ver-
bose reasoning chains that increase error opportunities. Hot-
potQA demonstrates the most acute failures (67.9% aver-
age), suggesting that knowledge-intensive tasks exacerbate
reliance on spurious patterns rather than robust logic.

Table 1: Percentage of correct outputs with flawed reasoning
(RIS < 0.8) across models and tasks.

Model ARC GSM8K HotpotQA Avg

Mistral-7B 45.8% 44.3% 60.5% 50.2%
Llama-3-8B 47.0% 59.2% 59.4% 55.2%
Qwen-2.5-7B 61.4% 62.7% 83.8% 69.3%

Average 51.4% 55.4% 67.9% 58.2%

Intervention Effects
Figure 1 summarizes the impact of interventions on RIS.
Retrieval-augmented generation (RAG) consistently im-
proves reasoning integrity, with medium-to-large effect sizes
on fact-grounded tasks (mean d = 0.41, up to 0.93 on
HotpotQA for Qwen). In contrast, self-critique and verifica-
tion prompts harm performance in 78% of conditions (mean
d = −0.14 and −0.15, respectively), with effects most neg-
ative for weaker models like Mistral and Llama.

Task dependency is evident: RAG shows negligible ef-
fects on pure reasoning (ARC, d ≈ 0) but strong bene-
fits on math and QA (GSM8K d = 0.23–0.43; HotpotQA
d = 0.51–0.93). Meta-cognitive harms are consistent, sug-
gesting a capacity threshold where self-reflection fails.

Error Mechanisms
Table 2 illustrates error type shifts. Calculation errors dom-
inate baselines (60.3%), and RAG reduces them most ef-
fectively (−7.6%), while increasing hallucinations (+4.5%)
and logical leaps (+3.3%). This trade-off results in pos-
itive RIS, as “reasoning attempts” (scored 0.5) represent
partial credit that is substantially higher than outright fail-
ures (scored 0.0). The reduction in fundamental calculation
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Figure 1: Cohen’s d effect sizes for interventions. Red indi-
cates improved reasoning integrity (positive d), while Blue
indicates harm (negative d).

errors, which are completely incorrect, outweighs the in-
crease in reasoning attempts that contain partial flaws. Meta-
cognitive interventions yield smaller reductions (−4.2%)
with comparable increases, resulting in net harm.

Supporting analyses reveal that context misuse strongly
predicts RAG failure (r = −0.951), weaker baseline models
benefit more from RAG (r = 0.671), and errors accumulate
late in the reasoning process (mean position=0.56–0.71). All
correlations were statistically significant (p < 0.001).

Distilled Verifier Performance

The MLP classifier achieves 0.86 macro F1 on held-out data,
with 0.88 precision and 0.87 recall on the “flawed” class.
This performance, combined with low latency (∼5–10ms),
makes it suitable for real-time production alerting in au-
tonomous agents.



Table 2: Error distribution changes relative to baseline (per-
centage points).

Error Type Baseline +RAG +Self-Crit +Verify

Calculation Error 60.3% 52.7% 56.1% 56.1%
Change – ↓7.6 ↓4.2 ↓4.2

Hallucination 25.2% 29.7% 27.2% 27.9%
Change – ↑4.5 ↑2.0 ↑2.7

Logical Leap 14.3% 17.6% 16.7% 16.0%
Change – ↑3.3 ↑2.4 ↑1.7

Discussion
Our empirical results demonstrate a critical issue in small
language models, but also illuminate a clear path forward.
The findings challenge core assumptions about agent relia-
bility, suggesting that what interventions do is less important
than why they work.

Why Meta-Cognition Fails: Pseudo-Reflection
The most striking finding is the consistent, harmful effect
of meta-cognitive prompts. Our analysis suggests this is not
merely a neutral failure but an active introduction of new er-
rors. We posit this is due to ”pseudo-reflection”: small mod-
els lack the genuine, high-level meta-cognitive capacity to
introspect. When prompted to ”critique” or ”verify,” they do
not perform reflection; they generate text that looks like re-
flection.

This pseudo-reflection amplifies errors by inventing
incorrect justifications. The model, lacking an internal
”ground truth” to check against, invents plausible-sounding
(but incorrect) justifications, as seen in the trade-off analy-
sis (Table 2). While meta-cognitive interventions occasion-
ally reduce calculation errors (−4.2%), they simultaneously
increase hallucinations and logical leaps, resulting in a net-
negative impact on reasoning integrity (mean d ≈ −0.15).
This suggests that small models can identify and correct
some errors but lack the capacity to avoid introducing new
ones during the critique process, supporting the existence of
a ”capacity threshold” for effective self-reflection that 7-9B
models fall below.

Why RAG Succeeds: External Scaffolding
RAG’s success (mean d = 0.41) may be understood as pro-
viding ”external scaffolding.” The strong correlation (r =
0.671) between weak baseline performance and high RAG
benefit suggests that RAG may function as a cognitive or-
thotic, potentially compensating for the model’s weak inter-
nal knowledge and reasoning.

This analysis is supported by the error position
data. Errors accumulate late in reasoning traces (mean
position=0.56–0.71), where the model’s internal state
”drifts” from the original facts. RAG provides a constant
external anchor, re-grounding the model at each step and
preventing this drift. The near-perfect negative correlation
(r = −0.951) between context misuse and RAG effective-
ness confirms this: RAG’s benefit is almost entirely depen-
dent on the model’s ability to correctly integrate this external

scaffolding. It is important to note that our study used ora-
cle retrieval, which provides an upper bound on RAG’s ef-
fectiveness. Real-world RAG systems with noisy retrievers
may show diminished benefits.

Implications for Agentic Trust
The 50-69% RWR rate (Table 1) demonstrates that output-
based accuracy is a dangerously insufficient proxy for re-
liability. This mandates a shift to ”continuously audit,” for
which our distilled verifier (0.86 F1, 5-10ms inference) pro-
vides a practical ”trust alarm,” flagging high-risk, flawed
reasoning chains for human review in real-time, something
impossible with slow LLM-as-a-judge evaluations.

Limitations
We acknowledge several limitations: our study used oracle
RAG, representing a best-case upper bound on RAG’s ben-
efit; our conclusions about meta-cognition failing on 7-9B
models may not apply to larger ones (e.g., 70B+); our RIS
metric averages step scores and can miss holistic failures;
all experiments were in English, using LLM judges that
may have biases; and our findings are based on three spe-
cific models and three task domains, and may not generalize
to all small models or tasks.

Future Work
Future work will validate these findings with noisy, ”real-
world” RAG retrievers, identify the ”capacity threshold”
where meta-cognitive interventions may become effective
(e.g., in 40B-70B+ models), and enhance the distilled ver-
ifier, potentially using graph-based networks to model the
reasoning trace as a dependency graph.

Conclusion
This work quantifies a critical, hidden failure mode in small
language model agents: 50-69% of their correct answers
are ”Right-for-Wrong-Reasons,” produced by fundamen-
tally flawed reasoning. We show this trust gap is invisible to
accuracy metrics. Our 10,734-trace analysis provides a clear,
actionable path to mitigating this risk: retrieval-augmented
generation (RAG) acts as essential cognitive scaffolding,
robustly improving reasoning integrity (d=0.23-0.93). Con-
versely, we provide strong evidence that common ”best prac-
tices” like self-critique are actively harmful (d=-0.14 to -
0.33) when applied to small models in the evaluated do-
mains, causing ”pseudo-reflection” that amplifies errors.

We contribute both the Reasoning Integrity Score (RIS) as
a validated, process-based metric, and a fast, high-precision
distilled classifier (0.86 F1) to deploy this verification at
scale. For the field to move toward trustworthy autonomous
agents, we should consider shifting our evaluation paradigm.
Our findings suggest that accuracy alone is insufficient;
process-based verification may need to become an essential
safety layer for small language models deployed on tasks
requiring factual knowledge or multi-step reasoning.
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Supplementary Material
A. Generation Prompts Interventions
To ensure reproducibility, we provide the exact system and
user prompts used for all generation tasks. The base system
prompt was modified dynamically based on the intervention
type.

• Base System Prompt:

”Solve the user’s request step by step. For math
problems, put the final answer in brackets [like this].
For multiple-choice questions, put the final answer
(e.g., [A] or [1]) in brackets.”

• Intervention: Prompt-Based Verification
Prepend to System Prompt:

”Verify each step before proceeding. [Base System
Prompt]”

• Intervention: Retrieval-Augmented Generation
(RAG)
Modification to User Prompt:

”Context: {retrieved context} {user question}”

Note: Context was sourced from
ground truth decomposition for GSM8K/ARC and
supporting sentences for HotpotQA.

• Intervention: Self-Critique
Append to System Prompt:

”[Base System Prompt] After solving, review your
reasoning for any flaws.”

B. Judge Verifier Prompts
We utilized a strong judge model (DeepSeek-V3/Gemini-
Flash) to evaluate reasoning integrity and classify error
types.

1. Reasoning Integrity Score (RIS) Binary Judge Used
to determine if a specific step St is valid given Context C.

”You are a strict verifier. Your task is to determine if
the ’Generated Step’ is logically and factually sup-
ported by the ’Context’. Context: {context} Gener-
ated Step: {step} Is the ’Generated Step’ fully and
correctly supported by the ’Context’? Respond with
only ’Yes’ or ’No’.”



2. Failure Mode Classification Used to categorize why a
specific step failed.

”You are an error analyst. The ’Generated Step’ was
deemed flawed (incorrect). Given the ’Context’, clas-
sify the primary error in the ’Generated Step’. Cate-
gories: [1. Factual Error, 2. Logical Leap, 3. Numeri-
cal Miscalculation, 4. Other] Context: {context} Gen-
erated Step: {step} Output only the category name.”

3. RAG Misuse Classification Used to detect if the model
ignored or Hallucinated based on retrieved context.

”You are an error analyst. Determine if the ’Gener-
ated Step’ misuses the ’Context’. Misapplication: ref-
erences context but uses it incorrectly (e.g., logical
error, misquote, misinterpretation). Correct: uses the
context correctly. Irrelevant: does not use the context
at all. Respond with only ’Misapplication’, ’Correct’,
or ’Irrelevant’.”

C. Implementation Details
• Generator Models:

– mistralai/Mistral-7B-Instruct-v0.2
– meta-llama/Llama-3-8B-Instruct
– qwen/qwen-2.5-7b-instruct

• Datasets: GSM8K (Math), HotpotQA (Multi-hop QA),
ARC-Challenge (Reasoning).

• Sampling: Temperature was set to default (varied by
provider, typically 0.7-1.0) with standard top-p sampling.

• Judge Model: deepseek/deepseek-v3.1-terminus
and google/gemini-2.5-flash-litewere used
for automated evaluation.

• Distilled Verifier: A 4-layer MLP (512-256-128-1)
trained on sentence embeddings (all-MiniLM-L6-v2)
concatenated with verbosity features (step count, trace
length).


