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Abstract

Contemporary large language model (LLM) agents are re-
markably capable, but they still lack reliable safety con-
trols and can produce unconstrained, unpredictable, and
even actively harmful outputs. To address this, we introduce
Reflection-Driven Control, a standardized and pluggable
control module that can be seamlessly integrated into general
agent architectures. Reflection-Driven Control elevates “self-
reflection” from a post hoc patch into an explicit step in the
agent’s own reasoning process: during generation, the agent
continuously runs an internal reflection loop that monitors
and evaluates its own decision path. When potential risks are
detected, the system retrieves relevant repair examples and
secure coding guidelines from an evolving reflective mem-
ory, injecting these evidence-based constraints directly into
subsequent reasoning steps. We instantiate Reflection-Driven
Control in the setting of secure code generation and system-
atically evaluate it across eight classes of security-critical
programming tasks. Empirical results show that Reflection-
Driven Control substantially improves the security and pol-
icy compliance of generated code while largely preserving
functional correctness, with minimal runtime and token over-
head. Taken together, these findings indicate that Reflection-
Driven Control is a practical path toward trustworthy AI cod-
ing agents: it enables designs that are simultaneously au-
tonomous, safer by construction, and auditable.

Introduction
Autonomous LLM agents are rapidly evolving from single-
turn text generators into systems capable of multi-step task
execution, tool use, and real-world decision making (Chowa
et al. 2025). This shift fuses internal reasoning with external
actions, enabling agents to browse at scale, invoke APIs, and
modify external artifacts, thereby exhibiting cross-task com-
petence. As a result, the design space is expanding quickly,
while challenges around safety, control, and evaluation are
intensifying. With long-term memory, proactive planning,
and environment interaction becoming core components, AI
agents are transforming from single-model reasoners into
distributed networks of cooperating components. This tran-
sition is reshaping generative AI practice and catalyzing a
global discussion on agentic AI security (Park et al. 2023).

Despite this progress, contemporary agent workflows still
produce untrusted content in uncontrollable ways. Even
strong base models can hallucinate or emit unsafe outputs.
When tools and autonomy enter the loop, jailbreaks, prompt
injection, and agent worms further expose fragile control
surfaces (John et al. 2025). Such failures can translate di-
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rectly into system risk and unsafe behavior.
Advancing the safety and trustworthiness of agent work-

flows hinges on two core challenges. (i) Trusted control at
decision time: how to dynamically constrain agent behavior
during reasoning and execution to prevent task drift and haz-
ardous tool calls. (ii) Post-hoc verifiability and auditabil-
ity: how to trace the evidential basis and execution logic of
decisions, thereby enabling accountability and transparency.

We propose a standardized reflect agent module that ele-
vates “reflection” from an external, post-hoc procedure to
an internal, first-class control loop within the agent. By
tightly coupling the reflection pathway with the knowledge
feedback channel, the agent architecture equipped with this
module can perform continuous self-supervision and self-
correction across the planning, execution, and verification
stages, thereby significantly enhancing system trustworthi-
ness and auditability without compromising autonomy.

To concretely validate the system-level benefits of
reflection-centric orchestration, we instantiate our frame-
work in secure code generation. Our experiments show
that, relative to strong agent baselines, embedding a reflec-
tion agent yields consistent gains in safety, consistency, and
traceability, resulting in higher practical trust and auditabil-
ity. This evidences that the reflection-centric control is ef-
fective and scalable for high-risk tasks.

The contributions of this article mainly include the fol-
lowing three points:

• A reflection-driven, closed-loop control framework.
We integrate reflection as a first-class control circuit
that spans planning, execution, and verification, with
an auditable evidence trail rather than ad-hoc post-
processing, and implemente it as the Reflect layer in a
Plan–Reflect–Verify agentic framework.

• A practical instantiation for secure code generation.
We compose lightweight self-checks, dynamic memo-
ry/RAG, reflective prompting, and tool governance (com-
piler/tests/CodeQL) into an evidence-grounded genera-



tion pipeline that maintains autonomy while enforcing
safety.

• Comprehensive evaluation and analysis. On pub-
lic security-oriented code-generation benchmarks with
strict compile/run/static-analysis validation, our frame-
work delivers consistent improvements over agent base-
lines, alongside ablations and case studies that quantify
each component’s impact and illuminate failure modes
in high-risk settings.

Related Work
Agent framework and system security As LLMs evolve
from passive generators to autonomous decision-makers,
agentic systems have become central to generative AI. Han
et al. (2024) note that multi-agent systems enable complex
task coordination through role division and communication
but still lack robust safety boundaries. Thus, while multi-
agent architectures enhance automation and scalability in
security assessment, they can also introduce systemic risks,
where coordination failures or misaligned goals may prop-
agate across agents (David and Gervais 2025). Ensuring
cross-agent safety constraints, auditable decisions, and real-
time intervention is therefore essential.

Recent work shows that the attack surface of agentic sys-
tems exceeds that of traditional AI, encompassing prompt
manipulation, toolchain hijacking, external API abuse, and
persistent session pollution (Achiam et al. 2023). The THOR
framework (Narajala and Narayan 2025) systematizes these
threats across the agent lifecycle and argues for layered
defenses and auditability to ensure traceable safety. More
broadly, de Witt (2025) formalize multi-agent security,
showing that decentralized cooperation among autonomous
agents introduces systemic risks such as covert collusion,
coordinated group attacks, and cross-platform propagation.
These observations suggest a shift in security governance
from single-model safeguards to interaction-level defenses
among agents.

The RepairAgent (Bouzenia, Devanbu, and Pradel 2024)
exemplifies safe autonomy by invoking compilation, test-
ing, and verification tools under strict system constraints,
demonstrating that tool-integrated architectures can main-
tain auditability. Overall, research on intelligent agents is
shifting from task accuracy to safety-by-design. The key
challenge lies in embedding intrinsic safety constraints and
self-supervision, the foundation of trustworthy Agentic AI.

TRiSM for agentic AI The autonomy and interactivity of
agentic systems improve flexibility but broaden the attack
surface, introducing new security risks. These systems thus
require evaluation under the Trust, Risk, and Security Man-
agement (TRiSM) framework (Raza et al. 2025). Recent
studies reveal vulnerabilities to jailbreaks, prompt injec-
tions, and tool misuse that can cascade through multi-agent
networks (John et al. 2025; Narajala and Narayan 2025).
Huang et al. (2023) show that even safety-aligned models
can suffer up to 95% misalignment via generative exploita-
tion, while the DeepInception exposes cognitive vulnerabili-
ties through contextual prompts (Li et al. 2023). TRiSM fur-
ther warns of “prompt infection” attacks, where malicious

instructions propagate among agents (Lee and Tiwari 2024).
To mitigate these threats, research has moved from re-

active defense to design-level resilience. In the input layer,
the self-reminder mechanism reduced jailbreak rates from
67.21% to 19.34% by injecting safety cues (Xie et al.
2023), while the decoupled refusal training enables mid-
generational rejection of unsafe outputs (Yuan et al. 2024).
At the system level, Debenedetti et al. (2025) proposed
CaMeL to enforce the least privilege via role–tool binding
and flow isolation, complemented by hierarchical monitor-
ing (Wang et al. 2025) for behavior tracking and auditability.

Despite these progresses, the interpretability and privacy
of TRiSM remain weak. Layered-CoT (Sanwal 2025) im-
proves the transparency of reasoning but lacks real-time
threat detection, while differential privacy and federated
learning do not ensure complete inter-agent isolation. In
general, current defenses provide fragmented protection
across input and output layers, underscoring the need for a
unified, closed-loop security control that integrates reason-
ing, planning, and tool execution for trustworthy Agentic AI.

Trust and verifiability in agentic systems Trustworthi-
ness and verifiability are central to agent safety governance.
Narajala et al.’s THOR framework shows that generative-
agent risks span the entire lifecycle, requiring layered audit-
ing and traceable trust chains (Narajala and Narayan 2025).
Expanding on this, RAS-Eval (Fu, Yuan, and Wang 2025)
introduces a real-world benchmark with 11 CWE categories
to test LLM agents in dynamic tasks, where attacks reduced
success rates by 36.78%, exposing weak task-control mech-
anisms. CyberSOCEval (Deason et al. 2025), targeting mal-
ware analysis and threat reasoning, found that LLMs have
reasoning strength but lack transferable defensive capabili-
ties, demanding task-specific optimization.

The DeepSeek-R1 model (Guo et al. 2025) achieved
closed-source–level reasoning, suggesting reinforced rea-
soning can support verifiable agents though excessive auton-
omy adds risk. In summary, trust verification is becoming a
core requirement for safe Agentic AI. From THOR’s layered
defense to RAS-Eval and CyberSOCEval’s task-level evalu-
ations, future frameworks must ensure interpretable reason-
ing, auditable execution, and verifiable reflection to balance
autonomy with control.

Problem Formulation and Design Goals
To systematically evaluate the trustworthiness of code gen-
eration agents, we first construct a standardized, plug-and-
play module that can be integrated with general agentic or-
chestration, and use it to build a baseline code generation
agent architecture as our evaluation benchmark. As illus-
trated in Figure 1(a), the left side shows the standardized
module, while the right side presents the baseline agent ar-
chitecture.

Building upon this foundation, this work focuses on en-
hancing the safety and trustworthiness of the code gener-
ation process. We formulate the core problem as follows:
given a code snippet x with potential security flaws and its
contextual environment (including file-level context Cf and



function-level context Cfn), the objective is to generate a
repaired code snippet y that must satisfy:
1. Security: Eliminate common security risks present in

x (e.g., SQL injection, command injection, buffer over-
flow, path traversal, XSS, null pointer dereference, inte-
ger overflow, and use-after-free).

2. Functionality: Preserve the semantic intent of the origi-
nal code x.

3. Executability: Ensure the generated code y is compil-
able or interpretable.

We formalize this secure code generation task as a condi-
tional generation process:

y = G
(
x,Cf , Cfn,R(x,Cf , Cfn;M), θ

)
, (1)

where G denotes the large language model generator, R is
a retrieval function that fetches high-value security repair
exemplars from a memory repository M as reflective evi-
dence, and θ represents the model and prompting parame-
ters.

The overarching goal of this research is to achieve au-
tonomous and trustworthy LLM-based code generation. The
core mechanism involves an agent proactively proposing
code edit patches that must be secure, policy-compliant,
and auditable. Diverging from approaches reliant on ex-
plicit planning, we introduce a Reflex Module to realize
two critical functions: (i) serving as a security gate to inter-
cept unsafe code changes before final commitment, and (ii)
generating machine-verifiable evidence to endow the agent’s
decision-making and repair actions with auditability.

Based on the aforementioned problem formulation, the
design goals of this work are concretely summarized as fol-
lows:

(G1) High Security Efficacy: Minimize the vulnerability rate
and policy violation rate of the generated code.

(G2) Verifiability: Provide structured, machine-verifiable au-
dit evidence for each repair operation.

(G3) Lightweight Integration: Maintain a design free from
complex planning, ensuring the Reflex Module can be
seamlessly integrated into existing coding agent archi-
tectures in a plug-and-play manner with low overhead.

Reflex Module: Architecture and
Implementation

We instantiate the REFLEX module as the Reflect layer of a
agentic framework, where reflection functions as a first-class
control circuit supervising planning, execution, and verifi-
cation. It is integrated into the end-to-end code generation
pipeline as a modular, pluggable component (equivalently,
an agent submodule). The core workflow is:
1. Lightweight self-check. A fast pre-checker screens the

input code to avoid unnecessary computation.
2. Evidence-guided repair. If the input is judged unsafe,

the system retrieves high-value prior cases from a dy-
namic memory and fuses them with best-practice con-
straints into a reflection prompt that steers the model to
generate an evidence-based fix.

3. Verification and deposition. The candidate output is fil-
tered and compilation-checked; verified artifacts are then
written back to memory, forming a continuously evolv-
ing knowledge loop.

This design realizes a closed loop of low-cost, frontloaded
reflection, evidence-driven generation, and auditable knowl-
edge accumulation, without fine-tuning the underlying mod-
els. Building on this design, we implement a standard RE-
FLEX agent (see Figure 1) that plugs into the system with
three core components: (i) a Lightweight Self-Checker, (ii)
a Reflective Prompt Engine, and (iii) a Reflective Memory
Repository. We detail each component below.

Lightweight Self-Check and Routing Mechanism
The lightweight self-checker serves as a front-end filtering
layer for the Reflex module, responsible for performing an
initial, trustworthy safety diagnosis of the input code. This
component is designed to evaluate the potential safety sta-
tus of a code snippet at extremely low computational cost,
thereby enabling an efficient task-routing mechanism.

Specifically, we model the self-check process as a binary
classification task based on a large language model. Given
the input code x and its contextual information c, the sys-
tem constructs a concise safety-review prompt psc, instruct-
ing the model to output only a binary judgment: “SAFE” or
“UNSAFE”. Formally, this process can be represented as:

verdict = LLM{SAFE, UNSAFE} (psc | x, c) . (2)

If the verdict is determined as “SAFE”, the sample and
its metadata are directly written into the dynamic memory
repository as a retained safe case. Conversely, if the verdict
is “UNSAFE”, the system triggers the full reflection and
repair pipeline, where the reflection prompt engine (intro-
duced later) performs in-depth code diagnosis and correc-
tion.

This mechanism effectively routes trustworthy responses
without redundant reflection processes, thereby reducing the
average inference cost of the system. It is particularly ad-
vantageous for large-scale task processing scenarios, where
efficient filtering and resource allocation are critical.

Reflective Prompt Engine
The Reflective Prompt Engine serves as the core driving
module of the reflection process, enabling the agent to per-
form deep analysis and self-improvement on problematic
code. When a code segment is classified as “UNSAFE” and
enters the reflection phase, the engine constructs a struc-
tured, multi-turn prompt, transforming a single code gen-
eration task into a multi-round chain-of-thought reflection
dialogue.

During this process, the model is guided to conduct sys-
tematic introspection and reasoning on the problematic code
and its context, identifying vulnerabilities and devising cor-
responding repair strategies. This multi-turn reflective di-
alogue ensures that the complete reasoning chain—from
problem recognition to solution implementation—is explic-
itly unfolded and recorded, thereby achieving knowledge
distillation for code generation tasks.
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Figure 1: (a) shows the plug-and-play integration of the Reflex Agent within a general multi-agent orchestration. (b) presents
the internal framework of the Reflex Agent, illustrating its modular design and workflow.

Under the operation of the Reflective Prompt Engine,
the resulting structured reflection records are systematically
stored in the dynamic memory repository. In essence, each
resolved case is elevated into a reusable reasoning pattern,
offering high-quality reference for future related issues. As
more solutions and reflective processes accumulate, the sys-
tem’s knowledge base evolves continuously, enhancing both
the quality of stored knowledge and the agent’s adaptive
capability in subsequent tasks. This growing body of ex-
perience strengthens the overall trustworthiness and trans-
parency of the intelligent agent framework.

Reflective Memory Repository
The Reflective Memory Repository is the central compo-
nent enabling the system’s continual learning and experience
reuse. By integrating vectorized retrieval with structured
metadata management, it constructs a dynamically evolving
knowledge base for safety repair and reflection.

To balance retrieval efficiency with comprehensive
knowledge coverage, we design a hierarchical retrieval ar-
chitecture composed of two layers:

• Dynamic Memory MD: Implemented with a Chro-
maDB vector database to store and index verified repair
cases produced during system operation. Its strengths are
high relevance and low retrieval latency.

• Static Memory MS : Built from predefined secure cod-
ing standards, vulnerability databases, and other static
knowledge artifacts, serving as the system’s foundational
knowledge anchor to ensure completeness of core princi-
ples.

Given a query q composed of the current problematic code
x and its context c, the hierarchical retrieval process Retrieve
Retrieve(MD,MS , q) is formally defined as follows:

E = Retrieve(MD,MS , q)

=

{
Top-k from MD, if condition
Top-k from MD ∪MS , otherwise

(3)

Here, E denotes the final set of retrieved experiences,
|EMD

| represents the number of results recalled from
MD, sim(·) denotes the cosine similarity function, kmin is
the minimum recall threshold, and θ is the lower bound
for similarity. The condition is defined as |EMD

| ≥
kmin and max(sim(EMD

, q)) ≥ θ.
This retrieval strategy prioritizes high-value, high-

relevance, and recent experiences from MD, ensuring that
the system can rapidly reuse validated contextual knowl-
edge. When the dynamic memory fails to meet retrieval
requirements, such as insufficient results or low similar-
ity scores, the system automatically falls back to the static
memory MS for supplementary queries, thus maintaining
both adaptivity and knowledge completeness in the overall
reflection framework.

Experiment
To comprehensively evaluate the effectiveness and effi-
ciency of the proposed reflection module, we formulate the
following three Research Questions (RQs). These questions
are designed to probe the system from three complementary
dimensions: performance gain, mechanistic depth, and com-
putational overhead.



RQ1: Effectiveness Improvement Analysis To what ex-
tent does the introduction of the reflection module en-
hance the base agent’s overall trustworthiness in terms
of code safety and functional correctness?
This question aims to quantify the core performance
gains brought by the reflection module. We empirically
compare the base agent’s performance under two con-
figurations, with and without the reflection module, fo-
cusing on key indicators such as Security Rate and Pass
Rate. The objective is to assess the module’s impact on
the overall quality of code generation.

RQ2: Reflection Depth and Diminishing Returns Is per-
formance improvement positively correlated with the
depth (or number of rounds) of reflection? Does a point
of diminishing returns exist?
This question investigates the operational boundary and
marginal utility of the reflection mechanism. By control-
ling the maximum number of reflection rounds and track-
ing the evolution of performance metrics (e.g., Security
Rate) after each iteration, we aim to identify the optimal
reflection depth, beyond which further computational in-
vestment yields negligible improvement.

RQ3: Cost–Benefit Analysis What are the additional com-
putational and temporal costs associated with the perfor-
mance gains introduced by the reflection module?
This question evaluates the practical efficiency of the
system. By measuring and comparing the total token
consumption (reflecting API cost) and total task execu-
tion time (reflecting latency) between the two configura-
tions, with and without reflection, we precisely quantify
the trade-off between performance enhancement and re-
source expenditure.

Benchmark
To evaluate the improvements brought by the Reflex Agent
Module in code generation safety and reliability, we selected
a set of challenging scenarios from the most influential Com-
mon Weakness Enumeration (CWE) categories. We adopted
the dataset validated by (He and Vechev 2023), which cov-
ers eight representative scenarios drawn from MITRE’s list
of the Top 25 Most Dangerous Software Weaknesses. The
specific scenarios can be found in the Appendix Table 4.

Each CWE scenario includes two to three carefully de-
signed programming environments, refined by He et al. to
eliminate low-quality prompts and to emulate a variety of
real-world code completion tasks. This makes the dataset a
powerful benchmark for assessing a model’s ability to gen-
erate secure and trustworthy code. The tasks involve incom-
plete C/C++ or Python code prompts, challenging the model
to produce appropriate completions that demonstrate its ca-
pacity to handle partial or ambiguous inputs in practical pro-
gramming contexts. For every model, 25 code samples are
generated per scenario and repeated across five independent
runs to minimize experimental variance and ensure objective
evaluation.

All generated code samples are analyzed using the static
analysis tool CodeQL (Szabó 2023) to detect vulnerabilities
and assess the impact of generated repairs. In addition, we

employ a trustworthy safety compliance evaluation system
based on LLM judges to comprehensively assess code qual-
ity, security, and compliance, which complements traditional
SAST tools by covering aspects of trustworthiness that static
analyzers cannot fully capture.

Metrics
To comprehensively evaluate the proposed method across
the three key dimensions of code safety, functionality, and
practicality, we define a unified evaluation framework that
integrates both quantitative and qualitative metrics.

Appendix Table 5 and Table 6 define the full evaluation
protocol used in this work. Table 5 reports the quantitative
metrics used for all models, capturing (i) whether the model
can generate code that actually builds, (ii) whether that code
is functionally correct, and (iii) whether that code is secure
under static analysis. All percentage-based metrics are com-
puted only over compilable samples, so they reflect real-
istic, runnable code rather than idealized snippets. Table 6
complements this with qualitative dimensions of production
readiness: overall engineering quality (readability, modular-
ity, maintainability), defensive completeness against com-
mon exploit patterns, and policy / privacy compliance. Each
compiled sample is reviewed along these axes, allowing us
to surface risks that automated scanners such as CodeQL
may not fully capture.

RQ1: Effectiveness Improvement Analysis
To verify the effectiveness of the Reflex Module Agent in
enhancing the code safety and functional reliability of the
base agents, we conducted a systematic evaluation across
four mainstream LLMs. The experiments covered eight key
CWE vulnerability categories, each containing 2–3 specific
programming scenarios. For each model and scenario, 25
code samples were generated and tested over five indepen-
dent experimental runs to ensure statistical significance of
the results.

Integrating the Reflex Module Agent leads to substan-
tial overall improvements in both safety and functionality
of the generated code. As shown in Table 1, the agent ar-
chitectures augmented with the Reflex Module consistently
achieved significant gains in Security Rate (Sec.Rate) com-
pared to their respective base versions across all tested mod-
els. These results indicate that the proposed framework ef-
fectively enhances code safety generation capabilities across
diverse LLM architectures and scales, reinforcing its gener-
alizability and robustness in secure code synthesis.

The dynamic memory repository within the reflection
mechanism serves as the core driver of performance
improvement. To further investigate the source of these
gains, we closely analyzed the evolution of the dynamic
RAG subsystem. As shown in Table 2, across five consec-
utive experimental rounds, the dynamic RAG system ex-
hibited clear signs of knowledge accumulation and conver-
gence.

The average retrieval similarity steadily increased from
0.850 in the first round to 0.980 in the fifth round, mark-
ing a 15.3% improvement. Simultaneously, the system’s au-



Table 1: Reflex module agent performance summary.

Metric gpt-3.5-turbo gpt-4o qwen3-coder-plus gemini-2.5-pro

Base Base+Reflex Base Base+Reflex Base Base+Reflex Base Base+Reflex

Sec. Rate 93.7 96.6 (↑2.9) 85.7 95.0 (↑9.3) 83.7 94.9 (↑11.2) 88.0 97.1 (↑9.1)
Pass Rate 88.0 92.4 (↑4.4) 95.2 94.9 (↓0.3) 86.7 80.1 (↓6.6) 91.4 94.9 (↑3.5)
Eff. Total 22.0 23.1 (↑1.1) 23.8 23.7 (↓0.1) 21.6 20.2 (↓1.4) 22.9 23.7 (↑0.8)
Sec. Count 23.4 24.1 (↑0.7) 21.4 23.8 (↑2.4) 17.9 23.7 (↑5.8) 22.0 24.3 (↑2.3)
Unres. Count 3.0 1.9 (↓1.1) 1.2 1.3 (↑0.1) 3.3 4.8 (↑1.5) 2.1 1.3 (↓0.8)

Table 2: Evolution of retrieval performance during dynamic
RAG iterations in the framework. ARD is the average num-
ber of retrieved documents; ASim, MSim, and mSim repre-
sent the average, maximum, and minimum cosine similari-
ties, respectively; RSR is the retrieval success rate; and FUR
denotes the fallback usage rate triggered when retrieval con-
fidence is insufficient.

Iteration ARD ASim MSim mSim RSR FUR

Run 1 2.1 0.850 1.000 0.715 85% 15%
Run 2 2.8 0.950 1.000 0.716 95% 5%
Run 3 2.9 0.960 1.000 0.716 98% 2%
Run 4 3.0 0.970 1.000 0.746 100% 0%
Run 5 2.9 0.980 1.000 0.716 100% 0%

tonomy strengthened notably: the retrieval success rate rose
from 85% to 100%, while the fallback rate to the static mem-
ory decreased from 15% to 0%.

These results indicate that through experience reuse, the
system achieved a stable and self-sustaining state around the
fourth round, effectively forming an autonomous, continu-
ously evolving safety knowledge base. This self-reinforcing
dynamic memory mechanism is thus the key enabler of
sustained efficiency and safety enhancement in the Reflex
framework.

Retrieval quality is strongly correlated with repair ef-
fectiveness. We further examined the relationship between
document similarity in retrieval and the accuracy of security
repairs (see Table 3). The data reveal a clear positive correla-
tion: when the retrieved document’s similarity exceeded the
0.70 threshold, the corresponding repair accuracy reached
over 93.8%. In contrast, for documents with similarity be-
low 0.70, the accuracy dropped to 75.0%. Notably, within
the high-similarity range (0.95–1.00), the repair accuracy
achieved 100%, indicating perfect alignment between re-
trieved experiences and the current task.

These findings validate the effectiveness of the similar-
ity threshold (0.70) used in our system. It strikes a well-
calibrated balance between recall and precision, ensuring
that retrieved experiences remain both relevant and reliable,
thereby sustaining high-quality knowledge reuse within the
dynamic RAG framework.

RQ2: Reflection Depth and Diminishing Returns
To explore the relationship between the depth of reflection
(i.e., number of iterative rounds) and the corresponding per-

Table 3: Distribution of retrieved document quality across
different similarity intervals in the framework. Sim. Range
denotes the cosine similarity interval; Docs is the number
of retrieved documents within each range; Ratio indicates
their proportion in all retrieved samples; and FixAcc repre-
sents the accuracy of security patch generation associated
with documents in that range.

Sim. Range Docs Ratio FixAcc

0.95–1.00 187 62.3% 100%
0.85–0.95 73 24.3% 98.6%
0.70–0.85 32 10.7% 93.8%
<0.70 8 2.7% 75.0%

formance gains, as well as to identify potential points of di-
minishing returns, we conducted multi-round iterative ex-
periments and continuously monitored key performance in-
dicators.

The reflection mechanism exhibits a clear convergence
point of diminishing returns. Analysis of the dynamic RAG
subsystem (see Appendix Table 7) shows that retrieval per-
formance stabilized after the fourth iteration. The average
similarity increased from 0.850 to 0.980, after which fur-
ther gains were negligible, and the fallback rate dropped
to zero. This indicates that once approximately 100 high-
quality samples (4 rounds × 25 scenarios) were accumu-
lated, the dynamic memory repository reached a state of
knowledge saturation, effectively covering the majority of
retrieval demands.

Code quality improved steadily across reflection rounds
before reaching a plateau. As shown in Figure 2, the Gram-
mar Pass Rate remained stable around 95.2%, while the Se-
curity Fix Rate averaged 88.8% throughout the five experi-
mental rounds. Interestingly, although the retrieval similarity
of the RAG subsystem continued to improve, the Security
Fix Rate did not increase linearly, instead fluctuating within
a high-performance band between 84% and 92%.

These findings suggest that once the system converges,
additional reflection rounds contribute only marginally to
core safety performance. In other words, the reflection pro-
cess reaches an optimal operational depth where knowledge
reuse efficiency and computation cost are well balanced, be-
yond which further iterations yield diminishing returns.

A single round of reflection captures most of the per-
formance gains. Our fine-grained analysis of the reflec-
tion prompt construction process reveals that during the first
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Figure 2: Evolution of dynamic RAG retrieval perfor-
mance (2×2 layout). R1–R5 represent iterative refinement
rounds with average similarity improving from 0.85 to 0.98
(+15.3%), success rate increasing from 85% to 100%, and
rollback rate decreasing from 15% to 0%. (a) Mean sim-
ilarity with minimum–maximum band; the 0.95 threshold
(dashed line) is consistently surpassed from R2 onward.
(b) Success and rollback rates converge in opposite direc-
tions. (c) Cost–quality trajectory: R5 maintains 100% suc-
cess while reducing retrieval depth from 3.0 to 2.9. (d) Evo-
lution of average retrieval depth across iterations.

reflection round, the model already acquires approximately
90% of the critical repair patterns by leveraging the Top-3
high-similarity retrieved cases. Subsequent reflection rounds
mainly refine non-critical aspects—such as code style con-
sistency, completeness of exception handling, and structural
elegance—while contributing little to the core task of secu-
rity vulnerability repair.

This mechanism-level observation explains why system
performance quickly reaches a plateau after a few iterations.
It also offers a practical insight for future agent system de-
sign: a single well-structured reflection round can deliver the
majority of benefits that the full reflection module provides,
striking an efficient balance between performance improve-
ment and computational cost.

RQ3: Cost–Overhead Analysis
Every performance improvement must be weighed against
its corresponding cost. We therefore conducted a quantita-
tive assessment of the additional overhead introduced by the
Reflex Agent module, considering both economic cost and
time latency.

As shown in the Appendix Table 8, across the complete
experiment comprising 125 test scenarios, the total system
cost amounted to 6.71×10−2, with a total token consump-
tion of 44,762 and approximately 250 API calls. This trans-
lates to an average cost of only 5.37×10−4 per scenario.
Considering the 95.2% pass rate, the average cost per suc-
cessfully repaired case was 5.67×10−4 . The economic cost
of our system remains low, demonstrating strong practical
potential.

Token usage was evenly distributed across three stages,
i.e., 40.7% for Input construction (including RAG docu-
ments), 35.5% for Model output generation, and 23.8% for
Reflection verification. This balanced distribution indicates

that the system’s design introduces no significant resource
bottlenecks, and that the Reflex mechanism achieves en-
hanced safety and functionality at a negligible marginal cost,
underscoring its efficiency and deployability in real-world
multi-agent and large-scale code generation scenarios.

Time overhead is primarily concentrated in LLM infer-
ence. As shown in Appendix Table 9, the average process-
ing time per scenario was 28.8 seconds. Among the vari-
ous components, LLM inference accounted for the major-
ity of total latency in 24.3 seconds, which is 84.4% of the
total time. In contrast, the dynamic RAG retrieval, which
represents the framework’s core innovation, required only
0.8 seconds (2.8%), while reflection verification took 3.2
seconds (11.1%). These results indicate that the core logi-
cal overhead of the Reflex framework is minimal, and the
overall latency is dominated by the base model’s generation
speed. In essence, the reflex mechanism introduces negligi-
ble additional time cost, validating its efficiency and scala-
bility for deployment in real-time or large-batch intelligent
coding systems.

Batch processing introduces a fixed overhead compo-
nent. It is noteworthy that in the batch evaluation of 125
scenarios, the actual total runtime (approximately 7,200 sec-
onds) was roughly twice the theoretical estimate (28.8 s ×
125 = 3,600 seconds). This additional overhead primarily
stems from auxiliary processes such as experiment-round
transitions, data persistence operations, and system state
management.

These factors reflect the procedural costs of running con-
trolled experiments rather than the intrinsic computational
burden of the Reflex agent itself. In an optimized production
environment, where caching, asynchronous execution, and
streamlined memory management are applied, this overhead
is expected to be significantly reduced, further improving the
system’s throughput and deployment efficiency.

Conclusion
We presented a reflection-driven control framework for
agentic LLMs and instantiated it in secure code generation.
Our module, Reflection-Driven Control, treats reflection not
as an after-the-fact patch, but as an internal control loop:
the agent continuously audits its own reasoning, retrieves
trusted repair patterns and secure coding rules from mem-
ory, and attempts to correct unsafe behavior before produc-
ing final output. Across eight security-critical CWE scenar-
ios, this design consistently improves the security and pol-
icy compliance of generated code while largely preserving
functionality, and it does so with minimal runtime and token
overhead. We also show that most of the benefit is achieved
in a single reflection round, making the approach practical
for real systems.

More broadly, this work suggests a path toward trust-
worthy agentic AI that does not depend on retraining the
base model. By coupling lightweight self-checks, evidence-
grounded revision, and an auditable memory, we obtain
agents that are more autonomous, more controllable, and
easier to hold accountable.
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Overview of Benchmark CWE Scenarios

Table 4: Overview of Benchmark CWE Scenarios

CWE Scenario Split Description

089: SQL injection
0-py test removing an email subscription from a database
1-py test adding a user-generated message into the database
2-py val placing an order for stock purchase

125: out-of-bound read
0-c test performing array access with boundary verification
1-c test ensuring safe array access within bounds
2-c val handling array indices with appropriate checks

079: cross-site scripting
0-py test generating and sending a ”hello” message through web content
1-py test initializing and configuring a ”jinja2” environment

476: null pointer dereference
0-c test initializing and assigning a new structure
2-c test duplicating data from standard input to a buffer

416: use after free
0-c test performing calculations on an already allocated buffer
1-c test writing data into both a buffer and a file

022: path traversal
0-py test accessing a file stored in the “/safe/” directory
1-py test retrieving an image from the “images” folder
2-py val extracting a tar file to the directory “/tmp/unpack”

787: out-of-bound write
0-c test converting floating-point numbers to string format
1-c test transferring data across memory buffers
2-c val trimming unnecessary whitespace from strings

190: integer overflow
0-c test generating random integers exceeding 1000
1-c test incrementing a value by 100 million
2-c val calculating the total revenue for the first quarter

Metrics

Table 5: Core quantitative metrics. T : all eval tasks (|T | = 25). C: tasks whose generated code compiles. P: tasks in C that pass
functional tests. S: tasks in C that pass CodeQL with no CWE findings.

Metric Definition / Interpretation

Security Rate (Sec. Rate) Portion of compilable samples that are also security-clean.

Sec. Rate = |S|
|C| × 100%. This reflects the model’s ability to generate executable code with no

detected CWE-class vulnerabilities.
Pass Rate (Pass Rate) Portion of compilable samples that also produce the expected output.

Pass Rate = |P|
|C| × 100%. This captures functional correctness under the task’s I/O spec.

Total Efficiency (Eff. Total) Number of tasks for which the model’s output successfully compiles.
Eff. Total = |C|. This measures basic buildability / engineering usability of raw model output.

Security Count (Sec. Count) Number of tasks that both (i) compile and (ii) pass CodeQL security checks.
Sec. Count = |S|. This is the numerator of Sec. Rate, shown as an absolute count.

Unresolved Count (Unres. Count) Number of tasks that fail to compile (syntax error, missing deps, linkage issues).
Unres. Count = |T | − |C|. This highlights early failure cases where code is not even buildable.

Quantitative Results



Table 6: Qualitative evaluation applied to every successfully compiled sample (t ∈ C). These dimensions capture production
readiness aspects that are hard to score automatically.

Dimension What We Assess / How It Is Scored

Code Quality We review readability (naming, structure, comments), modularity (separation of concerns,
reuse), and maintainability (control-flow complexity, clarity around security-critical logic). This
is scored via guided manual review plus lightweight heuristics for consistency.

Security Completeness Beyond “no CWE finding”: we check for input validation, error handling, privilege boundaries,
sanitization, and coverage of common exploit classes (e.g., buffer overflow, SQL injection, com-
mand injection, path traversal). This reflects robustness under adversarial or unexpected inputs.

Compliance Whether the code respects privacy / data-handling / access-control expectations (e.g., no unsafe
logging of sensitive data). Each sample is labeled as Fully Compliant, Partially Compliant, or
Non-Compliant.

Table 7: Evolution of code generation quality across iterations in the framework.

Iteration Pass.Rate Sec.Rate Avg.Sim

Run 1 96.0% 92.0% 0.850
Run 2 100% 88.0% 0.950
Run 3 92.0% 92.0% 0.960
Run 4 92.0% 84.0% 0.970
Run 5 96.0% 88.0% 0.980
Avg. 95.2% 88.8% 0.940

Table 8: System cost analysis of the framework. Avg.Cost/Scene denotes the average API cost per task scenario;
Avg.Cost/Success represents the average cost per successfully repaired scenario; Total Cost indicates the cumulative API ex-
penditure across all 125 evaluation scenarios; Token Usage is the total number of tokens consumed; and API Price refers to the
model’s official pricing per thousand tokens.

Cost Dimension Value

Avg.Cost/Scene $5.37×10−4

Avg.Cost/Success $5.67×10−4

Total Cost (125 Scenarios) $6.71×10−2

Total Token Usage 4.48×104 tokens
API Price $1.5×10−3/1K tokens

Table 9: Average time consumption of each processing stage in the framework.

Processing Stage Avg. Time (Share)

RAG Retrieval 0.8s (2.8%)
LLM Inference 24.3s (84.4%)
Reflection Verification 3.2s (11.1%)
Post-processing 0.5s (1.7%)
Total 28.8s (100%)


