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Abstract

As large language models become components of larger
agentic systems, evaluation reliability becomes critical: unre-
liable sub-agents introduce brittleness into downstream sys-
tem behavior. Yet current evaluation practice, reporting a sin-
gle accuracy number from a single run, obscures the variance
underlying these results, making it impossible to distinguish
genuine capability improvements from lucky sampling. We
propose adopting Intraclass Correlation Coefficient (ICC), a
metric from measurement science, to characterize this vari-
ance. ICC decomposes observed variance into between-query
variance (task difficulty) and within-query variance (agent
inconsistency), highlighting whether reported results reflect
true capability or measurement noise. We evaluated on GAIA
(Levels 1-3, measuring agentic capabilities across varying
reasoning complexity) and FRAMES (measuring retrieval
and factuality across multiple documents). We found that
ICC varies dramatically with task structure, with reasoning
and retrieval tasks (FRAMES) exhibit ICC=0.4955-0.7118
across models, and agentic tasks (GAIA) exhibiting ICC=
0.304-0.774 across models. For sub-agent replacement de-
cisions in agentic systems, accuracy improvements are only
trustworthy if ICC also improves. We demonstrate that ICC
converges by n=8-16 trials for structured tasks and n > 32
for complex reasoning, enabling practitioners to set evidence-
based resampling budgets. We recommend reporting accu-
racy alongside ICC and within-query variance as standard
practice, and propose updated Evaluation Cards capturing
these metrics. By making evaluation stability visible, we
aim to transform agentic benchmarking from opaque leader-
board competition to trustworthy experimental science. Our
code is open-sourced at https://github.com/youdotcom-oss/
stochastic-agent-evals.

Introduction

Large language models (LLMs) are no longer confined to
static text prediction. Increasingly, they act as agents: using
tools, interacting with environments, and carrying out multi-
step plans. To measure such capabilities, the field has turned
to agentic evaluations Yehudai et al. (2024), Zhang et al.
(2024), and Xu et al. (2023). These benchmarks are rapidly
becoming reference points for progress. Yet the way they
are currently used reduces complex stochastic processes to a
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single leaderboard number. That number, typically an accu-
racy or success rate from one run, obscures the variance that
determines whether the result is reproducible at all Miller
(2024) Li et al. (2025).

Agentic evaluations should be approached as experi-
ments, with outcomes analyzed for variability and repro-
ducibility. Reported performance is often based on a single
trial of an inherently random process, with little visibility
into uncertainty. Sources of randomness include sampling
inside the language model, the behavior of external APIs,
and the design of the scoring function. Without accounting
for these factors, comparisons across agents risk overstating
differences and underestimating variability.

We examine the stochasticity of agentic evaluations us-
ing GAIA and FRAMES as running case studies. Replicat-
ing these benchmark runs across multiple trials and all three
difficulty levels shows that evaluation stability varies signif-
icantly with task complexity and model capability, a finding
obscured by current single-run reporting practices. Our con-
tribution is both diagnostic and prescriptive: we diagnose
why current evaluations are fragile, and we propose ICC
(intraclass correlation coefficient) as a metric practitioners
can use to characterize and report on evaluation stability,
enabling more principled experimental design for agentic
benchmarks.

Background and Motivation

Agentic evaluations differ in structure from static NLP
benchmarks. Whereas traditional benchmarks test a model’s
ability to map an input to a single output, agentic settings in-
volve multi-step decision making, tool use, and interactions
with dynamic environments. An agent may need to query an
API, manipulate files, or perform calculations before arriv-
ing at an answer. These differences make agentic evaluations
richer, but also more sensitive to randomness.

Current practice has yet to reflect this added complex-
ity. Many benchmarks report results from a single run per
agent, without confidence intervals, standard errors, or repli-
cation. Some studies attempt to reduce bias from agent in-
consistency by reporting average @k values (where k=3), but
still do so without providing confidence intervals or statisti-
cal significance measures (Yao et al. (2024)Team (2025)).
Comparisons between agents are frequently made without
statistical testing, and scoring functions are not always de-



fined in detail. As a result, observed differences may partly
reflect random variation, scorer choices, or agent inconsis-
tency rather than genuine differences in capability.

Recent work has begun to address this gap. Miller (2024)
provides a statistical treatment of LLM evaluations, deriv-
ing estimators and error formulas and recommending re-
sampling protocols. Platforms such as Chatbot Arena and
Arena-Lite have introduced bootstrapped 95% confidence
intervals into leaderboards Li et al. (2025), highlighting
that uncertainty can be made visible at scale. Blackwell,
Barry, and Cohn (2024) argue for explicit uncertainty quan-
tification and reproducible protocols in LLM benchmark-
ing, while bow (2025) caution against naive reliance on the
Central Limit Theorem in small benchmarks due to under-
coverage. More broadly, surveys of evaluation methodolo-
gies for LLM-based agents emphasize the lack of standard-
ized protocols and reproducibility practices Yehudai et al.
(2025).

The intraclass correlation coefficient (ICC) (Shrout and
Fleiss 1979; McGraw and Wong 1996) has been widely
used in psychometrics and medical research to assess mea-
surement reliability by decomposing variance into between-
subject and within-subject components. Koo and Li (2016)
provide guidelines for selecting and interpreting ICC vari-
ants across different study designs. While ICC is standard
practice for evaluating inter-rater reliability and test-retest
consistency in clinical settings, it has not been systemati-
cally applied to agentic Al evaluation, where variance arises
from both task difficulty and agent stochasticity.

Beyond statistical treatments, several strands of prior
work contextualize our analysis. Large-scale benchmarks
such as BIG-bench Srivastava et al. (2022) and Liang et al.
(2022) established multi-dimensional evaluation but did not
incorporate statistical testing. MT-Bench Zheng et al. (2023)
popularized human-LLM comparison, again without repli-
cation. Infrastructure projects such as the lm-eval-harness
Gao et al. (2021), OpenAl Evals Chen et al. (2023), and
Dynabench Kiela et al. (2021) emphasize standardization
and robustness, though they rarely quantify uncertainty. Par-
allel work on uncertainty and calibration Kadavath et al.
(2022), Chiang et al. (2024), and Liu, Yang et al. (2023)
highlights confidence estimation at the token or output level
rather than full-agent evaluation. Together, this literature un-
derlines both the momentum and the methodological gaps
that motivate our study.

Stochasticity in Agentic Evaluations

Agentic evaluations are inherently stochastic processes.
The underlying LLM models sample from probability dis-
tributions rather than deterministically computing outputs
(Brown et al. 2020; Holtzman et al. 2020; He and Lab 2025),
introducing trial-to-trial variance.. This inherent stochastic-
ity is compounded by the evaluation framework: task speci-
fications, API configuration, retry policies, timeout behav-
ior, and external environments all introduce trial-to-trial
variance that ICC directly measures. Each major compo-
nent contributes to within-query variance: task specifica-
tions may be ambiguous; agents sample stochastically or en-
counter tool errors; environments introduce latency or rate

limits; evaluation frameworks govern retry and timeout be-
havior; scoring functions rely on heuristics such as fuzzy
matching or numeric normalization; and the choice of trial
count determines whether results reflect reliable averages
or noisy draws. As frameworks such as the Model Context
Protocol (MCP) Anthropic (2023) become standard for tool
integration, server configuration and versioning introduce
additional trial-level variability. Table 1 summarizes these
components and their sources of within-query variance: the
trial-to-trial inconsistency that ICC directly measures. Most
benchmarks do not quantify them explicitly. Figure 1 illus-
trates this variance empirically: per-question accuracy esti-
mates with 95% confidence intervals show substantial trial-
to-trial inconsistency that single-run reporting obscures.

Per-Query Performance with 95% Confidence Intervals
(FramesAccuracy_score)

- Overall Mean: 0.635

escessessssssses

Accuracy

Per-Query Performance with 95% Confidence Intervals
(GaiaAccuracy_score)

-~ Overall Mean: 0.268

Question ID

Accuracy

Figure 1: Per-question accuracy with 95% confidence in-
tervals across sampled questions, 64 trials per question.
FRAMES and GAIA with GPT-40 search. Wide confidence
intervals show trial-to-trial variance in agent behavior.

We formalize evaluation as a stochastic function where
each trial produces a potentially different outcome:

EwvalScore;(t) = f(Task;, Agent, Env, Scorer) (1)

where ¢ indexes questions and ¢ € {1,...,T} indexes
independent runs, the Agent includes both the model and its
toolchain, the Env encompasses all external APIs or sim-
ulated world dynamics, the Scorer encodes normalization



Component | Role

\ Source of variance

| Quantified?

Task specification Defines the goal and tool usage

Agent (LLM + plugins) | Executes decisions and sampling actions

Environment
Evaluation framework
Scoring function

Provides external dynamics or APIs
Orchestrates interaction loop
Determines correctness

Ambiguity, underspecification Rarely
Model decoding randomness, plugin errors | No
Latency, rate limits, unstable responses No

Seeds, retries, exponential backoff, timeouts | No

Fuzzy matching, normalization heuristics Sometimes

Table 1: Components of an agentic evaluation and their typical sources of variance.

and comparison rules, and variation across t arises from the
model’s stochastic sampling.

Recommended Statistical Protocols for Agentic
Benchmarks

Variance Estimation and Confidence Intervals Any re-
ported point estimate without a measure of variance is in-
complete. Agentic evaluations are inherently stochastic, and
a single accuracy number obscures the underlying variabil-
ity. To estimate the mean performance of an agent across
tasks, we conduct multiple independent runs—each with a
different random outcome. The variance of this estimator de-
pends on both the number of tasks and the number of trials
per task.

Let Al(»t) € {0, 1} denote correctness of output 7 in trial ¢,
for n items and 7T trials. The overall accuracy estimate is:

= 7 o34 @

Using the standard error of the mean,

—
SE(j) = %ﬂ“) 3)

we can construct (1 — «) confidence intervals:

ﬂiza/Z SE(ﬂ)a 4

where 2,2 is the critical value of the normal distribu-

tion. Reporting confidence intervals enables readers to as-

sess whether observed differences between agents are likely

to be meaningful or attributable to noise. The variance of

this estimator declines with 7'; thus, even a modest replica-
tion (e.g., T' > 5) substantially stabilizes estimates.

Testing Agent Differences with Dependent Samples
When comparing two agents on the same evaluation items,
predictions are paired. We therefore recommend methods
that exploit this pairing. McNemar’s test Dietterich (1998)
computes a p-value from discordant outcomes n¢; and n1g
(cases where one agent is correct and the other is not):

2
= (Inor — n1ol = 1) 7 )

no1 + N1
which approximately follows a chi-squared distribution
with 1 degree of freedom. Alternatively, paired bootstrap
methods (Efron and Tibshirani 1994) resample items with
replacement to generate confidence intervals for the differ-

ence in accuracy.

Variance Decomposition and Intraclass Correlation Co-
efficient (ICC) When evaluating agents across multiple
trials, performance varies due to two distinct sources: (1)
some tasks are inherently harder than others (between-task
variance), and (2) the agent behaves inconsistently on the
same task across trials (within-task variance). Understand-
ing this decomposition is essential for evaluation stability
and forms the foundation for using the intraclass correlation
coefficient (ICC) as a reliability metric. For full mathemati-
cal framework see Appendix E.

Intraclass Correlation Coefficient The ICC quantifies
the proportion of total variance attributable to differences
between tasks and can be understood as a function of both
the difficulty of the dataset (variance between tasks) and the
consistency of the agent (variance within tasks).

2
100 = b (6)

op + 03,
We employ the one-way random effects model, ICC(1,1)
(Shrout and Fleiss 1979), which assumes:

1. Tasks are random effects sampled from a larger popula-
tion of possible evaluation items

2. Trials are random effects representing stochasticity in the
agent’s behavior

3. We report single-trial reliability: ICC(1,1) measures the
reliability of an individual trial, with within-task variance
estimated by pooling variances across all tasks

This model treats both the selection of tasks and the vari-
ability across trials as sources of random variation, making
it appropriate when evaluation tasks represent a sample from
a broader domain of interest. The between-task variance af
is estimated from the variance of task means:

n
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where Y;. is the mean performance on task i and Y.. is
the grand mean across all tasks and trials. Note that when
computing variance estimates from multiple trials per task,
we use task-level means rather than pooling individual trial
scores, as the latter would violate independence assumptions
(Miller 2024).

ICC Estimation and Sample Size In practice, we com-
pute an estimated ICC, denoted IC'C, based on n tasks and
T trials per task. Both sample sizes affect the precision of
this estimate.



Effect of Sample Size The estimated ICC converges to the
true population ICC as sample sizes increase:

¢ More tasks (n): Improves the estimate of between-task
variance 62. With few tasks, we may not capture the full
range of task difficulties.

* More trials per task (7): Improves the estimate of
within-task variance 62 . The contribution of within-task
variance to total variance scales as o2 /T (Miller 2024),
so more trials reduce its impact.

The precision of ICC can be quantified by its standard
error, which for ICC(1,1) is approximately (Bonett 2002):

SE(ICC) ~ \/2(1 —ICOPA+ (T —yIice) o

n(n—1)(T — 1)(F?)

where F' is the F-statistic from a one-way repeated measures
ANOVA. This decreases with both n and ', with the relative
benefit of additional trials depending on the true ICC value.

Practical Guidelines for better ICC estimates When re-
porting ICC values:

* Aim for SE(ICC) < 0.03, which yields a 95% confi-
dence interval of +0.06 around your ICC estimate. This
means if you report ICC = 0.65, you can be confident the
true ICC lies between 0.59-0.71.

* Report both n and T" alongside ICC values

» With low 7', ICC estimates are less reliable. Increasing T'
provides more confidence in the measured ICC value

Interpretation of ICC ICC values provide standardized
measures of evaluation stability (Koo and Li 2016):

e ICC > 0.75: Good reliability. Task difficulty dominates
variance. Agent responses are consistent across trials.
Most observed variance reflects true differences in task
difficulty.

e ICC = 0.50-0.75: Moderate reliability. Mixed contribu-
tion from task difficulty and agent stochasticity. Both
sources matter for evaluation outcomes.

¢ ICC < 0.50: Poor reliability. Agent is highly inconsis-
tent, or tasks lack sufficient difficulty variation. Difficult
to isolate true performance differences.

Why ICC complements accuracy reporting: Consider
two evaluations where an agent achieves 73% accuracy:

Accuracy | ICC | Interpretation

73% 0.66 | Tasks separate by difficulty.
Agent behavior is consistent
across trials.
73% 0.30 | Agent behavior is unpre-
dictable. Same task pro-
duces different results across
trials.

Both agents achieve 73% accuracy, but the first is far more
consistent. ICC provides insight into agent reliability beyond
raw performance scores. When agents have similar accuracy,

ICC serves as a tiebreaker—higher ICC indicates more pre-
dictable behavior. ICC also helps distinguish genuine capa-
bility limitations from measurement noise, informing resam-
pling strategies and benchmark design.

Important Caveats: When Lower ICC Is Expected
Note: Lower ICC does not necessarily indicate a “bad”
benchmark. Some tasks may inherently require exploration
or have legitimate stochasticity in their solutions. However,
low ICC does signal that:

1. Single-run results are unreliable.

2. Practitioners must understand what variance reflects
agent uncertainty vs. task ambiguity.

3. Heavier resampling is required for trustworthy conclu-
sions.

Running more trials vs sampling more tasks In prac-
tice, dataset subsampling is often applied during evaluations
due to limited computational budgets. Since variance arises
from two sources: between-item variance (05 , items differ
in difficulty) and within-item variance (ai, trial-to-trial ran-
domness). The variance decomposes as:

o2 o2

Var(ji) = -2 + &, 9

ar() = 2> 4 72 ©)

For a fixed computational budget B = nT', we can rewrite
this as:

R o2 va
Var(i1) = ;b + 5 (10)

The second term is constant for fixed B; only the first
term depends on our allocation choice. Therefore, variance
is minimized by maximizing n (i.e., evaluating more items
with fewer trials each). For example, with B = 400 and
typical variance ratios o7 /02 ~ 5, allocating n = 100, T’ =
4 yields 68% lower standard error than n = 10,7 = 40 (see
Figure 3 in Appendix A).

This strategy is optimal until all available items are ex-
hausted (n = nyax), at which point increasing 7 is the only
option for further variance reduction.

Datasets and Evaluation Scope

GAIA Benchmark: GAIA’s Yehudai et al. (2024) validation
set consists of roughly 160 questions across three difficulty
levels, each requiring reasoning, calculation, or tool use.
GAIA’s design emphasizes short, unambiguous answers,
typically numbers or brief strings, enabling automated scor-
ing. Crucially, reported results in the original paper present
single-run accuracy values with no discussion of trial-to-trial
variability, uncertainty, or consistency. This makes GAIA
representative of current evaluation practice: ambitious in
scope, widely cited, but methodologically opaque regarding
reliability. GAIA levels are defined as: Level 1 (no tools or
single tool, < 5 steps, 53 questions), Level 2 (5-10 steps,
multiple tools, 86 questions), Level 3 (arbitrary action se-
quences, unrestricted tools, 26 questions).

FRAMES Benchmark: FRAMES (Factuality, Retrieval,
And reasoning Measurement Set) Krishna et al. (2024) is



a dataset of 824 test samples designed to evaluate LLMs’
ability to retrieve and reason across multiple documents in
end-to-end RAG (retrieval-augmented generation) scenar-
ios. Unlike GAIA’s open-ended reasoning, FRAMES tasks
focus on information retrieval grounded in factuality—the
agent must retrieve and integrate correct information across
multiple sources. FRAMES comprises challenging multi-
hop questions requiring integration of information from
multiple sources, with baseline LLM performance around
0.408 accuracy.

Why these two: GAIA and FRAMES represent diver-
sity in task structure and complexity. GAIA’s open-ended
reasoning with multi-modality naturally introduces higher
trial-to-trial variance, while FRAMES’ focused retrieval-
and-reasoning scope may exhibit different variance patterns.
Together, they illustrate how task design, not just model ca-
pability, predicts evaluation stability.

Evaluation Scope and Setup

1. Dataset sample: For GAIA, we evaluated on the valida-
tion set across all three difficulty levels. For FRAMES,
a random sample of 50 questions (random_state = 42)
was used due to computational cost concerns.

2. Number of trials: We ran 64 trials per question on both
datasets to provide a large sample for analyzing trial-to-
trial variance across task difficulty levels. For o4-mini-
deep research, we ran 8 trials per question due to compu-
tational cost concerns.

3. Prompting strategy: We used a standard agentic reason-
ing prompt (see Appendix B).

4. Tool availability: We evaluated agents with and without
web search or deep research capabilities via OpenAl,
Claude, Gemini APIs. We also experimented with open-
source models like Qwen and DeepSeek. Model specifi-
cations and API identifiers are provided in Appendix C.

5. Scoring: We used o4-mini as a LLM judge to evaluate
whether agent outputs matched ground-truth answers.

6. Failures handling: Timeouts were set to 120 seconds per
query. Failed runs (timeouts, unrecoverable errors) were
recorded as incorrect answers, reflecting real-world de-
ployment scenarios.

Experiments

GAIA: ICC in Multi-Modal Reasoning and
Tool-Use Tasks

We evaluated GPT-40 search and GPT-5 search across GAIA
Levels 1, 2, and 3, running 64 trials per question. Table 2
shows results.

Interpretation by Level

Levels 1-2 (Easier-Medium Reasoning): Both levels
exhibit moderate-to-high ICC for GPT-40 (0.561-0.662)
and high ICC for GPT-5 (0.745-0.774), indicating questions
clearly separate by difficulty and agent behavior is relatively
consistent. GPT-5 outperforms GPT-4o substantially: Level
1 (+39.6 pp accuracy, +0.213 ICC) and Level 2 (+31.0 pp
accuracy, +0.083 ICC). The combined accuracy and ICC

improvements indicate GPT-5 is not just more capable
but also more reliable—performance gains reflect genuine
capability gains, not fortunate sampling.

Level 3 (Hard Open-Ended Reasoning): Level 3 shows
a stark contrast. GPT-40 achieves only 6.6% accuracy with
ICC=0.304, meaning 70% of observed variance is trial-to-
trial randomness rather than question difficulty. Single-run
results are essentially unreliable. GPT-5 dramatically
improves both accuracy (44.2%, +37.6 pp) and consistency
(ICC=0.629, +0.325). While still lower than Levels 1-2,
GPT-5’s higher ICC signals that this massive accuracy
gain reflects genuine capability improvement, not lucky
sampling. The improvement in ICC is particularly striking:
it nearly doubles GPT-40’s value, suggesting GPT-5’s
superior reasoning makes hard questions succeed/fail more
deterministically based on their actual difficulty.

ICC Convergence Across GAIA Levels
Trials Level 1 Level 2 Level 3

(n) | GPT40 GPT-5 | GPT-40 GPT-5 | GPT-40 GPT-5
n=2 0.648 0.797 0.706 0.774 0.428 0.686
n=4 0.614 0.781 0.689 0.759 0.382 0.658
n=8 | 0587 0779 | 0675 0.754 | 0341  0.636
n=16| 0574 0775 | 0.668 0749 | 0322  0.631
n=232| 0567 0.776 0.665 0.745 0.313 0.631
n=064| 0561 0774 | 0.662 0745 | 0304  0.629

*Both GPT-40 and GPT-5 were evaluated with web search enabled.

ICC stabilizes as more trials are collected. The decrease
from n = 2 to n = 64 reflects regression to the mean: ini-
tial estimates with few trials overestimate between-question
variance. As trials accumulate, more accurate estimates of
true question difficulty emerge. Convergence occurs by
n ~ 8 — 16 for Levels 1-2 and by n ~ 32 for Level
3, providing practitioners with a data-driven signal for set-
ting resampling budgets. Level 3’s slower convergence un-
derscores its higher sensitivity to sample size. For a detailed
model performance on GAIA refer to Appendix D.

FRAMES: ICC in Retrieval and Factuality Tasks

To validate that ICC reflects task structure beyond GAIA’s
open-ended reasoning, we evaluated on the FRAMES
benchmark (tool-based web search and information re-
trieval. Due to computational cost concerns, we only took
50 questions, sampled randomly with a seed of 42, but still
performed 64 trials per question. Table 3 shows results.

FRAMES  exhibits  substantially = higher ICC
(ICC=0.7118) than GAIA Level 3 (ICC=0.304) and
comparable ICC to GAIA Level 2 (ICC=0.662) (for GPT-
40). This emphasizes how the nature of the task can affect
the reliability of results. However, GPT-5 with web search
exhibits lower ICC (0.4955) than GPT-40 with web search
(0.7355) on FRAMES despite having higher accuracy,
suggesting agent capability can also introduce variability
independent of task design. This narrative emphasizes the
importance of including ICC as an additional dimension
of reporting in benchmark results. Though GPT-5 search
has the highest accuracy, it also has the lowest stability and
determinism in response when compared to GPT-40 and
GPT-4o0 search.



Level Accuracy 95% CI Between Var ICC
GPT-40 GPT-5 GPT-40 GPT-5 GPT-40 GPT-5 | GPT40 GPT-5
Level 1 (53Q) | 22.7%  623% | [14.0%,31.4%] [52.9%, 71.7%] 0.100 0.185 0.561 0.774
Level2(86 Q) | 232%  542% | [15.8%,30.6%] [44.9%, 63.5%] 0.119 0.187 0.662 0.745
Level 3 (26 Q) 6.6% 442% | [1.0%,12.2%] [28.1%, 60.4%] 0.019 0.160 0.304 0.629

*Both GPT-40 and GPT-5 were evaluated with web search enabled.

Table 2: ICC and variance decomposition across GAIA levels (full validation set) and models (64 trials per question).

Model Accuracy 95% CI1 Between Var | ICC
GPT-5 search 77.31% [68.86%, 85.77%] 0.088 0.496
GPT-40 search 63.54% [51.70%, 75.38%] 0.174 0.735
GPT-40 38.16% [26.40%, 49.91%] 0.171 0.712
Claude 4.5 Haiku 68.37% [57.58%, 79.17%] 0.144 0.655
Claude 4.5 Sonnet 66.44% [55.20%, 77.68%] 0.156 0.689
Gemini 2.5 Pro 62.34% [50.60%, 74.09%] 0.174 0.713
Qwen3-235b-a22b 34.22% [23.53%, 44.91%] 0.169 0.617
Deepseek-v3pl 44.75% [33.13%, 56.37%] 0.157 0.663

*GPT-5 & Claude family were evaluated with web search, GPT-40 with and without web search and others without web search.

Table 3: ICC and variance decomposition on FRAMES (n=50, 64 trials per question).

Deep Research Agents

We evaluated o4-mini deep research on both benchmarks
using only 8 trials per question due to computational cost.
Interestingly, ICC values with only 8 trials (0.62-0.66) are
comparable to or exceed many values in the main analysis
despite the reduced sample size.

1. Frames (n=8,
ICC=0.664

2. GAIA (n=8, full validation set, 165 questions): 40.0%
accuracy, ICC=0.621

100 questions): 74.6% accuracy,

This could reflect several factors: (1) deep research’s more
deliberate reasoning may reduce trial-to-trial variability, (2)
the larger question sets naturally stabilize ICC estimates,
or (3) small-sample ICC can be unstable. However, with
only a single deep research agent evaluated, we cannot draw
firm conclusions. Larger-scale evaluation across multiple
deep research agents would be needed to determine whether
ICC patterns hold across different agent architectures and
whether deep reasoning fundamentally reduces stochastic-

1ty.

Implications for Agentic System Design

Sub-agent replacement decisions require both capability
and consistency metrics. When LLM-based agents become
sub-components of larger systems, system-level reliability
depends on both capability and consistency. A more capa-
ble sub-agent with low ICC introduces brittleness: down-
stream components cannot reliably predict behavior. Our
framework shows that capability improvements without ICC
improvements may not be robust under deployment. GAIA
Level 3 demonstrates this: GPT-5’s 7x accuracy improve-
ment paired with doubled ICC signals a genuine, deployable
improvement. Without ICC visibility, practitioners risk dis-
covering inconsistency problems in production.

Consistency is a tunable property independent of
accuracy. Beyond replacement decisions, ICC enables a
new tuning target: consistency. Agent optimization typi-
cally focuses on accuracy. Yet it’s possible to reduce within-
question variance (improving ICC) through better prompt-
ing or tool design without changing accuracy. Such improve-
ments are invisible to standard metrics but critical for system
reliability. By monitoring ICC, practitioners directly opti-
mize for the emergent properties—predictability and stabil-
ity—that enable robust agentic systems.

To operationalize these insights, we propose the follow-
ing reporting requirements and updated Evaluation Cards.

Reporting Requirements Rather than report accuracy
alone, practitioners should report:

Accuracy£95%CI | ICC | Between — querySE
(11)

This enables readers to understand (1) point estimate
and uncertainty, (2) evaluation stability, and (3) agent

consistency.

Evaluation Cards We propose updated Evaluation
Cards that capture run-level metadata:

Together, these practices: reporting consistency metrics,
documenting variance structure, and standardizing meta-
data, enable practitioners to build agentic systems with pre-
dictable, reliable sub-components. By making evaluation
stability visible, we move toward principled composition of
agentic systems where reliability is not hidden in leader-
board competition, but is explicit and measurable.

Limitations and Future Work

Scoring assumption: ICC analysis assumes binary (correc-
t/incorrect) scoring; extension to partial-credit metrics re-
quires reformulation. We use o4-mini as LLM judge with-



Field Description

Benchmark Name and version (e.g.,
GAIA v2024 Level 2)
Agent Model name, version, de-

coding parameters (tempera-
ture, tools, etc.)

Number of trials, seed gen-
eration method

Mean accuracy with 95%
CI, ICC (variant reported),
between-query SE

Task complexity level | Level/difficulty designation
(affects variance structure)
Exact string match, fuzzy
matching, normalization
rules

Known caveats (e.g., highly
stochastic level, small sam-
ple size)

Trials & seeds

Metrics

Scoring details

Limitations

Table 4: Evaluation Cards: run-level metadata for agentic
evaluation.

out formal validation of inter-trial consistency; scorer vari-
ance may contribute to measured ICC but is expected to be
minimal. ICC variant choice: High variance may reflect ben-
eficial exploration in some domains; ICC measures consis-
tency but does not prescribe optimal stochasticity levels. Our
ICC(1,1) variant treats questions as random effects; alter-
native formulations may suit other contexts. Generalization:
Analysis focuses on reasoning and search tasks with OpenAl
models (GPT-40, GPT-5, 04-mini). ICC patterns may differ
across other model families, embodied agents, or adversarial
environments. FRAMES uses only 50/824 questions due to
computational constraints; GAIA uses the full validation set
(165 questions). Deep research evaluation used one agent
with 8 trials. Further research is needed for generalizable
conclusions.

Ethical Statement

This work promotes evaluation transparency in agentic sys-
tems, enabling more informed deployment decisions about
sub-agent reliability. Transparency in evaluation practices
benefits the broader community by reducing opaque leader-
board competition and enabling practitioners to make prin-
cipled choices about system composition. However, we cau-
tion against misuse. High accuracy with low ICC indi-
cates unreliable evaluation, not a suitable system for deploy-
ment—it signals the need for further investigation before de-
ployment in safety-critical contexts. Practitioners should not
use ICC metrics as justification to deploy agents with low
consistency guarantees in high-stakes applications (health-
care, finance, autonomous systems). Additionally, our anal-
ysis is limited to English-language benchmarks evaluated
on specific model families. ICC patterns may differ across
languages, domains, and agent architectures. We encourage
evaluation rigor in under-studied settings, particularly for
non-English and lower-resource applications where evalu-

ation practices are less mature.

Conclusion

We introduced ICC as a metric for characterizing and re-
porting agentic evaluation stability. By analyzing GAIA
across all three difficulty levels and FRAMES with 64 trials
per question, we demonstrated that ICC varies dramatically
with task structure: retrieval and reasoning tasks (Frames,
ICC = 0.70) exhibit clean evaluation, while reasoning
questions testing multiple agentic capabilities (GAIA Level
3, ICC=0.30 for GPT-40) are heavily influenced by agent
stochasticity. This highlights a critical insight: task com-
plexity affects not just absolute performance but evaluation
reliability itself. For practitioners building agentic systems,
this distinction is essential. Accuracy improvements with-
out ICC given as context may not comprehensively reflect
genuine capability gains. We recommend reporting accuracy
alongside ICC and within-query variance as standard prac-
tice, and propose updated Evaluation Cards to standardize
this reporting. These simple practices: making variance visi-
ble and quantifying evaluation stability, enable practitioners
to build systems with reliable, predictable sub-agents. By
moving agentic evaluation from opaque leaderboard compe-
tition toward principled, reproducible experimental science,
we aim to establish evaluation rigor as a foundation for trust-
worthy agentic systems development.
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Appendix A

ICC and Variance Analysis: FramesAccuracy_score
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Figure 2: ICC Convergence Plot for FRAMES, GPT-5
Search.
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Figure 4: ICC Convergence Plot for GAIA, GPT-5 Search. Figure 5: ICC Convergence Plot for GAIA, GPT-40 Search.

Appendix B

Evaluation Prompt

—==Task===

I need your help in evaluating an answer provided by an LLM against a ground truth
answer. Your task is to determine if the ground truth answer is present in the LLM’s
response. Please analyze the provided data and make a decision.

===Instructions===
1. Carefully compare the "Predicted Answer" with the "Ground Truth Answer".
2. Consider the substance of the answers - look for equivalent information or correct

answers. Do not focus on exact wording unless the exact wording is crucial to the
meaning.

3. Your final decision should be based on whether the meaning and the vital facts of the
"Ground Truth Answer" are present in the "Predicted Answer:"



===Input Data===
Question: {question}

Predicted Answer: {predicted.answer}

Ground Truth Answer: {target}

===0utput Format===

Provide your final evaluation in the following format:
"Explanation:" (How you made the decision?)

"Decision:" ("TRUE" or "FALSE")

Please proceed with the evaluation.

Appendix C

All closed form models were evaluated via official APIs and open source models via fireworks.ai.

¢ GPT-40 search: gpt—4o-search-preview

¢ GPT-4o0: gpt-4o

e GPT-5 search: gpt -5 with web search tool enabled

* 04-mini deep research: c4-mini-deep-research

* 04-mini (judge): o4-mini

¢ Claude 4.5 Sonnet: claude—-sonnet—-4-5

¢ Claude 4.5 Haiku: claude-haiku-4-

¢ Gemini 2.5 Pro: gemini-2.5-pro
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¢ Qwen3-235b-a22b: qwen3-235b-a22b

* Deepseek-v3pl: deepseek-v3pl
Evaluation conducted: October 2025

API Documentation:

* https://platform.openai.com/docs/models

* https://docs.claude.com/en/docs/about-claude/models/overview
* https://ai.google.dev/gemini-api/docs/models

* https://docs.fireworks.ai/api-reference

Appendix D
Model Accuracy 95% CI Between Var | ICC
GPT-5 search 59.44% | [47.28%, 71.60%] 0.183 0.745
GPT-40 search 21.59% | [11.92%, 31.27%] 0.115 0.671
Claude 4.5 Sonnet | 39.71% | [27.50%, 51.91%] 0.184 0.756
Claude 4.5 Haiku 32.26% | [20.76%, 43.76%] 0.164 0.738
Gemini 2.5 Pro 31.28% | [19.65%, 42.92%] 0.180 0.772
Qwen3-235b-a22b | 12.97% [4.70%, 21.24%] 0.085 0.736
Deepseek-v3pl 22.28% | [12.30%, 32.26%] 0.123 0.699

*OpenAl & Claude family were evaluated with web search and others without web search.

Table 5: ICC and variance decomposition on GAIA (n=50 with random seed of 42, 64 trials per question).

Across seven models, we show a critical tension in agentic Al trustworthiness: capability vs consistency. GPT-5 search achieves the highest
accuracy (59.44%) but exhibits lower ICC (0.745) than Claude 4.5 Sonnet (ICC 0.756 at 39.71% accuracy), indicating that performance
gains introduce unpredictability. Other (Deepseek, Qwen, Gemini) degrade gracefully on harder tasks, maintaining modest ICC (0.70-0.77),
while Claude models cluster consistently around ICC 0.73-0.77 regardless of accuracy variation. These results indicate that accuracy and
ICC should be jointly reported when evaluating agentic systems. Reporting accuracy alone provides incomplete information for system
reliability assessment. We recommend ICC and query variance as standard evaluation metrics alongside accuracy to enable practitioners to

make trustworthy decisions about agent selection and deployment.




Appendix E

Intraclass Correlation Coefficient (ICC) Mathematical Framework Let Y;; denote the performance score of the j-th trial on
the i-th task, where ¢ = 1,2,...,ntasksand j = 1,2,...,T; trials per task. Under a one-way random effects model:
Yij=p+a;+ei (12)

where a; ~ N (0, 02) represents the random task effect and &;; ~ N (0, 02) represents the within-task error term.
The within-task variance, representing trial-to-trial inconsistency, is computed as:

02 _ Z?:l Z?:l(yw - Yz)Q
B Z?:l(Ti - 1)

where Y;. = T% Z;F;1 Y;; is the mean performance on task 7. This can equivalently be expressed as a weighted average of individual task
variances:

13)

2 Z?:1(Ti - 1)522

0 = =t (14)
i:l(Ti -1)

where s7 = 1 ZJT;I (Yi; — Y;.)? is the sample variance of task i. Weighting by degrees of freedom (7; — 1) ensures that tasks with
more trials contribute proportionally more to the pooled variance estimate, providing an unbiased estimator when trial counts vary between
tasks.

When the number of trials is equal across all tasks (1; = T for all ¢), this weighted average reduces to the arithmetic mean:
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