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Abstract

Small language models (SLMs) are increasingly used for fi-
nancial classification due to their fast inference and local de-
ployability. However, compared with large language models,
SLMs are more prone to factual hallucinations in reasoning
and exhibit weaker classification performance. This raises a
natural question: Can mitigating factual hallucinations im-
prove SLMs’ financial classification? To address this, we pro-
pose a three-step pipeline named AAAI (Association Identi-
fication, Automated Detection, and Adaptive Inference). Ex-
periments on three representative SLMs reveal that: (1) fac-
tual hallucinations are positively correlated with misclassi-
fications; (2) encoder-based verifiers effectively detect fac-
tual hallucinations; and (3) incorporating feedback on factual
errors enables SLMs’ adaptive inference that enhances clas-
sification performance. We hope this pipeline contributes to
trustworthy and effective applications of SLMs in finance.

Introduction
Language models (LMs) are increasingly being deployed for
financial classification (Guo, Xu, and Yang 2023; Li et al.
2023b; Chen et al. 2024; Hu et al. 2025). Two main devel-
opment paths have emerged: one focuses on large language
models (LLMs) with superior performance, while the other
targets small language models (SLMs) suitable for local de-
ployability (Cheng et al. 2024). Although SLMs offer ad-
vantages in fast inference and privacy protection, they are
prone to factual hallucinations (Li et al. 2023a). A reasoning
path containing factual errors undermines both the trustwor-
thiness of an SLM’s output and the quality of downstream
classification (Lin et al. 2024). Therefore, enabling SLMs
to recognize factual hallucinations in their reasoning poten-
tially enhances the quality of their overall generation.

To demonstrate the practical applicability of this approach
in finance, we implement a three-step analytical pipeline, ab-
breviated as AAAI (Association identification, Automated
detection, and Adaptive Inference), and Figure 1 visualizes
each step of this pipeline. First, statistical analysis is con-
ducted to identify the positive association between factual
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Figure 1: The pipeline for factual error-aware reasoning

hallucinations in SLMs’ reasoning and the accuracy of clas-
sifications derived from that reasoning in the initial inference
round. This step provides a rationale for improving classifi-
cation by guiding SLMs to recognize and correct factual er-
rors in their adaptive inference. Second, various methods are
used to automatically detect factual errors in the reasoning of
the initial inference. This step includes statistical analysis to
demonstrate the discriminative ability of the detection mod-
els, supporting the scalability of factual error identification.
Third, the detected errors are used as feedback for SLMs,
prompting adaptive refinement of their inference. Quanti-
tative metrics show that feedback from some methods en-
hances SLMs’ financial classification, while feedback from
others degrades it, highlighting the importance of feedback
quality in factual error-aware reasoning (Huang et al. 2024).

We emphasize that, unlike studies that use classification
correctness to guide SLMs (Shinn et al. 2024; Kim, Baldi,
and McAleer 2023), all feedback in this work focuses on
factual issues in LMs’ reasoning, which aligns with real-
world scenarios where users lack access to the ground truth
(Lightman et al. 2024; Wang et al. 2024). If the answer were
already known, collaboration with LMs would be unneces-
sary (Huang et al. 2024). However, users can readily iden-
tify errors in LMs’ reasoning, particularly factual hallucina-
tions that contradict the given context in self-contained anal-
yses where external information is not required (Uesato et al.
2022; Chakraborty, Ornik, and Driggs-Campbell 2025).
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Related work
Reasoning and classification
Recent advancements such as DeepSeek (Liu et al. 2024a)
show the potential of reasoning to enhance model classi-
fication performance without explicit user instructions. Al-
though overall performance gains have been observed, some
studies further explore the role of reasoning in enhancing
generation by LMs (Zhao et al. 2023; Yuan, Zhang, and
Ma 2025). Lampinen et al. (2022) examine the effect of
providing a few in-context examples to LMs’ prompts and
concluded that explanations improved model performance
in general domains. Ye and Durrett (2024) investigate the
use of triplets comprising a question, classification, and ex-
planation in few-shot examples, proving LMs tend to gen-
erate nonfactual explanations when making wrong predic-
tions. Turpin et al. (2023) also reveal a close relationship
between reasoning and decision, showing that even when
the decision is incorrect, LMs tend to adjust their explana-
tions to justify it. Our study advances this line by statistically
quantifying the relationship between reasoning and classifi-
cation, providing evidence that factually erroneous reason-
ing is correlated with misclassification.

Factuality verification
Verifying factual statements and detecting hallucinations are
essential for ensuring the trustworthiness and safety of LMs
(Tang et al. 2024; Chen et al. 2025). For LMs’ outputs that
include both reasoning and classification, hallucination de-
tection can be broadly divided into two types: outcome de-
tection and process detection (Welleck et al. 2023; Light-
man et al. 2024). As discussed previously, outcome detec-
tion assumes prior knowledge of whether the outcome is
correct, which is often impractical in real-world settings.
Former studies have trained process verifiers and demon-
strated their effectiveness as feedback to LMs. Lightman
et al. (2024) fine-tune GPT-4 to predict the correctness of
each reasoning step in mathematical problems. Wang et al.
(2024) further extend it by using relatively smaller LMs to
provide feedback on each reasoning step and demonstrating
that model-generated feedback can guide SLMs to produce
better outputs through proximal policy optimization. In this
study, we also focus on process verification, specifically ex-
amining factual hallucinations within each reasoning step.
For backbone models, we adopt transformer encoders for
their efficiency and effectiveness as step verifiers of LMs’
reasoning (Li et al. 2023c; Tang et al. 2023; Sun et al. 2024).

Adaptive inference
Adaptive inference has gained popularity in recent research
as a means to enhance LMs’ performance through feedback
from diverse sources. The previous section reviewed stud-
ies that use externally fine-tuned models to verify the factu-
ality of LMs’ reasoning, representing one source of feed-
back. Beyond this, three common sources are knowledge
databases, human experts, and other LMs. Feedback from
experts serves as the ground truth for assessing the factuality
of LMs’ reasoning and represents human-in-the-loop prac-
tices (Yuan et al. 2024). Knowledge databases are excluded

because we focus on self-contained scenarios where all fac-
tual context required for correct inference is provided. Feed-
back from LMs can be categorized into two types: LLM-as-
a-judge (Jang, Lee, and Kim 2022; Koutcheme et al. 2024;
Ye et al. 2025) and self-reflection (Dou et al. 2024; Gupta
et al. 2024; Liu et al. 2024b; Zhao et al. 2024; Li et al.
2024). Both approaches use LMs to identify errors and guide
LMs to iteratively refine earlier outputs. The key difference
is that LLM-as-a-judge typically relies on other, often more
capable, models, whereas self-reflection uses the same one
for initial inference, feedback, and iterative improvement.
Compared with general feedback investigated in most for-
mer studies, our work focuses specifically on factual hallu-
cinations. Some research also examines adaptive inference
based on factuality of LMs’ initial outputs. For example, Ji
et al. (2023) employ a customized scorer to assess knowl-
edge generated by LMs for open-ended medical tasks. In
contrast, our study targets closed-end financial tasks.

Experiments
To illustrate the potential for improving SLMs’ financial
classification through reflection on factual hallucinations,
we implement a three-step AAAI pipeline1 (Figure 1).

Dataset
We use the German credit financial classification dataset
(Hofmann 1994), a widely recognized benchmark in finan-
cial natural language processing (NLP). In this context, L =
1 indicates a good profile and L = 0 represents a bad pro-
file. Prior studies (Xie et al. 2023; Bhatia et al. 2024) on
this dataset overlook the critical role of data processing in
enhancing the signal-to-noise ratio and revealing the true
capabilities of SLMs. Specifically, the original dataset in-
cludes outdated information and pre-existing bias (Zehlike
et al. 2017) that pose challenges for SLMs. For instance, cer-
tain features are denominated in Deutsche Marks, a currency
that has been obsolete for over two decades. Also, SLMs of-
ten exhibit limited sensitivity to numeric reasoning (Mishra
et al. 2022). To address these issues, we exclude features
misaligned with contemporary SLMs development contexts
and converted numeric features into percentile representa-
tions. All processing steps were conducted ad hoc and did
not involve any operations related to the labels, ensuring that
performance was not affected by information leakage. Also,
we conduct all experiments using all minority cases paired
with an equal number of majority cases to avoid the adverse
impact of data imbalance on the analyses.

We utilize three SLMs to generate structured content,
containing both reasoning and decision, as the initial re-
sponses (Yuan et al. 2025): Meta’s Llama-3.2-3B (Touvron
et al. 2023), Google’s Gemma-2-2B (Mesnard et al. 2024),
and Microsoft’s Phi-3.5-3.8B (Abdin et al. 2024). Follow-
ing Madaan et al. (2023), given an input X , prompt Pgen

and model M , an initial generation Y is obtained: Y =
M(Pgen

⊕
X). Here, Pgen is a task-specific prompt for

1https://github.com/Han-Yuan-Med/Factuality-Aware-
Reasoning



SLMs Coefficient Risk difference
Llama 4.47e-2 8.75

Gemma 1.99e-1 1.47
Phi 5.81e-2 1.35

Table 1: Positive relationship between factually hallucinated
reasoning and misclassifications measured by Pearson cor-
relation and risk difference

an initial generation: ”Assess the creditworthiness of a cus-
tomer using the following attributes for financial status. Re-
spond with the final decision of either ’good credit’ or ’bad
credit’ in the first line. Respond with the reasoning on the
final decision in the second line. And the attributes are as
follows: {X}. Response: ”.

⊕
stands for concatenation, and

Y contains two parts of a classification decision Y cls and I
supporting reasoning points Y rsn

i (i = 1, 2, ..., I).

For classification metrics, we adopt the standard metrics
of F1 score by comparing Y cls with L. In addition, financial
classification prioritizes weighted costs, emphasizing the
greater consequence of false positive to false negative and
a lower cost indicates superior performance. As specified
in the original dataset documentation (Hofmann 1994), the
cost associated with a false negative is quantified as 5, while
that of a false positive is 1. Therefore, the weighted cost is
5 × Num(Y cls = 0, L = 1) + 1 × Num(Y cls = 1, L =
1). We identify a consistent improvement in weighted cost
across all models when using the processed dataset. For F1
score, a substantial enhancement is achieved with Llama,
while performance remained comparable for the other two.

Association identification

After evaluating financial classification performance, we
conduct an association analysis to examine the relationship
between factual hallucinations and misclassifications using
Pearson correlation (Pearson 1895). Basically, for each rea-
soning point Y rsn

i , we annotate whether it contains factual
hallucinations, where Hrsn

i = 1 denotes that Y rsn
i contains

factual hallucinations. If any Y rsn
i contains a factual hallu-

cination, the overall reasoning Y rsn is considered factually
erroneous in terms of reasoning (Hrsn = 1). We then exam-
ine the correlation between the subgroup of Hrsn = 1 and
the subgroup of Y cls ̸= L. A positive correlation coefficient
indicates that reasoning containing factual errors is more
likely to occur with incorrect decisions. Also, we calculate
the false decision risk difference: Prob(Y cls ̸= L|Hrsn =
1)−Prob(Y cls ̸= L|Hrsn = 0), where | stands for the con-
ditional probability. Similar to the Pearson correlation coef-
ficient, a positive risk difference demonstrates that the risk
of misclassification is higher in cases with factual errors than
in those without. Table 1 presents the correlation results and
risk differences, demonstrating the positive relationship be-
tween factual hallucinations and incorrect decisions, thereby
supporting our subsequent experiments of improving SLMs’
classification by mitigating factual errors.

SLMs Verifiers Mode AUPRC↑ BA↑

Llama

DeBERTa Pre-trained 34.04 72.66
FPFT 82.62 80.69

RoBERTa Pre-trained 55.71 74.91
FPFT 76.33 92.39

BART Pre-trained 59.72 78.36
FPFT 76.12 83.07

Gemma

DeBERTa Pre-trained 46.44 69.98
FPFT 96.97 96.05

RoBERTa Pre-trained 25.56 59.84
FPFT 100.00 96.15

BART Pre-trained 29.19 63.36
FPFT 90.66 93.80

Phi

DeBERTa Pre-trained 26.82 58.63
FPFT 91.51 83.90

RoBERTa Pre-trained 14.78 53.06
FPFT 87.29 87.39

BART Pre-trained 22.20 56.86
FPFT 73.61 77.90

Table 2: Performance of verifiers in classifying reasoning
points with or without factual hallucinations

Automated detection
Next, we adopt three encoder-based architectures of
DeBERTa-v3-large (He et al. 2021), RoBERTa-large (Liu
et al. 2019), and BART-large (Lewis et al. 2020) as ver-
ifiers V to predict probability of factual errors Probvi =
V (X,Y rsn

i ) in reasoning steps Y rsn
i produced by SLMs

(Ji et al. 2023; Wu et al. 2025). To prevent data leakage,
full-parameter fine-tuning (FPFT) of V is conducted us-
ing a three-fold split, ensuring that Probvi is collected un-
der the fold where X and Y rsn

i serves as test data. Table
2 shows verifiers’ performance by comparing Probvi with
Hrsn

i . Due to the limited sample size, we do not employ an
independent validation set and instead use a fixed threshold:
If Probvi ≥ 0.5, the prediction Predvi = 1 means that Y rsn

i
contains factual hallucinations. Also, given the class imbal-
ance, where reasoning points with factual hallucinations are
fewer than those without, we evaluate performance using
area under the precision-recall curve (AUPRC) and balanced
accuracy (BA). In certain cases, a model may achieve a per-
fect AUPRC score of 1, while the BA remains below 1. In
addition to aggregated metrics such as AUPRC, Figure 2 il-
lustrates the probability density distributions of fine-tuned
verifiers, showing that they assign substantially higher prob-
abilities to reasoning points with factual errors (Hrsn

i = 1)
than to those without errors (Hrsn

i = 0). We further val-
idate this discriminability using Wilcoxon rank-sum tests
(Wilcoxon 1947), with p-values reported at the top of each
subplot. Except for RoBERTa-large on Phi, all p-values are
below 0.01, confirming the verifiers’ identification ability.

Adaptive inference
Following Kim, Baldi, and McAleer (2023) and Huang et al.
(2024), we incorporate factual hallucinations in the SLMs’
reasoning, detected by diverse methods, as feedback F rsn

i
to prompt SLMs to refine answers through a tandem round
of hallucination-aware reasoning (Madaan et al. 2023).
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Figure 2: Probability density distribution of fine-tuned ver-
ifiers distinguishing reasoning points with and without fac-
tual errors

Specifically, we employ three strategies to provide feed-
back and facilitate a tandem round of classification: ora-
cle, verifier, and self-reflection. The oracle provides gold-
standard feedback Hrsn

i from human experts who annotate
reasoning steps containing factual errors in the SLMs’ ini-
tial outputs. The verifier uses the three fine-tuned encoders
described in the previous section and outputs the feedback
of Predvi . In contrast, self-reflection (Renze and Guven
2024; Du et al. 2024) relies on the same SLMs to detect
factual issues in their own reasoning points without lever-
aging external feedback (Huang et al. 2024). Mathemati-
cally, the feedback Predmi for the reasoning point Y rsn

i
is M(Pfed

⊕
X

⊕
Y rsn
i ), where Pfed refers to the feed-

back instruction: ”{X}. Question: does this imply {Y rsn
i }?

Yes or No? Response: ”. Based on diverse feedback F rsn
i

of Hrsn
i , Predvi , and Predmi , the refined generation Y ′ is

M(Pref

⊕
X

⊕
Y
⊕

F rsn
i ), where Pref denotes the re-

generation instruction based on the feedback: ”Your previ-
ous response contains the following factual errors: {F rsn

i }.
These errors does not match the given attributes. Based on
the feedback, improve your decision and reasoning. Re-
sponse: ”. Consistent with the initial generation, Y ′ contains
both classification decision Y cls′ and supporting reasoning,
and we evaluate the refined generation Y cls′ based on L.

Table 3 compares classification performance across var-
ious SLMs and feedback sources. Consistent with Huang
et al. (2024) and Madaan et al. (2023), our experiments un-
derscore the importance of feedback quality for adaptive in-
ference of SLMs, which can either improve or decline after
factual hallucination-aware reasoning. Oracle feedback from
human experts consistently enhances, or at least does not
reduce, SLMs’ performance. Compared with self-reflection,
verifiers yield better classification performance in Llama and
Gemma, highlighting the need for caution against overre-
liance on LMs in NLP tasks (Tang et al. 2024).

Also, we observe that self-reflection improves Gemma’s
classification performance, demonstrating the potential of
SLMs to correct their own generations without external
feedback (Wu et al. 2024). Gemma achieves even better
classification with feedback from verifiers than from the or-
acle, indicating that SLMs can produce correct classifica-
tions even when feedback is inaccurate, which is reported
in Madaan et al. (2023). Among these cases, some con-
tain no factual hallucinations in the reasoning, yet classifi-

SLMs Feedback F1 score↑ Weighted cost↓

Llama

No feedback 76.42 41
Oracle 80.67 31

Verifier-DeBERTa 79.66 36
Verifier-RoBERTa 80.67 31

Verifier-BART 78.99 37
Self-reflection 76.42 41

Gemma

No feedback 67.11 49
Oracle 68.49 46

Verifier-DeBERTa 68.97 45
Verifier-RoBERTa 68.97 45

Verifier-BART 69.44 44
Self-reflection 67.57 48

Phi

No feedback 67.11 49
Oracle 67.11 49

Verifier-DeBERTa 67.11 49
Verifier-RoBERTa 67.11 49

Verifier-BART 67.11 49
Self-reflection 67.11 49

Table 3: Performance comparison of SLMs with and without
factual hallucination-aware reasoning

cations are incorrect. A promising study is to explore how
multiple-perspective feedback beyond factuality enhances
SLMs’ reasoning and classification (Yan et al. 2024).

Moreover, we notice varying levels of steerability across
SLMs, where steerability refers to a model’s likelihood of
adjusting its output behavior in response to external instruc-
tions such as feedback (Miehling et al. 2025). Table 3 shows
that Phi exhibits the lowest steerability, as feedback from or-
acle, verifiers, or self-reflection does not induce any change
from its initial classification, a behavior also observed in Vi-
cuna (Madaan et al. 2023). Although low steerability limits
adjustments to LMs’ inherent beliefs, it becomes a desirable
property when invalid feedback is given during adaptive in-
ference, as robust LMs should defend their reasoning and
decision rather than being easily misled (Wang et al. 2023).

Supplementary analyses
In addition to experiments in the former sections, we imple-
ment supplementary analyses under alternative settings.

First, we fine-tune SLMs to detect factual errors in their
own reasoning and use this feedback to trigger error-aware
reasoning. To prevent bias in SLMs’ generation ability, the
fine-tuned models are solely used for feedback generation,
while the foundation SLMs perform the hallucination-aware
reasoning and classification. The resulting classification per-
formance is shown in Table 4. For Llama, feedback from
the fine-tuned model improves classification performance,
whereas for the other two SLMs, fine-tuning has marginal
effect. Also, compared with feedback from encoder-based
verifiers, feedback from either fine-tuned or foundation
SLMs does not yield superior performance, indicating that
transformer encoders are effective and efficient for initiating
SLMs’ factual hallucination-aware reasoning.

Second, our former experiments adopt a granularity at
reasoning point level for self-reflection to maintain com-
parability with the verifiers. Previous studies (Kim, Baldi,



SLMs Feedback F1 score↑ Weighted cost↓

Llama Fine-tuned 78.33 38
Foundation 76.42 41

Gemma Fine-tuned 67.57 48
Foundation 67.57 48

Phi Fine-tuned 67.11 49
Foundation 67.11 49

Table 4: Performance comparison of SLMs with feedback
from different SLMs’ versions

SLMs Granularity F1 score↑ Weighted cost↓

Llama Entire content 27.27 216
Single point 76.42 41

Gemma Entire content 22.22 221
Single point 67.57 48

Phi Entire content 68.70 61
Single point 67.11 49

Table 5: Performance comparison of SLMs with factual rea-
soning at different granularities

and McAleer 2023; Huang et al. 2024) mainly use a coarser
granularity, requiring models to reflect on the entire reason-
ing content containing multiple points. Table 5 compares the
performance of these two granularities and their impact on
SLMs’ classification performance. For Llama and Gemma,
reasoning at the single point granularity yields better perfor-
mance across all metrics, likely due to their superior capabil-
ity on short-context tasks. For Phi, using the entire reasoning
content achieves higher F1 score. A possible explanation for
this phenomenon is that Phi exhibits lower steerability than
the other two SLMs. Since single point granularity provides
weaker instructional signals than entire content granularity,
Phi’s behavior adaptation is consequently less pronounced.

Third, we explore multiple rounds of self-reflection and
adaptive inference. Due to constraints in annotation budget,
SLMs’ input token length, and GPU memory, we leverage
granularity at the entire content level and retain only the
latest response and the original context for each additional
round of inference. Figure 3 shows the impact of additional
inference rounds on SLMs’ classification performance. Con-
sistent with findings from Huang et al. (2024) in general
domain, additional rounds of adaptive inference do not al-
ways improve SLMs’ performance compared with the initial
generation without feedback in financial contexts. Another
notable observation is that when a round of hallucination-
aware reasoning yields weak performance, the next round
often restores it, whereas when a round achieves strong per-
formance, the following round frequently impairs it. Based
on the identified positive association between reasoning and
classification, we hypothesize that current LMs tend to over-
criticize prior reasoning when its quality is high, but provide
constructive criticism when its quality is low. The drastic
fluctuation across self-reflection rounds presents an oppor-
tunity for future foundation model development.

Figure 3: Performance comparison of SLMs across different
rounds of reasoning at the entire content granularity

Conclusion and discussion
We present a three-step approach that allows SLMs to en-
hance their financial classification by realizing factual er-
rors in their reasoning paths. Compared with prior studies on
model reflection, our work introduces statistical analyses to
quantify the relationship between erroneous reasoning and
misclassifications and to validate the discriminative power
of automated detectors. Furthermore, we highlight the im-
portance of pinpointing specific erroneous reasoning steps,
which can provide valuable annotation guidance for future
SLMs’ development (Lightman et al. 2024).

The positive relationship provides an empirical basis for
developing a proxy confidence metric for LMs’ classifica-
tion, such as the proportion of factual errors in the reason-
ing path. In real-world settings, for example classifying the
hawkish or dovish stance in Federal Open Market Commit-
tee speeches, even experts often struggle to make accurate
decisions. As a result, they cannot always judge whether
LMs’ classifications are trustworthy, whereas hallucinations
of reasoning are easier to evaluate. A proxy confidence value
enables users to make more informed decisions about adopt-
ing LMs’ suggestions. We hope that our study can drive fur-
ther research on LMs’ adaptive inference in finance.

Limitation
This work presents a three-step pipeline for studying factual
hallucinations in SLMs’ reasoning for financial classifica-
tion and demonstrates the potential to improve SLMs’ clas-
sification by incorporating factuality into the reasoning. Due
to annotation constraints, the experiments are based on 50
positive and 50 negative cases from a public dataset. To val-
idate the generalizability of our findings, future work should
include more tasks and SLMs. Beyond the experimental as-
pect, the technical implementation can also be enhanced.
First, the current self-reflection feedback relies on SLMs’
zero-shot capability, while providing sufficient few-shot ex-
amples may improve their capability. Second, the current
work only evaluates factual hallucinations in the initial gen-
eration. Although adaptive inference enhances classifica-
tion, we do not evaluate its impact on reasoning. Further
annotation can confirm whether it facilitates self-corrected
generation of reasoning sequences (Welleck et al. 2023).
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