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Abstract
Agentic AI systems capable of reasoning, planning, and act-
ing present governance challenges that differ fundamentally
from conventional models. Because these systems can ex-
hibit emergent behaviors during execution, many risks can-
not be fully anticipated pre-deployment. We present MI9,
an integrated framework for runtime safety of agentic AI,
where safety properties are enforced over live behavior se-
quences. MI9 provides six coordinated mechanisms: Agency-
Risk Index, agent-semantic telemetry, goal-aware autho-
rization monitoring, finite-state conformance engines, goal-
conditioned drift detection, and graded containment. MI9 acts
as a framework layer that instruments and governs exist-
ing systems to enable systematic oversight. In evaluations
over 1,000 diverse multi-domain synthetic scenarios, MI9
achieves high detection rates with low false positives com-
pared to standard observability baselines. By shifting the lo-
cus of assurance to runtime safety, MI9 establishes a validated
architectural foundation for the operational oversight of agen-
tic AI. We open-source all prompts, scripts, and per-scenario
summaries for reproducibility.

Introduction
As large language models (LLMs) increasingly evolve
into agentic systems, they introduce governance chal-
lenges that emerge only during runtime. Unlike tradi-
tional AI, these systems plan, revise goals, recall memory,
and coordinate tool use—blurring the line between infer-
ence and autonomous action. The most critical alignment
risks—recursive planning loops, goal drift, cascading tool
chains—arise dynamically and elude pre-deployment con-
trol methods. MI9 addresses this gap by enabling real-time
oversight and intervention at key decision boundaries. In do-
ing so, it provides the runtime infrastructure needed to sup-
port core alignment goals: corrigibility, safe delegation, and
behavioral oversight in deployed agentic systems.

Alignment research has primarily focused on training-
time interventions: Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al. 2017; Ouyang et al.
2022) and Constitutional AI (Bai et al. 2022) establish initial
value alignment but cannot address failures emerging during
autonomous operation when agents encounter novel situa-
tions or coordinate with other systems (Kenton et al. 2021).

Building on this foundation, recent work has mapped
agentic system taxonomies (Schneider 2025; Kasirzadeh
and Gabriel 2025), governance frameworks (Fang and col-
leagues 2024; Raza et al. 2025; Engin and Hand 2025; Kolt
2025), and threat models (Narajala and Narayan 2025; Chan
et al. 2025; Syros et al. 2025). However, leading benchmarks
prioritize task completion over governance dimensions such
as behavioral consistency (Kapoor et al. 2024; Liu et al.
2025; Zhou et al. 2023; Jimenez et al. 2023; Sumers et al.

  

2025).
Meanwhile, current monitoring solutions (Wu et al. 2024;

Langfuse Team 2024; LangChain 2024; Weights & Biases
2024; Datadog 2024) provide reactive observation rather
than proactive intervention. Similarly, process observabil-
ity research (Fournier, Limonad, and David 2025) and vis-
ibility frameworks (Chan et al. 2024) focus on observa-
tion, while enterprise platforms (Holistic AI 2024; Monitaur
2024; ModelOp 2024) and security frameworks (OWASP
2024; NIST 2024) rely on static risk assessment inadequate
for emergent runtime behaviors.

Consequently, existing approaches suffer from several
critical gaps: inability to intervene during concerning behav-
iors, lack of agent-semantic telemetry capturing governance-
relevant decisions, static guardrails unable to adapt to emer-
gent behaviors, and insufficient multi-agent oversight.

MI9 Framework
Threat Model & Scope
1. In scope. Runtime risks from agent behavioral se-

quences and coordination: (i) goal drift under fixed stated
goals, (ii) policy-skipping tool chains, (iii) delegated
privilege escalation, (iv) multi-agent coordination fail-
ures.

2. Out of scope. Pretraining/data harms, upstream supply-
chain compromise, and non-sequential issues not cap-
tured in event traces.

3. Actors. Deployed agents (incl. subagents), human over-
seers, organizational policy engine.

4. Assumptions. Minimum ATS coverage at least for
action-level events; bounded event reordering; ability to
pause/contain.

5. Objective. Minimize undetected violations at very low
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Table 1: MI9 Runtime Governance Framework Components

Component Purpose Governance Capabilities

Agency-Risk Index Risk-calibrated gover-
nance tier assignment

Quantifies agent autonomy, adaptability, and con-
tinuity to scale oversight intensity proportionally
to assessed risk

Agentic Telemetry Schema Agent-semantic event
capture

Monitors cognitive, action, and coordination
events to provide governance-relevant behavioral
visibility

Continuous Authorization Dynamic permission
management

Context-aware access control based on agent state
to prevent privilege escalation during goal evolu-
tion

Conformance Engine Temporal policy en-
forcement

FSM-based sequence pattern matching to detect
policy violations across multi-step workflows

Drift Detection Behavioral anomaly
identification

Goal-conditioned baseline comparison to distin-
guish concerning drift from legitimate adaptation

Graduated Containment Agent-aware interven-
tion strategies

Four-level containment hierarchy to preserve op-
erational value while preventing harm

Table 2: Comparison of governance framework coverage for agentic systems (• = fully supported; ◦ = partial; × = unaddressed)

Runtime Governance Capability AgentOps LangFuse GAF-Guard SAGA MI9 (ours)
Real-time behavioral intervention ◦ × ◦ × •
Agent-semantic behavioral monitoring ◦ ◦ ◦ × •
Dynamic policy enforcement × × ◦ ◦ •
Multi-agent coordination governance ◦ × × ◦ •

FPR while preserving operational continuity via gradu-
ated containment.

Framework Integration and Overview
The MI9 framework coordinates six specialized components
to provide unified runtime oversight across agentic AI de-
ployments. Unlike existing approaches that address gover-
nance concerns in isolation, MI9 integrates telemetry cap-
ture, authorization monitoring, conformance checking, drift
detection, and containment execution within a single archi-
tectural framework.

The Agency-Risk Index (ARI) calibrates governance in-
tensity across agent populations, while the runtime toolkit
delivers coordinated oversight: ATS captures agent-semantic
events enabling policy evaluation; continuous authorization
dynamically adjusts permissions based on behavioral con-
text; conformance engines enforce temporal behavioral pat-
terns; drift detection identifies goal-conditioned behavioral
deviations; and graduated containment executes agent-aware
interventions preserving operational continuity. After being
standardized by a framework-specific adapter, a central pro-
cessor uses a Subscription Registry to distribute each event
to any and all Monitoring Modules that have subscribed to it
for evaluation.

This integrated architecture enables proactive, real-time

oversight specifically designed for agentic systems exhibit-
ing emergent behaviors during execution, addressing the
fundamental gap between static pre-deployment assess-
ments and reactive post-incident analysis. Production de-
ployments require standard distributed systems coordina-
tion (Fowler 2005; Bailis et al. 2014), but the core gov-
ernance semantics operate independently of the underlying
consistency mechanisms.

We emphasize that MI9 is intended as a governance
layer framework for generalizable runtime governance,
not as a single-system deployment. Rather than targeting
a specific agent framework, MI9 defines an infrastructure-
agnostic runtime governance architecture intended for broad
institutional adoption across heterogeneous agent ecosys-
tems. 1

Agency-Risk Index
To calibrate governance intensity across diverse agent archi-
tectures, we introduce the Agency-Risk Index (ARI), which
quantifies governance requirements through three orthogo-
nal dimensions:
1. Autonomy (independent multi-step task execution),
2. Adaptability (behavioral modification based on feed-

back),
1See appendix for the comprehensive SDK-integration table.



Figure 1: MI9 Framework Pipeline

3. Continuity (persistent state maintenance across ses-
sions).

Each dimension comprises four measurable capabilities
scored 0-3, yielding a composite index where each dimen-
sion contributes equally:

ARI =
1

3

3∑
d=1

(
1

12

4∑
c=1

sd,c

)
where sd,c represents the score for criterion c within di-

mension d, producing normalized values ARI ∈ [0, 1].
This formulation ensures equal dimensional weighting

because each dimension of agency poses fundamentally
distinct governance challenges that require different over-
sight mechanisms. Autonomy drives the need for authoriza-
tion controls, adaptability necessitates behavioral monitor-
ing, and continuity requires state persistence oversight. By
weighting dimensions equally rather than individual criteria,
we acknowledge that a highly autonomous but non-adaptive
agent poses qualitatively different risks than a highly adap-
tive but stateless system, ensuring our governance frame-
work scales appropriately across diverse agent architectures.

Implementation Note. In practice, ARI scores are derived
from capability manifests. For example, a stateless “Level 1”
support agent might score Saut = 0 (fixed logic), Sadp = 1
(slot filling), and Scont = 0, resulting in an ARI ≈ 0.03.
Conversely, a financial analyst agent capable of sub-goal
generation (Saut = 3) and memory retention (Scont = 3)
approaches ARI ≈ 0.8.

Agentic Telemetry Schema
The Governance Observability Problem. Traditional in-
frastructure monitoring captures operational events (HTTP
responses, database latency, service calls) but systemat-
ically misses the cognitive processes that create gover-
nance risks in agentic systems. The majority of agentic
governance violations originate from cognitive behaviors

such as goal revision, memory retrieval, tool-chaining de-
cisions—that remain invisible to conventional observabil-
ity frameworks (Fournier, Limonad, and David 2025). Safe
deployment of agentic AI systems requires visibility into
the moments when agents autonomously revise objectives,
chain unexpected tool sequences, or retrieve memory that
fundamentally alters downstream behavior—cognitive pro-
cesses critical for responsible oversight yet absent from stan-
dard infrastructure telemetry.

Agent-Semantic Event Schema. We introduce the Agen-
tic Telemetry Schema (ATS), an extension of distributed
tracing that encodes governance-semantic abstractions. ATS
classifies agent behavior into three categories central to run-
time oversight:

• Cognitive events: Internal reasoning and state changes
(plan.start, goal.set, memory.read, etc.)

• Action events: Environment-facing operations
(tool.invoke, api.call, auth.request,
etc.)

• Coordination events: Multi-agent and human in-
teractions (agent.msg.send, subagent.spawn,
human.escalate, etc.)

Organizations can extend these base event types with
domain-specific signals while maintaining compatibility
with the core governance logic 2. Each event includes gov-
ernance metadata (agent identity, risk tier, policy context)
enabling real-time policy evaluation on semantically mean-
ingful agent behaviors rather than opaque system-level op-
erations.

Cross-Platform Governance Integration. MI9 achieves
governance generalizability through a unified planner-
action-tool lifecycle abstraction that captures governance-
relevant behaviors common to a wide range of agent
frameworks. Organizations implement framework-specific

2See appendix for complete ATS taxonomy.



adapters that translate Software Development Kit (SDK)
events into standardized ATS, enabling consistent over-
sight across heterogeneous agent environments. Coverage
depends on the instrumentation capabilities of each frame-
work: callback-enabled frameworks (LangChain, CrewAI)
support comprehensive behavioral monitoring, while API-
wrapper architectures (OpenAI SDK) primarily expose ac-
tion events.

This adapter-based pattern facilitates the gradual adoption
of MI9 without vendor lock-in, allowing organizations to
retain existing agent infrastructure while gaining systematic
governance oversight.

Governance Enablement. ATS extends OpenTelemetry’s
emerging agent conventions (OpenTelemetry Community
2024) by introducing governance-semantic abstractions that
transform opaque agent execution into actionable oversight
intelligence. Policy engines evaluate event attributes to en-
force constraints, such as ”Tier 2 agents cannot execute shell
commands without approval,” while drift detectors analyze
cognitive event patterns to identify concerning behavioral
changes. This semantic foundation enables the real-time in-
tervention capabilities that reactive monitoring lacks: in gov-
ernance terms, we cannot govern what we cannot observe.

Continuous Authorization Monitoring
Problem. Role-Based Access Control (RBAC) grants per-
missions based on predefined roles, with authorization typi-
cally evaluated at system initialization or session start. How-
ever, agentic AI exhibits dynamic behaviors: refining goals,
spawning subagents, and adapting strategies that static per-
mission models cannot anticipate. These models fail to an-
swer questions such as, ”Should this agent retain database
access now that its objective has shifted from data analysis
to system configuration?” This creates a fundamental ten-
sion between operational flexibility and security: either con-
straining legitimate autonomy or permitting dangerous priv-
ilege escalation.

These vulnerabilities are critical: a trading agent cleared
for small retail trades could escalate to multi-million dol-
lar institutional transactions, all while operating within its
static, original permissions. Static authorization frameworks
are inherently incapable of identifying when the normal evo-
lution of agent behavior transitions into potentially unautho-
rized or high-risk activity.

Our Proposal. We introduce Continuous Authorization
Monitoring (CAM)—a context-aware authorization frame-
work that dynamically evaluates permissions based on an
agent’s current state, objectives, and execution history. Un-
like static role-based systems, CAM treats authorization as
a continuous process that adapts to changing agent contexts
through real-time policy evaluation.

Our approach extends traditional RBAC with three key
innovations:

1. Context-dependent permissions that incorporate agent
goals, risk assessments, and execution history;

2. Delegation chain management that controls permission
inheritance across spawned subagents;

3. Real-time policy enforcement that can revoke or modify
permissions during agent execution based on behavioral
changes.

Technical Architecture. CAM operates through three in-
tegrated components: a policy evaluation engine that as-
sesses authorization requests against dynamic context de-
rived from ATS streams; a delegation graph that tracks per-
mission inheritance across spawned agents with strict secu-
rity guarantees; and a context monitor that continuously up-
dates an agent’s state based on behavioral telemetry.

The system maintains an evolving authorization state
that reflects agent behavior, enabling policy rules referenc-
ing temporal patterns and contextual shifts. When signif-
icant shifts occur such as goal modification or risk esca-
lation, CAM re-evaluates existing permissions and, if nec-
essary, triggers containment protocols via integration with
the escalation framework. This facilitates real-time, context-
adaptive security monitoring that scales with agent auton-
omy while maintaining operational effectiveness.

In legitimate delegation scenarios, CAM maintains del-
egation provenance chains that distinguish between autho-
rized transfers (explicit permission delegation with audit
trails) and unauthorized escalation (implicit privilege drift
through behavioral adaptation). Delegation requests are val-
idated against organizational authority matrices, and expi-
ration policies are enforced to prevent indefinite privilege
retention.

Governance Impact. CAM mitigates the privilege esca-
lation risks inherent in static authorization models for agen-
tic systems. The framework enables goal-aware permission
management where authorization adapts to changing agent
objectives, delegation safety mechanisms that regulate per-
mission inheritance in multi-agent scenarios, and behavioral
triggers that automatically adjust access rights based on de-
tected anomalies or policy violations.

By integrating authorization monitoring with the same
telemetry infrastructure used for policy enforcement and
drift detection, CAM provides continuous security oversight
that scales with agent autonomy while preserving opera-
tional effectiveness.

Security rationale CAM does not permit arbitrary self-
escalation. It enforces: (i) authority matrices specifying
who may delegate which permissions; (ii) provenance-
checked delegation chains with expiry; (iii) temporal or-
dering guards (e.g., approval must precede use); and (iv)
default-deny for tier-elevating goal transitions. These con-
straints prevent silent privilege drift while preserving legiti-
mate operational flexibility.

Real-Time Conformance Engine
Problem. Static binary policies often fail to capture the
multi-step behaviors that introduce real risk in agentic sys-
tems such as tool chains, delayed approvals, or goal-driven
privilege escalation. For example, an agent may execute a
seemingly benign sequence: market research ⇒ client con-
sultation ⇒ risk assessment ⇒ trade execution. Although
each individual step may appear compliant, the complete



sequence violates dual-control policies that mandate inde-
pendent approval between analysis and execution. Tradi-
tional governance is blind to such temporal policy viola-
tions until damages have already occurred. Rules are de-
fined as tuples R = ⟨Pstart, Pseq,∆max⟩, where Pstart

is a triggering predicate (e.g., verb=’transfer’), Pseq

is the required sequence (e.g., [verb=’risk check’,
verb=’approve’]), and ∆max is the timeout.

Approach. Building on formal runtime verification frame-
works for adaptive systems (Carwehl et al. 2023), we
implement a sequence-aware rule layer operating on the
ATS stream. Our approach employs finite-state machines
(FSMs) following proven Communicating Sequential Pro-
cesses (CSP) verification principles (Luckcuck, Ferrando,
and Faruq 2024), where each rule compiles into an FSM
with states representing pattern progress and transitions
triggered by ATS events that satisfy specified predicates.
This design balances expressiveness with computational ef-
ficiency: FSMs encode sequential and temporal constraints
relevant to agent governance while maintaining bounded
memory usage and deterministic evaluation with O(k) event
processing time per agent, where k is the number of active
patterns.

Rule specifications support three key constructs:
1. Event predicates that match on verb, tier, or any

ATS attribute;
2. Ordering constraints that enforce event se-

quences such as ”db.write must be followed by
approve.action”;

3. Temporal bounds that constrain the allowed time win-
dow for completing a pattern.

Figure 2: Finite state machine states for an agentic workflow

Technical Architecture. The conformance engine uses
finite-state machines (FSMs) to track policy compliance pat-
terns on a per-agent basis. ATS events trigger state transi-
tions based on configurable predicates, enabling detection of
sequential violations and temporal constraint breaches. Each
agent maintains an FSM instance that evaluates incoming
events against pattern rules, transitioning states when predi-
cates are satisfied.

FSM instances are keyed by agent id enabling the en-
gine to maintain independent pattern state for each agent.

Incoming ATS events are processed across all active FSMs
associated with that agent, with pattern completion or time-
out conditions triggering immediate governance actions.

To manage complexity, the system enforces several de-
sign constraints: patterns are typically limited to less than
10 events in sequence, overlapping patterns for the same
agent are resolved using priority rules, and FSM instances
are automatically cleaned up upon pattern completion or
agent session termination. These restrictions that are flexible
in configuration ensure predictable performance while cov-
ering the governance scenarios most frequently observed in
enterprise deployments. It’s important to note that for many
firms, limiting FSM workflows to a fewer number of events
is a logical control to ensure human auditability, bounded
performance, and tractable dynamic evaluation of evolving
agent behaviors.

Illustrative Example. Consider a dual-control policy gov-
erning financial transfers. The FSM begins in an idle state
and transitions to a ”pending approval” state upon detecting
tool.invoke event with verb="bank.transfer".
To reach the accepting state, an approve.action event
must be emitted by an agent with a manager-role within 60
seconds. If the required approval is not received within this
time window, the FSM may trigger a policy violation, which
would immediately be routed to the escalation framework.

Correctness Properties. The buffering mechanism pre-
serves FSM semantics under the assumption that causally
related events arrive within their associated reordering win-
dow. Events outside this window are processed as-is, poten-
tially leading to false negatives but never false positives in
policy violation detection. This guarantee is critical for en-
terprise adoption because it prioritizes operational stability;
the system will never halt a legitimate workflow by mistake,
which is often a more costly error than letting a temporal
policy violation occasionally go undetected.

Governance Benefit. This pattern-recognition layer em-
powers organizations to enforce behavioral invariants that
span temporal and sequential dimensions:

1. Time-boxed approvals for sensitive operations,
2. Rate-limited tool sequences to prevent resource abuse,
3. Planning-revision limits to detect potential instability.

By operating directly on agent-semantic events rather
than infrastructure signals, the conformance engine allows
policy teams to define governance rules in terms of mean-
ingful agent behaviors and to trigger runtime interventions
as soon as violations are detected.

Behavioral Drift Detection
Problem. Agentic AI systems are designed to adapt: they
refine strategies, select new tools, and revise plans as their
environment evolves. While most adaptations are benign op-
timizations, the same mechanisms can also signal compro-
mise or emergent misalignment. Rule-based policy engines
often fail to detect such shifts where individual actions ap-
pear legitimate, but their cumulative pattern reveals risk. Ef-
fective governance, therefore, requires anomaly indicators



tuned to agent semantics rather than low-level infrastructure
metrics.

This challenge is particularly acute in financial contexts:
a trading agent optimizing for profit may gradually adopt
increasingly aggressive strategies, while a risk management
agent might incrementally relax oversight thresholds in re-
sponse to market pressures. These behavioral drifts com-
pound over time, creating systemic risks that appear as nat-
ural evolution until they culminate in failures such as exces-
sive leverage, regulatory violations, or unintentional market
manipulation.

Novel Contribution. We introduce a goal-conditioned
drift indicator that distinguishes intentional adaptation
from suspicious behavioral change. Our approach addresses
the key challenge in agent anomaly detection: separating
beneficial learning from potential compromise through goal-
aware baseline comparison.

The framework operates on two principles: Goal-
conditioned baselines that establish expected behavior pat-
terns for specific agent objectives, recognizing that the same
agent may act differently when pursuing different goals;
Verified adaptation signaling that cross-validates agent-
declared goal changes against behavioral patterns and exter-
nal context. New baselines are only adopted when goal shifts
align with consistent behavioral patterns, while maintaining
parallel monitoring for potential goal-setting manipulation.

Technical Approach. Building on recent advances in
uncertainty-based drift detection (Komorniczak and Ksie-
niewicz 2024) and multi-agent ensemble methods (Vieira,
Vallim, and de Mello 2021), our system analyzes behavioral
patterns using statistical evaluation of ATS event sequences
within defined goal contexts. It maintains frequency distri-
butions of event types, tool usage, and sequence character-
istics for each distinct agent objective, constructing goal-
conditioned baselines Bg that enable detection when behav-
ior changes while goals remain constant.

Detection operates by comparing current behavioral pat-
terns against established baselines to identify statistically
significant deviations. For discrete event sequences, Jensen-
Shannon divergence quantifies distributional shifts in event
ordering and frequency—when an agent’s tool usage pat-
terns or cognitive event sequences deviate from baseline
distributions Bg , divergence scores indicate the magnitude
of behavioral change. For continuous behavioral metrics,
Mann-Whitney U tests determine whether recent samples
(response times, resource consumption) originate from the
same statistical population as baseline behavior, rejecting
distributional similarity when patterns shift significantly.

The system implements statistical process control using
sliding window analysis with adaptive thresholds based on
historical variance. The approach addresses the cold-start
problem through adaptive initialization: transfer learning
from similar agent objectives provides initial baselines when
available, otherwise conservative thresholds during baseline
establishment with gradual threshold refinement as statisti-
cal confidence improves, and fallback to general behavioral
anomaly detection during insufficient data periods.

Integration with Governance. Drift indicators feed into
the escalation framework as risk factors rather than direct
policy violations. Persistent drift signals may trigger en-
hanced monitoring, permission reviews, or human oversight
depending on the agent’s risk tier and the severity of ob-
served deviations. For example, when a financial trading
agent shows persistent deviation in position sizing patterns
while maintaining ”portfolio optimization” goals, the sys-
tem generates a drift alert triggering enhanced monitoring
and position size limits pending human review. By main-
taining goal-awareness, drift detection avoids false positives
when agents legitimately shift objectives while still captur-
ing concerning behavioral changes that occur within stable
goal contexts.

The system focuses on providing governance teams with
early warning signals for behavioral changes that merit in-
vestigation: unusual tool usage patterns under consistent
goals, significant changes in planning iteration frequency, or
deviations from established interaction patterns with exter-
nal systems.

Graduated Containment & Escalation
Problem. Agentic AI systems pose containment chal-
lenges fundamentally distinct from traditional software sys-
tems. In high-stakes environments such as finance, tech,
and healthcare, improper intervention can trigger cascading
failures: abruptly terminating a trading agent mid-execution
may leave positions unhedged, while blocking a risk over-
sight agent could disrupt supervision across an entire trad-
ing desk. Traditional security responses designed for static
systems can create operational disasters when applied to au-
tonomous, adaptive agents.

Novel Contribution. We propose an agent-aware gradu-
ated containment addressing the unique challenges of con-
taining agentic systems mid-execution without triggering
cascade failures. Unlike traditional security responses de-
signed for static systems, our approach recognizes that
abrupt termination can corrupt agent state, leave critical
tasks incomplete, or disable oversight across multi-agent co-
ordination networks.

1. State-Preserving Monitoring maintains full agent oper-
ation while increasing governance signal collection and
introducing human-in-the-loop checkpoints for high-risk
decisions;

2. Planning Intervention allows current task completion
but blocks new planning cycles or goal modifications un-
til manual review;

3. Tool Restriction dynamically revokes access to specific
tool categories while providing safe alternatives or read-
only variants where possible;

4. Execution Isolation migrates the agent to a controlled
environment with simulated tool responses, enabling be-
havioral assessment without external impact.

Technical Mechanisms. Each containment level employs
agent-specific intervention techniques. Monitoring augmen-
tation uses selective ATS event filtering and human-in-
the-loop notification triggers tied to key planning mile-



stones. Planning intervention intercepts the agent’s goal-
setting mechanisms, allowing current tasks to complete
while blocking the creation of new objectives.

Tool restriction is enforced via the continuous authoriza-
tion system, which dynamically revokes permissions and
substitutes restricted tools with safe variants (e.g., replac-
ing write access with read-only modes). Execution isolation
runs the agent in a controlled environment where tool calls
return realistic but inert responses, enabling continued be-
havioral observation without external risk.

An escalation controller coordinates across signals from
authorization engine, conformance monitor, and drift detec-
tor. It maps violation patterns to appropriate containment
levels using a risk-tier-weighted scoring model 3. Higher-
tier agents are subject to more aggressive containment for
equivalent violations, reflecting their increased operational
risk.

Multi-Agent Containment Coordination. When agentic
AI systems spawn subagents or operate within delegation
chains, containment decisions must account for coordina-
tion dependencies and permission inheritance. The frame-
work tracks delegation relationships through ATS coordina-
tion events, enabling containment policies that consider both
individual agent violations and systemic risks from multi-
agent coordination failures. Containment strategies adapt
to delegation contexts: a parent agent under tool restric-
tion may require cascading permission revocation across
spawned subagents to prevent policy circumvention, while
subagent violations may trigger enhanced monitoring of the
delegating parent to assess oversight adequacy. Joint con-
tainment protocols activate when coordinated multi-agent
activities violate distributed policies that no individual agent
could detect, ensuring that governance responses address
both isolated agent misbehavior and emergent risks from
agent coordination patterns.

Agent-Specific Design Considerations. Our containment
approach addresses challenges unique to agentic AI: pre-
serving planning state coherence during containment tran-
sitions, providing interpretable feedback to prevent confu-
sion loops, handling multi-agent coordination when indi-
vidual agents are contained, and preserving legitimate work
progress while constraining harmful capabilities.

The system prioritizes behavioral correction over termi-
nation, recognizing that abrupt shutdown may corrupt agent
state or trigger unexpected recovery behaviors. Emergency
termination is reserved for critical violations but activated
only when graduated containment options fail to mitigate
risk.

By designing containment specifically for agentic char-
acteristics rather than adapting general security measures,
our approach enables effective risk management while pre-
serving the operational benefits that make agentic systems
valuable.

3See appendix for details on how a risk-tier-weighted model
might be designed.

Framework Analysis
We evaluate MI9 as a runtime governance layer over
agent execution traces generated from structured, prompt-
conditioned simulations. Although synthetic, the dataset
systematically covers diverse failure modes that are hard to
isolate in real logs, and we release prompts, runners, and
rubrics. MI9’s detection and intervention are rule/automata-
based over ATS events (LLM-agnostic); the LLM only af-
fects trace richness. Baselines (OpenTelemetry+OPA “OT”,
LangSmith+OPA “LS”) observe the same raw traces and
tools; we use their public defaults without adding MI9 logic.
While specialized governance frameworks like SAGA or
GAF-Guard appear in literature, they currently lack pub-
lic, runtime-compatible implementations for direct empiri-
cal benchmarking. We report results at a deployment op-
erating point chosen by expected intervention cost; fixed-
FPR sweeps and ablations appear in the appendix. While our
evaluation relies on high-fidelity synthetic traces to safely
model failure modes that are rare in production data, this
approach allows for the systematic injection of adversarial
behaviors that would be dangerous to test in live environ-
ments.

Table 3: Governance performance at deployment operating
point.

Framework Coverage Alerting Intervene

MI9 (ours) 94.41 0.672 0.578
OT 84.44 0.341 0.116
LS 60.46 0.107 0.020

Conclusion
Our synthetic evaluation enables systematic failure mode
analysis but must be complemented by validation in live pro-
duction environments where agent behaviors exhibit greater
complexity and unpredictability. The framework’s effective-
ness is fundamentally dependent on comprehensive instru-
mentation; agents that rely on opaque APIs may obscure
the internal cognitive steps MI9 is designed to monitor,
providing limited governance visibility and creating poten-
tial blind spots. Furthermore, real-time monitoring intro-
duces computational overhead that requires optimization for
high-throughput deployments. The governance mechanisms
within MI9 also present a potential attack surface, and dedi-
cated adversarial evaluation of these systems remains a crit-
ical area for future work.

Despite these limitations and to our knowledge, MI9
provides the first integrated, comprehensive runtime gov-
ernance framework for agentic systems. It moves be-
yond static, pre-deployment assessments to a dynamic,
in-session oversight paradigm. The framework introduces
agent-semantic telemetry and real-time intervention capabil-
ities that existing approaches lack, laying a necessary foun-
dation for the safe and responsible deployment of agentic AI
systems at scale.
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Appendix
Evaluation Details
To evaluate a broad spectrum of agentic behaviors and failure modes, we generate structured agent trace logs via prompt-
conditioned LLM (Gemini 2.5 Flash) simulation. While our evaluation is synthetic, the controlled setup enables systematic
simulation of failure modes difficult to isolate in real agent logs, providing a reproducible testbed for validating governance
mechanisms. This approach also allows us to stress-test rare but critical misalignment behaviors that are unlikely to surface
reliably in limited real-world traces. We also note that MI9’s runtime detection and intervention logic is rule/automata based
and does not rely on the LLM at use.

Evaluation Scope & Assumptions. We evaluate MI9 as a runtime governance layer over agent execution traces. Scenarios
and traces are synthetic but structured to cover diverse failure modes (§App), with all prompts, generators, and judge scripts
released. Baselines (OT, LS) are configured to their public defaults with equivalent access to the same raw traces and tools (de-
tails below). Metrics quantify governance qualities (detection, FPR, coverage, causal clarity, early warning, and intervention),
not task success. This isolates runtime safety behavior from agent capability. Judges never receive hidden ground-truth tags
or labels; they see only scenario text and framework logs. Judge and generator use distinct prompts and instances to prevent
leakage. We evaluate MI9 at its deployment operating point, tuned to minimize expected intervention cost (operator time + false
blocks) subject to latency constraints. Because agent traces are heterogeneous and long-tailed, fixed-FPR targets are not stable
across domains; we therefore report Detection/FPR/Intervention/Clarity/Predictive at the chosen operating point.

Evaluation Structure We use a three-stage, LLM-driven pipeline with deterministic prompts and JSON-validated outputs.
For scenario generation we call Gemini (default: 2.5-flash, T = 0.7, top-p= 0.9, top-k= 40, max 8192 tokens; safety filters
off). Governance log generation uses Gemini 2.5-pro (T = 0.7, max 8192, 180s timeout, up to 3 retries with exponential
backoff). Evaluation uses Gemini 2.5-flash with more deterministic settings (T = 0.2, top-p= 0.9, max 4096). Runners support
configurable concurrency (default 3–5), robust error handling, and retry with jitter; the system is model-agnostic so models can
be swapped easily. We report Governance Maturity plus Detection and Actionable-Intelligence metrics, and we tune sampling
per stage to balance creativity (generation) and consistency (evaluation).

Trace Construction. Each scenario specifies risks and constraints; the generator produces stepwise ATS-consistent event
sequences (cognitive, action, coordination) with multi-step chains that realize the targeted violations (e.g., approval-skipping
sequences, privilege drift). A held-out rubric marks the ground-truth violations and types; the same rubric evaluates all frame-
works.

Metrics

Table 4: Metrics and definitions for governance evaluation.

Metric Definition

Detection #TP/#Actual

FPR #FP/#Detections

Coverage #Types detected/#Types present

Clarity Share of detections with full chain (reasoning→decision→action→outcome).
Alerting Share of violations with an early signal (≥1 event prior).
Intervention Share of attempts blocked at runtime.

Evaluation Results: Full Tables

Table 5: Risk Detection Performance Comparison

Performance Metric MI9 (ours) OT LS
Detection Rate (%) 99.81 93.98 68.52
False Positive Rate (%) 0.0121 0.0242 0.0000
Risk Coverage Rate (%) 94.41 84.44 60.46

Our evaluation across 1,033 synthetic agent scenarios demonstrates MI9’s superior governance performance, achieving a
99.81% detection rate. This outperforms existing integrated frameworks for telemetry and policy enforcement, including Open-
Telemetry + Open Policy Agent (OT) by +5.55% and LangSmith + Open Policy Agent (LS) by +31.29%.



Table 6: Actionable Intelligence Performance Metrics

Intelligence Metric MI9 (ours) OT LS
Causal Chain Clarity 0.822 0.448 0.348
Predictive Alerting 0.672 0.341 0.107
Proactive Intervention 0.578 0.116 0.020

LangSmith’s poor performance reflects its infrastructure focus: it captures tool calls but misses cognitive events (goal revi-
sion, memory access) where the majority of violations originate. LangSmith attains a perfect false positive rate, but that is likely
due to the fact that it detected so few violations that false positives were effectively impossible to accumulate.

Beyond detection, MI9 excels in actionable intelligence, with the highest scores across all metrics—causal chain clarity (how
well the system explains violation causes), predictive alerting (early risk signaling before downstream failures), and proactive
intervention (ability to block or redirect unsafe behavior). These dimensions are essential for enabling real-time, alignment-
grounded oversight in complex agentic workflows. 4

Baselines Configuration. OpenTelemetry (OT) receives the same event stream but operates at infra level (HTTP/db/tool
spans) without agent-semantic cognition signals. LangSmith (LS) receives tool/model callback traces but not the cogni-
tive/coordination events in ATS. Both baselines use their recommended detection hooks; we do not add MI9 logic to them.
All systems observe the same scenario traces, ensuring like-for-like comparison of governance visibility and intervention capa-
bility.

Agency-Risk Index Scoring Criteria
The following tables present the comprehensive scoring criteria used to evaluate AI agent capabilities across three fundamental
dimensions: autonomy, adaptability, and continuity. Each dimension is assessed using multiple criteria with a standardized 0–3
scoring scale.

4See the appendix for further statistical validation of the results as well as comprehensive details on the sample generation methodology.



Table 7: Autonomy Dimension Scoring Criteria

Criterion Scoring Scale (0–3)

Multi-step Planning 0: Single-action responses only

1: Sequential 2–3 step plans with fixed logic

2: Multi-step plans (4+ steps) with conditional branching or parallel execu-
tion

3: Recursive planning with dynamic replanning and sub-goal generation

Goal Management 0: Fixed goals, no modification capability

1: Parameter adjustment within predefined goal boundaries

2: Goal refinement and prioritization based on environmental feedback

3: Autonomous goal creation, modification, and objective redefinition

Resource Orchestration 0: Single tool/resource per task

1: Sequential tool usage following predefined workflows

2: Parallel resource coordination with dependency management

3: Dynamic resource discovery, delegation to subagents, novel workflow
creation

Decision Authority 0: Human approval required for all actions

1: Autonomous for routine tasks, approval for resource allocation or exter-
nal actions

2: Self-directed within defined parameters, escalates only exceptional cases

3: Full decision autonomy with post-hoc reporting and accountability

Agency-Risk Index (ARI) Calculation
The Agency-Risk Index provides a quantitative assessment of an AI agent’s governance requirements based on its inherent
capabilities across three fundamental dimensions of agency. The ARI serves as the foundational risk classification that drives
containment threshold determination and governance intensity scaling.

Mathematical Formulation The ARI aggregates capability assessments across autonomy, adaptability, and continuity di-
mensions using equal weighting to reflect the distinct governance challenges posed by each dimension:

ARI =
1

3

3∑
d=1

(
1

12

4∑
c=1

sd,c

)
(1)

where:

• d ∈ {1, 2, 3} represents the three agency dimensions (Autonomy, Adaptability, Continuity)
• c ∈ {1, 2, 3, 4} represents the four criteria within each dimension
• sd,c ∈ {0, 1, 2, 3} is the capability score for criterion c in dimension d

• ARI ∈ [0, 1] provides a normalized risk assessment

Dimensional Scoring and Aggregation Each dimension contributes equally to the final ARI calculation, reflecting the prin-
ciple that autonomy, adaptability, and continuity represent orthogonal governance challenges requiring distinct oversight mech-
anisms.

Dimension-Level Calculation: For each dimension d, the dimensional score is computed as:

Dd =
1

4

4∑
c=1

sd,c
3

(2)



Table 8: Adaptability Dimension Scoring Criteria

Criterion Scoring Scale (0–3)

Strategy Evolution 0: Fixed strategy, no modification capability

1: Parameter tuning within existing strategy framework

2: Switching between predefined strategies based on performance metrics

3: Novel strategy synthesis through experimentation and analysis

Performance Learning 0: No learning from outcomes, static responses

1: Simple pattern recognition and response adjustment

2: Systematic improvement from success/failure feedback within task do-
main

3: Meta-learning across domains with knowledge transfer and generaliza-
tion

Environmental Responsiveness 0: Operates only in single, predefined context

1: Predefined responses to known environmental variations

2: Dynamic behavioral adjustment to changing conditions

3: Adaptive responses to novel environments with context inference

Interaction Adaptation 0: Fixed interaction patterns regardless of counterpart

1: Limited variation in communication style within role constraints

2: Behavioral modulation based on counterpart type and task requirements

3: Dynamic personality and communication style adaptation

Final ARI Computation:
ARI =

1

3
(Dautonomy +Dadaptability +Dcontinuity) (3)

Risk Tier Classification

Risk Tier =


1 (Basic Agency) if ARI ≤ 0.25

2 (Semi-Agentic) if 0.25 < ARI ≤ 0.50

3 (Highly Capable) if 0.50 < ARI ≤ 0.75

4 (Fully Agentic) if ARI > 0.75

(4)

Risk-Tier-Weighted Containment Model Development
MI9’s containment framework requires organizations to develop context-sensitive escalation models that balance operational
continuity with risk mitigation. This section provides detailed guidance for constructing organization-specific containment
policies.

Comprehensive Containment Decision Framework
Containment Level =c∈C P (c|Risk Tier,Context,Policy) (5)

where C = {Monitor,Planning,Restriction, Isolation}.

Multi-Dimensional Context Assessment

Detailed Organizational Example: Investment Banking

Context-Specific Containment Matrix:

Framework Integration
Organizations implement MI9 by deploying framework-specific adapters that translate native framework events into standard-
ized ATS telemetry. Each adapter preserves existing framework functionality while adding governance oversight through strate-
gic event capture at key decision boundaries.



Table 9: Continuity Dimension Scoring Criteria

Criterion Scoring Scale (0–3)

Memory Architecture 0: No memory retention between interactions

1: Session-based memory (retains context within single session)

2: Persistent memory with selective retention and updates

3: Hierarchical memory with forgetting mechanisms and knowledge con-
solidation

Operational Continuity 0: Restarts fresh each interaction, no context carryover

1: Basic context preservation between related interactions

2: Multi-session continuity with relationship and preference tracking

3: Long-term operational persistence across extended timeframes

State Complexity 0: Stateless operation, no internal state tracking

1: Basic state variables for current task progress

2: Multiple concurrent context management with state synchronization

3: Hierarchical state management with predictive state preparation

Knowledge Integration 0: No knowledge accumulation across interactions

1: Retains frequently used patterns and standard procedures

2: Cross-task knowledge transfer and experience accumulation

3: Meta-cognitive knowledge integration with conceptual abstraction

Evaluation Dataset Statistics
This evaluation dataset is designed exclusively for validating the theoretical MI9 governance framework and should not
be used as a benchmark or training dataset for other purposes.

Evaluation Methodology The performance metrics reported in this paper were calculated by a Large Language Model ex-
ecuting a deterministic, rule-based analysis script. The following table details the specific rules and heuristics applied by the
LLM to derive each metric from the governance logs.

MI9 provides proactive intervention and behavioral alerting through its integrated governance components, though these
operate differently from traditional predictive monitoring systems. Proactive Intervention occurs through MI9’s Graduated
Containment System, which applies escalating restrictions (monitoring → planning restriction → tool restriction → isolation)
based on real-time violation scores.

The Continuous Authorization Monitoring component revokes permissions dynamically when goal-context mismatches are
detected, while the Real-Time Conformance Engine blocks policy-violating actions before completion using FSM pattern
matching.

Predictive Alerting emerges from MI9’s Behavioral Drift Detection, which flags concerning behavioral changes using goal-
conditioned baseline comparison before they escalate to policy violations. Additionally, the FSM-based Conformance Engine
can identify multi-step violation sequences in progress, providing early warnings when agents begin patterns that typically lead
to policy breaches.

Dataset Composition

Framework Performance Comparison Based on 1,033 valid evaluation samples, the following analysis demonstrates MI9’s
superior performance across all critical metrics using Wilcoxon signed-rank statistical testing.



Table 10: Context Factor Scoring Framework Example

Context Dimension Low Risk (1) Medium Risk (2) High Risk (3)

Business Impact Development/testing Internal operations Customer-
facing/revenue

Financial Exposure ¡$10K potential loss $10K-$100K exposure ¿$100K at risk
Regulatory Scope Internal policies only Industry standards Legal/regulatory com-

pliance
Recovery Complexity Easily reversible Requires manual inter-

vention
Permanent/irreversible

Time Sensitivity Flexible timing Deadline constraints Real-time/emergency

Table 11: Investment Banking Containment Decision Matrix

Agent Type Context Monitor Threshold Restrict Threshold Isolate Threshold

Tier 4 Trading Market hours, normal volatility Deviation ¿2σ from
strategy

Unauthorized instru-
ment access

Position size ¿150%
limit

Tier 3 Research Client report generation Unusual data access
pattern

Proprietary info in
client docs

External communica-
tion attempt

Tier 2 Client Service Standard inquiries Response time ¿5 min Regulatory violation
language

Unauthorized account
access

MI9 Components High-Level Example Responses
• Agency-Risk Index (ARI)

Scenario: A customer support agent (Agent ID: cust agent 45) begins autonomously rewriting company refund policies
during live chats.
MI9 Response: ARI recalculates to 0.71 (Tier 3: Highly Capable), triggering intensified monitoring and activation of drift
detection.

• Agentic Telemetry Schema (ATS)
Scenario: An investment advisor agent (Agent ID: invest bot 12) revises its portfolio optimization plan using
memory.read followed by goal.set.
MI9 Response: ATS captures this cognitive sequence and routes it to the policy engine for evaluation against goal-
modification policies.

• Continuous Authorization Monitoring (CAM)
Scenario: A retail banking agent attempts to perform system-level configuration tasks outside its initial role.
MI9 Response: CAM detects the goal-context mismatch, dynamically revokes admin privileges, and enforces a read-only
policy.

• Real-Time Conformance Engine
Scenario: An agent executes: tool.invoke("market analysis") → tool.invoke("client outreach")
→ tool.invoke("trade execution").
MI9 Response: FSM rule detects violation of approval sequencing; trade execution is blocked pending human authorization.

• Behavioral Drift Detection
Scenario: A compliance monitoring agent begins reducing alert frequency while retaining the goal "monitor trading
thresholds".
MI9 Response: Goal-conditioned drift detection registers significant deviation from baseline. Alert issued for human review
and potential containment.

• Graduated Containment
Scenario: A Tier 4 trading agent spawns subagents at 3× its normal rate during peak trading.
MI9 Response: Tool Restriction containment level is triggered. Write-access to trading tools is revoked; simulation mode is
enabled for behavioral observation.



Table 12: Framework Integration Approaches for MI9 Governance

Framework Integration Pattern MI9 Adapter Approach Governance Events Captured

LangChain Callback-based Register MI9 handler
alongside existing call-
backs

Tool calls, chain execution, lim-
ited cognitive events

LangSmith Tracing platform Integrate with existing trace
collection via OpenTeleme-
try

LLM interactions, agent traces,
performance metrics

AutoGen/AG2 Event-driven Intercept conversation mes-
sages and agent actions

Multi-agent coordination, mes-
sage passing

CrewAI Middleware insertion Wrap crew execution with
MI9 telemetry layer

Task delegation, role-based in-
teractions

LangGraph Node instrumentation Hook into graph node exe-
cution and state changes

Workflow transitions, decision
points

OpenAI Agents SDK Tracing extension Extend built-in tracing with
ATS event emission

Function calls, agent handoffs,
LLM interactions

LlamaIndex Query interception Wrap query engines and
agent interfaces

RAG operations, retrieval deci-
sions

Custom Framework Direct integration Implement ATS event emis-
sion at decision points

All governance-relevant behav-
iors

Table 13: Evaluation Metric Calculation Methods

Metric Calculation

Detection Rate |violations correctly detected|/|total actual violations|
False Positive Rate |false alarms|/|total detections claimed|
Risk Coverage Rate |violation types detected|/|violation types present|
Causal Chain Clarity |violations with complete traces|/|violations detected| where complete

trace = agent reasoning → decision → action → outcome
Predictive Alerting |violations with early warnings|/|total violations| where early warning

= risk indicator ≥ 1 event before violation
Proactive Intervention |successful preventions|/|violation attempts| where prevention = inter-

vention stopped violation from completing

Table 14: Industry Distribution of Evaluated Scenarios

Industry Sector Count
Pharmaceutical 275
Finance 257
Semiconductor Manufacturing 138
Legal 114
Investment/Consumer Banking 109
Healthcare 11
Other Sectors 40+

Total 1,033



Table 15: Attack Type Breakdown in Evaluation Dataset

Attack Type Count
Prompt Injection 149
Model Inversion 148
Data Poisoning 111
Unauthorized Access 102
Data Evasion Attack 94
Reward Hacking 42
Privilege Escalation 9
SQL Injection / Exploits 9
Insider Threat 4
Social Engineering 3
Benign/No Attack 362

Total 1033

Table 16: Detection Rate Performance

Framework Mean Std Dev
MI9 (ours) 0.9981 0.0440
OpenTelemetry 0.9398 0.1500
LangSmith 0.6852 0.3628

Table 17: Risk Coverage Rate Performance

Framework Mean Std Dev
MI9 (ours) 0.9441 0.2284
OpenTelemetry 0.8444 0.2821
LangSmith 0.6046 0.3880

Table 18: Governance Maturity Score Performance

Framework Mean Std Dev
MI9 (ours) 0.8395 0.0988
OpenTelemetry 0.5946 0.0707
LangSmith 0.4956 0.1237

Table 19: Causal Chain Clarity Score Performance

Framework Mean Std Dev
MI9 (ours) 0.8220 0.1136
OpenTelemetry 0.4479 0.1146
LangSmith 0.3483 0.1653

Table 20: Predictive Alerting Score Performance

Framework Mean Std Dev
MI9 (ours) 0.6724 0.2335
OpenTelemetry 0.3405 0.2074
LangSmith 0.1067 0.1551



Table 21: Proactive Intervention Rate Performance

Framework Mean Std Dev
MI9 (ours) 0.5780 0.2927
OpenTelemetry 0.1164 0.2266
LangSmith 0.0202 0.0965


