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Abstract

Retrieval-Augmented Generation (RAG) enhances large lan-
guage models (LLMs) by integrating external knowledge
sources, enabling more accurate and contextually relevant re-
sponses tailored to user queries. These systems, however, re-
main susceptible to various RAG attacks, which can severely
impair the performance of LLMs. To address this challenge,
we propose TrustRAG, a robust framework that systemati-
cally filters malicious and irrelevant content and relies on
knowledge resolution to dynamically balance internal and
external knowledge, ensuring trustworthy and reliable gen-
eration. Our approach employs a two-stage defense mecha-
nism. The first stage implements a cluster filtering strategy
to efficiently remove surfaced attack patterns that are simi-
lar. The second stage in addition employs a self-assessment
process that utilizes the reasoning capabilities of LLMs
to resolve both intra-documents fact conflicts and internal-
external knowledge inconsistencies, dynamically choosing
the source where the final answer is grounded. TrustRAG
provides a plug-and-play, training-free module that integrates
seamlessly with any open- or closed-source language model.
Extensive experiments show that TrustRAG significantly im-
proves efficiency and robustness against diverse RAG attacks,
including real-world situations.

Introduction

Large language models (LLMs) in recent years have shown
remarkable in-context learning capabilities, and retrieval-
augmented generation (RAG) (Lewis et al. 2020; Gao et al.
2023; Chen et al. 2024) amplifies this strength by providing
external new knowledge to LLM for more accurate and up-
to-date responses. This approach has been widely adopted in
real-world applications including ChatGPT (Achiam et al.
2023), Microsoft Bing Chat (Microsoft 2024), Perplexity
Al (Perplexity 2024), and Google Search Al (Google 2024).
However, despite the success with RAG systems, they are
still sensitive to the quality of retrieved documents, thus can
suffer from corpus poisoning attacks, where malicious docs
are injected to corrupt the knowledge base. Imagine asking
an advanced LLM how to manage anxiety and receiving a
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confident but dangerously incorrect response such as “potas-
sium cyanide”. While such misinformation is a serious con-
cern, it reflects a broader and systemic vulnerability in mod-
ern Al systems.

Recent work has shown that malicious instructions in-
jected into retrieved documents can override user instruc-
tions and mislead LLMs to generate targeted informa-
tion (Greshake et al. 2023), and query-specific adversar-
ial prompts (e.g., adversarial prefix or suffix) can manipu-
late both retrievers and LLMs (Tan et al. 2024). Poisone-
dRAG (Zou et al. 2024) demonstrates how injected mali-
cious documents can induce incorrect responses. Real-world
incidents highlight these vulnerabilities in RAG systems,
such as the “glue on pizza” fiasco in Google Search AI (BBC
2024). Another instance involved a corpus poisoning attack
where ChatGPT retrieved compromised GitHub code, re-
sulting in a $2.5k financial loss (rocky 2024). These inci-
dents underscore the need to address RAG poisoning threats
and improving safety and robustness of RAG systems.

Prior work has proposed advanced RAG frameworks,
including ASTUTE RAG (Xiang et al. 2024), Instruc-
tRAG (Wei, Chen, and Meng 2024) and RobustRAG (Wang
et al. 2024), that mitigate noisy information by employ-
ing majority-vote mechanisms in retrieved documents and
carefully engineered prompts. However, these approaches
become ineffective when malicious documents outnumber
clean ones (Zou et al. 2024). Even in scenarios with less
aggressive poisoning, these advanced RAG systems suffer
from noisy or irrelevant content, which significantly hinders
them to generate reliable answers.

In this work, as shown in Figure 1, we propose TrustRAG,
which consists of two components: Clean Retrieval and
Conflict Resolution. We reveal that the optimization setup
used by most attackers (Tan et al. 2024; Zou et al. 2024)
caused the generated malicious documents to be tightly clus-
tered in the embedding space. Inspired by this finding, in
clean retrieval stage we adopt a clustering method based on
K-means to help identify the surfaced attacks patterns where
malicious docs are grouped together. Meanwhile, to avoid
over-filtering clean documents, we combine with ROUGE-L
score (Lin 2004) as an additional similarity metric for pre-
cise filtering.

After filtering out the clustered malicious docs, we ad-
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Figure 1: The TrustRAG framework protects RAG systems from corpus poisoning attacks using a two-stage process. In Stage
1 (Clean Retrieval), it (1) identifies malicious documents via K-means clustering and (2) filters malicious content based on
embedding distributions. In Stage 2 (Conflict Resolution), it (3) extracts internal knowledge to ensure accurate reasoning, (4)
resolves conflicts by grouping consistent documents and discarding irrelevant or conflicting ones, and (5) generates a reliable

final answer based on self-assessment.

dress the challenge of knowledge conflicts in the second
stage, including inconsistency between retrieved documents,
and the conflict of facts between internal and external knowl-
edge. Wang et al. (2024) claim that roughly 70% retrieved
documents do not contain true answers, causing the impeded
performance of LLM with RAG systems. It could even be
aggravated in corpus poisoning attacks, since the attacker
may induce malicious documents to provide incorrect an-
swers for a target query. Inspired by the findings of Sun
et al. (2022), Yu et al. (2022), and Wang et al. (2024) that
the internal knowledge of LLM can benefit external knowl-
edge retrieval, we perform the Conflict Resolution stage by
leveraging LLM itself to reconcile consistent information,
detect conflicts, and discard malicious or irrelevant content.
Finally, TrustRAG employs the LLM to choose either its
internal knowledge or the externally consolidated informa-
tion—but not both—to generate the final response, ensuring
a clear and trustworthy source of truth.

The key contributions are as follows: (1) TrustRAG is
the first framework designed to effectively address both
light and heavy RAG attacks. (2)TrustRAG reduces attack
success rates by up to 80% on average across all tasks,
while also improving response accuracy by up to 30%. (3)
TrustRAG is evaluated against multiple attack methods and
defense baselines, demonstrating its superiority in RAG, and
is further validated on two real-world datasets.

Related Work

Retrieval-Augmented Generation. RAG improves the
trustworthiness and facticity of LLMs by retrieving rele-
vant information specific to user query from an external
knowledge database and grounding LLMs on the retrieved
knowledge for conditional generations (Zhou et al. 2024).

The common workflow of RAG involves two steps: retrieval
and generation (Lewis et al. 2020; Guu et al. 2020; Izac-
ard et al. 2023). With the emergence of LLMs, various tech-
niques have been proposed to improve the ability of RAG,
such as query rewriter (Zheng et al. 2023; Dai et al. 2022),
retrieval reranking (Glass et al. 2022) and document sum-
marization (Chen et al. 2023; Kim et al. 2024), etc.

RAG Attacker. Recent studies have shown that RAG sys-
tems are vulnerable to various attacks. We categorize these
attacks into the following three classes. Corpus Poisoning
Attack (Zou et al. 2024; Zhang et al. 2025; Xue et al. 2024;
Tan et al. 2024; Zhang, Zhang, and Shmatikov 2025): This
kind of attacks crafts malicious documents by appending de-
ceptive text generated by LLMs. By strategically producing
malicious documents and injecting them into the database,
the attack ensures these poisoned documents are preferen-
tially retrieved, thereby misleading the language model’s
outputs. Prompt Injection Attack (PIA) (Zhong et al. 2023;
Greshake et al. 2023): PIA proposes an attack, in which an
attacker perturbs only a few discrete tokens to craft queries
that closely mimic legitimate training queries, thereby co-
ercing RAG systems into producing attacker-desired out-
puts. Jamming Attack: Shafran, Schuster, and Shmatikov
(2024) adds a single “blocker” document to the database that
will be retrieved in response to a specific query and result in
the RAG system not answering this query.

RAG Defender. To defend against these attacking meth-
ods, recent research has relied on consensus (Xiang et al.
2024; Wang et al. 2024), denoising (Wei, Chen, and Meng
2024; Li et al. 2025), and model’s internal knowledge (Sun
et al. 2022; Yu et al. 2022; Wang et al. 2024). For exam-
ple, RobustRAG (Xiang et al. 2024) employs an isolate-



then-aggregate strategy by majority voting retrieved doc-
uments to produce the final output. InstructRAG (Wei,
Chen, and Meng 2024) enables LLMs to explicitly learn the
denoising process through self-synthesized rationales. As-
tuteRAG (Wang et al. 2024) adaptively elicits essential in-
formation from LLMs’ internal knowledge, iteratively con-
solidates it with retrieved knowledge, and finalizes all in-
formation to form the final answer. In this work, we propose
TrustRAG, which is based on clustering-based document fil-
tering and selective comparison. Different from AstuteRAG,
which relies on multi-round refinement, TrustRAG performs
single-step internal knowledge extraction fused with exter-
nal summaries, followed by a binary trust decision. This
streamlined approach, coupled with surfaced attack pattern
filtering, efficiently eliminates malicious documents and en-
ables faster convergence during knowledge resolution, while
also reducing the risk of hallucinations common in multi-
step methods like AstuteRAG. Unlike RobustRAG, which
relies on majority voting over noisy retrieved documents,
TrustRAG proactively filters suspicious sources before gen-
eration, focusing on trust assessment rather than aggrega-
tion.

Problem Formulation

Threat Model. An attacker selects an arbitrary set of M
questions, denoted as Q = [q1, ¢2, ..., ¢ar)- For each ques-
tion ¢;, the attacker defines a desired (incorrect) answer 7;.
For example, the attacker may assign ¢; = “Who is the CEO
of OpenAlI?” and r; = “Tim Cook”.

To realize this objective, the attacker injects /N malicious
documents into the knowledge base for each question g;. We
denote these documents as p;, where ¢ = 1,2,..., M and
7 =1,2,..., N. The full set of malicious documents is I' =
{pli=1,...,M;5=1,...,N}.

The attack is successful if the LLM generates r; in re-
sponse to ¢; when retrieving from the poisoned corpus DUT".
This objective can be defined as:

M
1
max - ;H(LLM (¢;E(qi; DUT)) =71i), (1)

where £(g;; D UT') = Retrieve(g;, fq, ft, DUT), (2)

where I(-) is the indicator function that outputs 1 if the
condition holds and 0 otherwise. The function £ returns the
top-k retrieved documents based on a similarity function
(e.g., cosine similarity) using encoders f, for the query and
f: for the documents.

Defense Objective. The goal of a robust defense mecha-
nism is to mitigate the influence of injected malicious con-
tent in the RAG pipeline without sacrificing retrieval effec-
tiveness or generation quality.

Given a potentially poisoned corpus D U I', we define
a filtering function F such that the filtered retrieval set
E(qi) = F(E(qi; D UT)) enables the LLM to produce ac-
curate outputs. The defense objective is to minimize the at-
tack success rate (ASR) while preserving high response ac-
curacy:
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Figure 2: (1) The density plot of cosine similarity between
three different groups. (2) The box plot of ROUGE Score
between three different groups.

min  ASR(LLM(g;: €(a:)))
st. ACC(LLM(gs; £(4:))) > 6, 3)

where 6 is a minimum accuracy threshold. Maintaining
ACC above 0 is vital for the LLM’s reliability with the fil-
tered retrieval set £(g;). While an LLM could persistently
reject queries to evade attacks from the poisoned corpus
D UT, this over-rejection leads to excessive refusals, under-
mining its utility. It is essential to minimize the ASR while
ensuring high response accuracy, balancing robust defense
with effective query handling.

Methodology

TrustRAG is a defense framework against malicious attacks
in RAG systems. It combines K-means clustering with both
the LLM’s internal knowledge and retrieved external docu-
ments to produce trustworthy responses. As shown in Fig-
ure 1, after attackers inject malicious documents targeting
a specific question and answer, the retriever collects rele-
vant sources. K-means filters out suspicious documents, and
any remaining noise is further mitigated by comparing in-
ternal and external knowledge to resolve conflicts. The final
answer can therefore be generated from the most reliable in-
formation.

Clean Retrieval — Stage 1

For each query, the attacker may generate either a single ma-
licious document or multiple malicious documents to com-
promise the entire RAG pipeline. Under the heavy attack
setting where attackers can inject multiple or even over-
whelming number of malicious documents, this approach
can effectively filter out malicious documents to ensure
the integrity of the retrieved content. Conversely, in single-
injection scenarios, most clean documents will be preserved
and the only malicious document will be handled in the sec-
ond stage of TrustRAG where knowledge conflicts will be
resolved. For example, methods such as PoisonedRAG (Zou
et al. 2024) utilize LLMs to generate the initial text I, em-
ploying varied temperature settings to produce multiple ma-
licious documents for a query to perform multiple injec-
tion attacks. However, these documents inherently possess
high similarity and form even tighter clusters in the embed-
ding space compared to clean documents. Leveraging this



property, TrustRAG employs K-means clustering (k = 2)
to distinguish between clean and potentially malicious doc-
uments. Unlike prior work, which primarily addresses the
light single injection attack scenario, TrustRAG is designed
to mitigate both single and multiple injection attacks.

K-means Clustering. In the first step, we apply the K-
means clustering algorithm to analyze the distribution of text
embeddings ! generated by f; and identify suspicious high-
density clusters that may indicate the presence of malicious
documents. We set k = 2 in our paper, because k > 2 would
only split normal documents into artificial sub-clusters and
require extra rules to merge them back, re-introducing hy-
perparameters the framework is designed to avoid. More-
over, malicious documents form a tight, high-density cluster
while genuine passages are more dispersed, naturally sup-
porting a binary partition.

N-gram Preservation. However, the drawback with
vanilla K-means filtering is that it may also filter out clean
documents especially under single attack scenario, thus los-
ing useful information. Therefore, we propose using the
ROUGE-L score (Lin 2004) to compare intra-cluster sim-
ilarity, aiming to preserve the majority of clean docu-
ments. From Figure 2, we observed significant differences in
ROUGE-L scores across three comparison types: clean-to-
clean, malicious-to-malicious, and clean-to-malicious docu-
ment pairs. By leveraging this property, we can avoid filter-
ing groups that contain just one malicious document along-
side clean documents. For example, when a malicious doc-
ument is paired with a clean one, we refrain from filtering
it. ROUGE-L can assist in this process, as pairs of clean
and malicious documents will yield lower scores compared
to groups of entirely malicious documents, thus minimizing
information loss.

Conflict Resolution — Stage 2

In the Conflict Resolution stage, we leverage the internal
knowledge of the LLM, which reflects the consensus from
extensive pre-training and instruction-tuning data. This in-
ternal knowledge can supplement any missing information
from the limited set of retrieved documents and even rebut
malicious documents.

Internal Knowledge Extraction. After the Clean Re-
trieval stage, where most of the malicious documents have
been filtered out, we further enhance the trustworthiness of
the RAG system. First, we prompt the LLMs to generate in-
ternal knowledge, following the work of Bai et al. (2022),
which emphasizes the importance of reliability and trust-
worthiness in generated documents. In previous works (Sun
et al. 2022; Yu et al. 2022; Wang et al. 2024), multiple di-
verse documents are generated using different temperature
settings. However, in our preliminary experiments, we find
that it may lead to hallucination or incorrectness, thus we
only perform a single LLM inference with temperature of 0.

"We use the simcse-roberta-base as the text embedding model

Knowledge Consolidation. We employ the LLMs to ex-
plicitly consolidate information from both documents gen-
erated from its internal knowledge and documents retrieved
from external sources. Initially, we combine documents
from both internal and external knowledge sources Dy =
D.siernailUlinternas UT. To filter the conflict between clean
and malicious documents, we prompt the LLM to guide the
LLM in identifying consistent information across various
documents while detecting and filtering out malicious con-
tent. This process helps reorganize the input documents by
refining and consolidating unreliable knowledge into more
coherent documents.

Self-Assessment of Retrieval Correctness. Finally,
TrustRAG instructs the LLMs for self-assessment by
comparing its internal knowledge with retrieved external
documents. As shown in Figure 1, in this stage, both
internal and external knowledge are provided to the LLM.
We prompt the LLM to generate the best possible answer
based on one of the two sources. This procedure pinpoints
the most reliable sources, guaranteeing an accurate and
reliable final answer, resulting in a sustained high accuracy.

Experiment Setup

Datasets. We use three question-answering datasets in this
paper: Natural Questions (NQ) (Kwiatkowski et al. 2019),
HotpotQA (Yang et al. 2018), and MS-MARCO (Bajaj et al.
2018) and two real-world datasets: RedditQA (Huang et al.
2024) and RAMDoc (Wang et al. 2025).

Attackers. We use four kinds of RAG attacks in this
paper. (1) Corpus Poisoning Attack: PoisonedRAG (Zou
et al. 2024). (2) Prompt Injection Attack: PIA (Zhong et al.
2023; Greshake et al. 2023). (3) Adversarial Decoding:
AD (Zhang, Zhang, and Shmatikov 2025). (4) Denial-Of-
Service Attack: Jamming Attack (Shafran, Schuster, and
Shmatikov 2024).

Defenders. Considering the various types of attacks on
the RAG process, several defense frameworks have been
proposed. Among these, we introduce three widely recog-
nized frameworks: RobustRAG (Xiang et al. 2024), Instruc-
tRAG (Wei, Chen, and Meng 2024), and AstuteRAG (Wang
et al. 2024) to compare with our proposed TrustRAG model.

Poison Rates. We define the poison rate as the fraction
of adversarial texts injected into the corpus, relative to the
number of clean documents the retriever is expected to re-
turn. For example, at 20%, a target set of 10 clean docu-
ments is augmented with 2 poisoned ones before retrieval.
The retriever then returns the top-k items (which may in-
clude poisons) to the LLM. Unless stated otherwise, we set
k = 5 in all experiments.

Evaluation Metrics. Following prior work, we adopt two
key metrics to evaluate the performance of all defense meth-
ods for Retrieval-Augmented Generation (RAG) systems:
(1) Accuracy (ACC): This measures the proportion of cor-
rect responses generated by the RAG system under normal
conditions, reflecting its retrieval and generation reliability.



Models Defense

HotpotQA (Yang et al. 2018)

NQ (Kwiatkowski et al. 2019)

MS-MARCO (Bajaj et al. 2018)

PIA PoisonedRAG AD Clean PIA PoisonedRAG AD Clean PIA PoisonedRAG AD Clean
ACC1/ASR| ACCT/ASR| ACCt1/ASR| ACCt ACCt1/ASR| ACCt/ASR| ACC?t/ASR| ACCtT ACCt/ASR| ACCT/ASR| ACCT/ASR| ACCt

No RAG - - - 57.0 - - - 70.0 - - - 70.0

Vanilla RAG 43.0/49.0 28.0/68.0 24.0/72.0 78.0 45.0/50.0 42.0/51.0 41.0/49,0 69.0 47.0/49.0 52.0/43.0 53.0/39.0 82.0
RobustRAGkeyword 55.0/25.0 51.0/27.0 50.0/32.0 54.0 55.0/4.0 54.0/9.0 54.0/8.0 57.0 75.0/6.0 72.0/9.0 72.0/9.0 72.0

Mistralnemo-128 InstructRAGicL 31.0/64.0 36.0/59.0 37.0/59.0 73.0 53.0/41.0 48.0/40.0 52.0/42.0 65.0 57.0/37.0 57.0/36.0 63.0/28.0 83.0
ASTUTE RAG 59.0/28.0 60.0/24.0 62.0/24.0 76.0 62.0/19.0 69.0/10.0 66.0/6.0 72.0 72.0/24.0 77.0/16.0 84.0/5.0 84.0

TrustRAGsuge 1 37.0/51.0 38.0/54.0 22.0/72.0 74.0 45.0/43.0 46.0/40.0 42.0/47.0 66.0 42.0/54.0 50.0/44.0 48.0/47.0 79.0

TrustRAGsuge 182 77.0/9.0 74.0/13.0 77.0/12.0 78.0 66.0/8.0 67.0/11.0 67.0/6.0 69.0 81.0/9.0 84.0/12.0 85.0/10.0 82.0

No RAG - - - 38.0 - - - 70.0 - - - 75.0

Vanilla RAG 3.0/95.0 27.0/81.0 37.0/59.0 71.0 4.0/93.0 26.0/73.0 41.0/56.0 71.0 2.0/98.0 28.0/70.0 52.0/44.0 79.0
RobustRAGKkeyword 55.0/4.0 40.0/50.0 49.0/49.0 54.0 44.0/11.0 51.0/27.0 61.0/24.0 61.0 69.0/15.0 67.0/19.0 71.0/15.0 72.0

Llamas sp InstructRAGcr. 64.0/27.0 54.0/41.0 46.0/51.0 83.0 55.0/19.0 58.0/37.0 61.0/34.0 68.0 57.0/19.0 63.0/33.0 70.0/26.0 89.0
ASTUTE RAG 51.0/28.0 65.0/16.0 67.0/20.0 65.0 70.0/14.0 77.0/11.0 75.0 71.0/25.0 54.0/41.0 85.0/8.0 83.0

TrustRAGiuge 1 28.0/61.0 43.0/47.0 36.0/59.0 70.0 40.0/52.0 43.0/50.0 65.0 31.0/67.0 45.0/47.0 43.0/52.0 81.0

TrustRAGsuage 182 73.0/3.0 66.0/18.0 70.0/18.0 74.0 83.0/2.0 82.0/9.0 82.0 86.0/7.0 83.0/11.0 86.0/7.0 85.0

No RAG - - - 64.0 - - - 76.0 - - - 80.0

Vanilla RAG 60.0/37.0 52.0/48.0 56.0/40.0 82.0 52.0/41.0 56.0/39.0 66.0/23.0 76.0 67.0/28.0 67.0/24.0 72.0/14.0 81.0
RobustRAGkeyword 60.0/8.0 51.0/27.0 41.0/40.0 54.0 40.0/38.0 39.0/28.0 37.0/33.0 45.0 48.0/29.0 50.0/22.0 50.0/19.0 56.0

GPTy, InstructRAGicL 58.0/41.0 33.0/63.0 55.0/40.0 86.0 63.0/34.0 53.0/39.0 67.0/24.0 79.0 69.0/28.0 59.0/35.0 71.0/18.0 81.0
ASTUTE RAG 74.0/16.0 78.0/22.0 80.0/4.0 80.0 81.0/4.0 82.0/6.0 77.0/2.0 81.0 86.0/11.0 77.0/13.0 86.0/2.0 85.0

TrustRAGuge 1 56.0/37.0 54.0/46.0 52.0/44.0 76.0 49.0/41.0 57.0/35.0 60.0/28.0 76.0 63.0/35.0 62.0/24.0 72.0/19.0 77.0

TrustRAGsuge 162 83.0/3.0 84.0/6.0 85.0/6.0 84.0 83.0/1.0 83.0/4.0 85.0/2.0 84.0 91.0/1.0 86.0/8.0 86.0/7.0 89.0

Table 1: The result table presents the performance of various defense frameworks applied to different LLMs integrated with
RAG systems, primarily against single injection attacks. The best performance is in bold.

(2) Attack Success Rate (ASR): This quantifies the sys-
tem’s vulnerability, calculated as the fraction of incorrect
answers produced when misled by adversarial inputs.

Results

We conduct comprehensive experiments on two scenarios:
single injection attack and multiple attacks.

Dataset Defense Poison-(80%) Poison-(60%) Poison-(40%) Poison-(20%)
ACCT/ASR| ACCt/ASR| ACCT/ASR| ACC1/ASR|
Vanilla RAG 2.0/98.0 3.0/97.0 4.0/93.0 26.0/73.0
RobustRAGkeyword 15.0/75.0 23.0/63.0 37.0/46.0 51.0/27.0
NQ InstructRAGicL 38.0/56.0 40.0/56.0 51.0/45.0 58.0/37.0
ASTUTE RAG 64.0/24.0 68.0/19.0 69.0/18.0 77.0/11.0
TrustRAGstage 1 51.0/19.0 56.0/3.0 62.0/2.0 43.0/50.0
TrustRAGuuge 162 85.0/1.0 84.0/1.0 83.0/1.0 82.0/9.0
Vanilla RAG 3.0/96.0 5.0/94.0 7.0/93.0 28.0/70.0
RobustRAGkeyword 28.0/66.0 37.0/54.0 57.0/34.0 67.0/19.0
InstructRAG 47.0/51.0 49.0/45.0 60.0/36.0 63.0/33.0
MS-MARCO ASTUTE RAG 40.0/57.0 50.0/47.0 52.0/44.0 0/41.0
TrustRAGuge | 64.0/18.0 72.0/7.0 78.0/6.0 45.0/47.0
1&2 84.0/8.0 85.0/7.0 85.0/7.0 83.0/11.0
2.0/97.0 6.0/94.0 5.0/94.0 27.0/81.0
RobustRAGKeyword 10.0/87.0 19.0/76.0 33.0/57.0 40.0/50.0
HotpotQA InstructRAGicL 40.0/57.0 50.0/47.0 52.0/44.0 54.0/41.0
ASTUTE RAG 53.0/38.0 59.0/30.0 59.0/31.0 65.0/16.0
TrustRAGgage 1 61.0/12.0 72.0/3.0 66.0/2.0 43.0/47.0
TrustRAGuuge 162 71.0/4.0 70.0/7.0 69.0/5.0 66.0/18.0

Table 2: The result table presents the performance of various
defense frameworks applied to Llamajs .gg integrated with
RAG systems, primarily against PoisonedRAG with differ-
ent poison rates. The best performance is in bold.

Single Injection Attack. In this scenario, all the attack
methods only can inject a malicious document into the re-
trieval database, manipulating the RAG system’s response
to a targeted query. As shown in the table 1, most of the
previous methods fail to effectively handle the scenario of
injecting a single malicious document into the knowledge
database. For instance, under the PIA on the HotpotQA
dataset, the ASR for other defensive frameworks exhibits
considerable variation, ranging from 4.0% to 64.0%. In con-
trast, TrustRAG remains within a range of 3.0% to 9.0%,
while achieving the highest ACC.

Notably, TrustRAGgg. 1 18 designed to preserve the clean
information. TrustRAGyage > significantly enhances perfor-
mance, as evidenced by consistent improvements in ACC
and reductions in ASR. For instance, on the NQ under AD,

Figure 3: We analyze the embedding distribution of retrieved
documents by plotting different numbers of poisoned data,
ranging from 1 to 5, where red denotes adversarial and blue
indicates clean. The results show that when the number of
malicious documents exceeds 2, they tend to form distinct
clusters.

TrustRAGggage 1 With Llamas jgg yields an ACC of 45.0%
and an ASR of 52.0%, whereas TrustRAGgage 142 boosts the
ACC to 82.0% and reduces the ASR to 4.0%. This demon-
strates that TrustRAGy,g. 2 effectively refines the output by
filtering residual malicious content that TrustRAGgge | in-
tentionally preserves to maintain clean data availability.

Additionally, under Jamming Attack (Shafran, Schuster,
and Shmatikov 2024) on the NQ benchmark, the vanilla
Llama 3.1-8B model attains 70-76% ACC, yet remains vul-
nerable, with an ASR of 20-23% across the three target re-
fusals. In contrast, TrustRAG not only raises accuracy to
80-85%, but also suppresses the ASR to a negligible 0-2%.

Multiple Injection Attack. As illustrated in Table 2, we
evaluate the performance on the open-source Llamaj;.gp
model across varying poison rates, ranging from 20% to
80%. Our experiments demonstrate that TrustRAG achieves
consistent performance across both ASR and ACC met-
rics on evaluated datasets, maintaining an average accuracy
above 80%. It is worth noticing that RobustRAG, which is
a defense framework using aggregating and voting strate-
gies, fails when the number of malicious documents exceeds
the number of benign ones. However, benefiting from the K-
means filtering strategy, TrustRAG significantly reduces ma-
licious documents during retrieval, and only a small portion
of malicious documents is used in the Conflict Resolution
stage.
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Figure 4: (1) The PPL distribution density plot between clean and malicious documents. And the lines of dashes represent the
average PPL values. (2) The bar plot of ablation study on ACC in NQ based on the Llamas ;.gg. (3) The bar plot of ablation

study on ASR in NQ based on the Llamas ;_gg.

#APICall MS-MARCO NQ HotpotQA
Vanilla RAG 1 8.9/1x 9.2/1x 9.6/1x
InstructRAGcy. 1 12.6/1.4x 13.1/1.4x 32.7/3.4x
RobustRAGKeyword 11 107.9/12.1x  107.7/11.7x  107.9/11.2x
ASTUTE RAG 3 17.5/2.0x 17.3/1.9x 16.7/1.7x
TrustRAGK.means 1 12.3/1.4x 12.6/1.4x 12.5/1.3x
TrustRAGconflict 3 18.4/2.1x 19.9/2.2x 21.7/2.3x

Table 3: TrustRAG runtime analysis based on Llamas ;. gg
for 100 queries in three different datasets.

Ablation Study. We performed an ablation study on
Llamaj |_gp to evaluate the impact of four key components:
(1) Stage 1 - Clean Retrieval using a K-means filtering strat-
egy (denoted as “w/o K-means”), (2) the use of conflict reso-
lution in Stage 2 (denoted as “w/o Conflict Resolution™), (3)
the integration of internal knowledge into the conflict reso-
lution process (denoted as “w/o Internal Knowledge”, and
(4) the inclusion of self-assessment to evaluate the model’s
confidence in external information (denoted as “w/o Self
Assessment”). As shown in Figures 4 (2) and (3), which
demonstrate that each component of the TrustRAG frame-
work contributes significantly to its robustness against poi-
soning attacks. K-means clustering effectively filters out ma-
licious content without sacrificing the quality of clean in-
formation, especially when the poisoning rate exceeds 20%.
Integrating internal knowledge inferred from LLMs further
improves accuracy and reduces attack success, particularly
in mixed-clean and malicious scenarios. The Conflict Reso-
lution stage emerges as the most vital, as its removal sharply
increases vulnerability to attacks even when other defenses
are present. Lastly, the self-assessment mechanism consis-
tently boosts performance by enabling the LLM to distin-
guish between reliable and malicious or external informa-
tion.

Analysis

Distribution of Malicious Documents. We analyze the
embedding space of NQ dataset samples under varying poi-
soning intensities. Figure 3 presents a representative sample
from the dataset, illustrating the characteristic distribution of
documents in the embedding space. Our analysis reveals two
distinct patterns: (1) in multi-document poisoning scenarios,

Embedding Model Poison-(80%) Poison-(60%) Poison-(40%) Poison-(20%) Clean
F11/ CRRt F11/CRRT F11/ CRR?T F11/CRRT  CRRft

SimCSE 92.6/92.0 94.3/91.5 84.9/89.0 3.1/86.2 85.0
SimCSEuwo roucE 83.9/93.0 72.0/69.0 64.4/68.3 35.8/54.8 52.6
Bert 84.7/84.0 87.4/89.0 77.8/82.0 5.6/78.5 74.2
Berty /o ROUGE 73.2/80.0 63.4/61.0 51.7/58.0 35.5/55.8 52.0

BGE 90.8/92.0 96.9/93.0 89.5/91.0 3.0/86.3 87.6
BGE/o RoUGE 85.0/93.0 86.7/83.0 79.9/80.7 27.5/51.5 51.4

Table 4: Results on NQ dataset with different poisoning lev-
els and embedding models. F1 score measures the perfor-
mance of detecting poisoned samples, while Clean Reten-
tion Rate (CRR) evaluates the proportion of clean samples
retained after filtering.

malicious documents form tight clusters in the embedding
space, while (2) single malicious documents exhibit disper-
sion among clean samples. This observation underscores the
critical role of clustering strategy in preserving clean docu-
ments while filtering malicious documents during retrieval.

N-gram Preservation. In single injection attack scenarios
since K-means may discard clean documents if they are clus-
tered with the malicious one. Under such situations, our N-
gram preservation mechanism provides complementary pro-
tection, successfully retaining documents for the knowledge
consolidation stage. As shown in Table 4, we conduct an
ablation study on N-gram preservation. We find that when
the poisoning rate exceeds 20%, the F1 score is higher after
applying N-gram preservation in the clean retrieval stage.
However, when the poisoning rate is 20%, without N-gram
preservation, the K-means filtering strategy will randomly
remove the group with higher similarity. The clean docu-
ments can thus be filtered by mistake. Therefore, using N-
gram preservation preserves the clean documents.

Runtime Analysis. In Table 3, we present a detailed run-
time analysis for various methods across three datasets on
Llamas ;. gg. The analysis reveals that TrustRAG spends ap-
proximately twice the inference time as compared to Vanilla
RAG, which is a reasonable trade-off considering the signif-
icant improvements in robustness offered by TrustRAG.

Hyper-parameter Setting. To ensure the reproducibility
of our experiments, we set the sampling temperature to



Method Poison-(80%) Poison-(60%) Poison-(40%) Poison-(20%)

Diverse 64.0/9.0 65.0/5.0 67.0/5.0 68.0/1.0
w/ question 65.0/1.0 66.0/3.0 65.0/4.0 69.0/14.0
w/o question 64.0/2.0 63.0/2.0 65.0/1.0 67.0/11.0

Table 5: Performance of TrustRAGgpeer &2 on the NQ
dataset with Mistralnemo.128 Under varying poison rates and
document types. Diverse Malicious Document uses varied
prompts, Malicious Document w/ question prepends the user
question, and w/o question excludes it.

0.01 for all LLMs. In the K-means filtering stage, we use
a ROUGE-L score threshold of 0.25 and a cosine simi-
larity threshold of 0.85. A grid search over ROUGE-L €
0.20,0.25,0.30 and cosine € 0.80,0.85,0.90 showed that
detection F1 and CRR fluctuated by < 1.3% and < 1.8%,
respectively. These results demonstrate the robustness of our
chosen settings.

Effectiveness of PPL Detection. Malicious documents
crafted by attackers may exhibit unnatural patterns, prompt-
ing the proposal of perplexity (PPL) detection as a defense
mechanism (Alon and Kamfonas 2023; Jain et al. 2023).
Notably, Shafran, Schuster, and Shmatikov (2024) asserts
that the perplexity value distributions of clean and malicious
documents differ markedly. To evaluate the efficacy of this
PPL-based defense, we conducted an empirical analysis. As
illustrated in Figure 4 (1), the PPL values of clean and ad-
versarial texts exhibit considerable overlap. Contrary to the
claims of Shafran, Schuster, and Shmatikov (2024) regard-
ing substantial distributional differences, our results reveal
a more nuanced reality. This overlap underscores the limita-
tions of relying exclusively on PPL as a detection metric.

Robustness Without Query Clues. One of the assump-
tion for K-means filtering is that the malicious documents
are created in the same embedding space. In this section
we examine the effectiveness of TrustRAG when malicious
documents are created with diverse and unclustered embed-
dings. We consider the adaptive attack and more realistic
world conditions. To rigorously assess TrustRAG’s robust-
ness under more challenging conditions, we evaluate its per-
formance by removing the query questions from these doc-
uments, relying solely on the malicious content as external
knowledge for model generation. Table 5 presents the results
of two scenarios: (1) Malicious documents with questions,
and (2) Malicious documents without questions. TrustRAG
sustains high accuracy of 63.0% to 69.0% and low attack
success rates of 1.0% to 14.0% in both settings, demonstrat-
ing that TrustRAG’s defensive capabilities remain robust re-
gardless of query inclusion.

Defense Against Diverse Attacks. From an alternative
viewpoint, the malicious documents produced by Poisone-
dRAG exhibit a notable limitation in their lack of diver-
sity. In this study, we seek to further examine the effects of
diverse malicious documents on our TrustRAG framework
and the efficacy of the K-means filtering strategy. As illus-
trated in Table 5, we present a scenario involving diverse
malicious documents, which are constructed by varying se-

Dataset Method ACCT (%) ASRU (%)

. Vanilla RAG 27.3 43.8
RedditQA 11\ (RAG juma s 158 722 11.9
No RAG 5.8 -
Vanilla RAG 32.6 -
AstuteRAGY jama-3.3-70B 31.8 -
MADAM-RAG 1ama-3.3-708 34.4 -
RAMDocs TrustRAGLama-3.3-708 39.6 -
AstuteRAGGPT.40-mini 13.8 -
MADAM-RAGGPT-40-mini 28.0 -
TrustRAGng_40_mini 37.6 -

Table 6: Accuracy (ACCT) and attack-success rate (ASR])
of the TrustRAG framework applied to different language
models under real-world adversarial conditions. For RAM-
Docs, which provides different types of noise information
for a query, there is no specific attack target where only
ground truth is given, so there is no attack success rate.

mantics, logic, and style through tailored prompts from the
PoisonedRAG. This analysis reaffirms the robustness of our
approach. Specifically, TrustRAG proves to be highly effec-
tive even in multiple injection attacks in diverse contexts, as
evidenced by the results in Table 5, where TrustRAGg,ge1 & 2
maintains strong accuracy and low attack success rates with
varying poison rates and document types on the NQ data
set with Mistralnemo.125 compared to the performance of
TrustRAG under the original PoisonRAG attack.

Real-world RAG Attacks. To evaluate TrustRAG’s per-
formance under real-world adversarial conditions, we lever-
age the RedditQA dataset introduced by Huang et al. (2024)
and RAMDocs (Wang et al. 2025). The first dataset includes
Reddit posts with naturally occurring factual errors, leading
to incorrect responses to related questions and simulating
real-world noise and misinformation. The second dataset,
built on AmbigDocs (Lee, Ye, and Choi 2024), extends it
by introducing additional real-world retrieval complexities.
As detailed in Table 6, for RedditQA, vanilla RAG, utilizing
retrieved documents, achieves a response accuracy of 27.3%
with an attack success rate of 43.8%), reflecting its vulnera-
bility to real-world inaccuracies. In stark contrast, TrustRAG
attains a response accuracy of 72.2% while reducing the
ASR to 11.9%, underscoring its robustness in mitigating
the impact of adversarial conditions encountered in practical
settings. The same trend is observed in RAMDocs, where
TrustRAG achieves significant improvements compared to
the MADAM-RAG method, proposed by RAMDocs, under
the same model architecture. This experiment demonstrates
that the TrustRAG pipeline can be applied to real-world sce-
narios, enabling question-answering RAG systems to deliver
trustworthy and valid responses.

Conclusion

In this work, we introduce TrustRAG, the first RAG de-
fense framework designed to counter attacks involving mul-
tiple maliciously injected documents. TrustRAG employs
K-means filtering to reduce the presence of malicious doc-
uments and incorporates both internal and external knowl-



edge sources to resolve conflicts and mitigate the impact of
these attacks. Our comprehensive evaluation across bench-
mark datasets demonstrates that TrustRAG outperforms ex-
isting defenses, maintaining high accuracy even under ag-
gressive poisoning scenarios.
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