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Abstract

Al systems are continually evolving and advancing, and user
expectations are concurrently increasing, with a growing de-
mand for interactions that go beyond simple text-based in-
teraction with Large Language Models (LLMs). Today’s ap-
plications often require LLMs to interact with external tools,
marking a shift toward more complex agentic systems. To
support this, standards such as the Model Context Protocol
(MCP) have emerged, enabling agents to access tools by in-
cluding a specification of the capabilities of each tool within
the prompt. Although this approach expands what agents can
do, it also introduces a growing problem: prompt bloating.
As the number of tools increases, the prompts become longer,
leading to high prompt token costs, increased latency, and re-
duced task success resulting from the selection of tools irrel-
evant to the prompt. To address this issue, we introduce JS-
PLIT, a taxonomy-driven framework designed to help agents
manage prompt size more effectively when using large sets of
MCP tools. JSPLIT organizes tools into a hierarchical taxon-
omy and uses the user’s prompt to identify and include only
the most relevant tools, based on both the query and the tax-
onomy structure. In addition to optimizing prompt composi-
tion, the taxonomy introduces an additional layer of control
and diagnostic transparency, enabling developers to trace tool
selection decisions, analyze categorization logic, and system-
atically debug tool misclassification or over-selection events.
This structural visibility allows for fine-grained interpretabil-
ity of the agent’s decision-making process, enhancing relia-
bility in multi-tool environments. In this paper, we describe
the design of the taxonomy, the tool selection algorithm, and
the dataset used to evaluate JSPLIT. Our results show that JS-
PLIT significantly reduces prompt size without significantly
compromising the agent’s ability to respond effectively. As
the number of available tools for the agent grows substan-
tially, JSPLIT even improves the tool selection accuracy of
the agent, effectively reducing costs while simultaneously im-
proving task success in high-complexity agent environments.

Introduction

During the past year, artificial intelligence has undergone a
remarkable shift. What was once defined largely by conver-
sational tools like Large Language Models (LLMs) to re-
spond to user questions in a one-to-one exchange is now
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evolving into something more complex and dynamic: Al
agents. Al agents are fundamentally different from normal
conversational Als (Zhu et al. 2025): they’re built to take ac-
tion on their own using a variety of tools. They can plug into
APIs, search databases, fill out spreadsheets, work within
CRM systems, move through cloud environments, and much
more, without waiting for a human to guide every step. Al
agents do not only answer questions, but handle entire au-
tonomous workflows, making decisions and adapting in real
time to environmental state changes (Yao et al. 2023).

Prompt Bloating:
Tool-Rich Agent Selection
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Figure 1: An example of prompt bloating caused by a mas-
sive amount of tools descriptions injected into the agent’s
context

This has been framed by several enterprise investigations.
According to the PwC 2025 report (Priest 2025), three out
of four business leaders believe that Al agents could bring
about a disruptive transformation, stating that they can even
overcome the impact of smartphones and the internet. In the
same research, more than 80% of companies plan to increase



their investments in agent-based systems over the next two
years. A similar research carried out by Capgemini in July
2025 (Thibaud et al. 2025) supports this momentum. They
found that 14% of organizations around the world have al-
ready deployed AI agents in live environments, while an-
other 23% are piloting them.

What is emerging is a new model for how humans and ma-
chines work together. In this new paradigm, the Al agent can
make autonomous decisions even without the full control of
the human operator. These systems can detect changes in
context, decide what actions to take, and even collaborate
with other agents when necessary.

Following the increasing interest of the entire commu-
nity around the integration of Al agents, different dedicated
tools and technologies arose in the latest year. Among these,
the Model Context Protocol (MCP) (Anthropic 2024) has
gained significant traction, supported by major partners such
as OpenAl, Microsoft, and Google. The Model Context Pro-
tocol serves as a universal interface for connecting LLMs
with external data sources and tools. It eliminates the need
to develop custom integrations for each model-tool combi-
nation, instead offering a standardized and secure connec-
tion based on JSON-RPC 2.0. The protocol defines a client-
server architecture: the Al agent (MCP client) connects to
one or more MCP servers that expose functionality via con-
textual metadata and predefined functions.

This new instrument brings its own set of challenges.
One structural problem of this approach is prompt bloat-
ing (Figure 1). Prompt bloating (Addad and Kapusta 2024;
Long et al. 2025) is a phenomenon that emerges frequently
in the practical use of Al, particularly when trying to ex-
tend the conversational context or deliver complex instruc-
tions through increasingly long textual inputs due to the
context injection of tools’ descriptions. While this approach
makes it possible to maintain a better control on the behav-
ior of the model, it also introduces a number of significant
negative effects, both in terms of computational and token
costs, and the quality of the responses generated. One of the
main disadvantages concerns the increase in computational
cost. LLM models typically have a computational complex-
ity quadratic to the length of the prompt. This means that
doubling the length of the prompt can quadruple the time
and memory required to process it. In addition to the infras-
tructural impact, prompt bloating also has direct economic
consequences when using models accessible through paid
APIs. In these cases, the cost of inference is generally cal-
culated based on the total number of tokens processed. As a
result, an unnecessarily long prompt not only increases com-
putational requirements but also proportionally affects the
actual price of the interaction. Qualitatively, prompt bloat-
ing tends to worsen the accuracy and relevance of model
responses. With an overly long prompt, the model is ex-
posed to information that is potentially contradictory, obso-
lete, or simply irrelevant to the current task. This cognitive
overload compromises the model’s ability to focus on impor-
tant details, leading to worse performance in terms of gen-
eral response and tool selection accuracy. Nowadays, users
adopt many pragmatic solutions for handling long prompts.
Among these, one of the most popular is periodic context

summarization (Wang et al. 2024), in which portions of pre-
vious text or dialogues are automatically summarized to re-
duce the number of tokens. Other strategies include the use
of sliding windows (Li, Li, and Zhang 2024) to maintain
only the most recent and relevant context, and semantic pri-
oritization, which dynamically selects the most relevant in-
formation with respect to the current task. These techniques,
even if effective, cannot be directly applied to Al agents,
because the tools’ descriptions are often already short and
hard to summarize, and it is impossible to cut out parts of
the description using an agnostic approach without seriously
compromising the agent’s chance of selecting the right tool.

To effectively mitigate the problem of prompt bloating in
Al agents interfacing with a large number of MCP servers,
we introduce JSPLIT, a novel system designed to optimize
context selection through intelligent taxonomy-based filter-
ing. The core idea behind JSPLIT is to organize all available
MCEP servers into a hierarchical taxonomy, where each tax-
onomy class is associated with a human-readable descrip-
tion that captures its functional scope. This taxonomy is pre-
integrated into the system and serves as a structural map to
guide contextual pruning. When a user query is received, the
large language model embedded in the agent evaluates the
query against the set of class descriptions in the taxonomy.
Based on semantic relevance, it selects only those taxonomy
classes that are pertinent to the query. The system then filters
the MCP server pool accordingly, selecting only the servers
that belong to the identified classes. These only the selected
servers are included in the agent’s execution context. The hi-
erarchical taxonomy also enhances debugging, traceability,
and observability of the agent’s behavior. By maintaining ex-
plicit relationships between tool classes, functions, and their
corresponding activation triggers, developers can trace how
and why a particular tool was selected for execution. This
structured representation allows for fine-grained inspection
of decision paths, identification of taxonomy-level misclas-
sifications, and analysis of semantic drift during tool selec-
tion. Furthermore, it enables the integration of diagnostic in-
strumentation—such as tool-level logs and class activation
metrics—directly within the taxonomy graph, providing a
transparent and auditable view of the agent’s reasoning pro-
cess. This additional control layer improves interpretability,
facilitates systematic debugging, and supports iterative re-
finement of both taxonomy design and agent behavior.

Based on this framework, in this paper we introduce the
following contributions:

* A set of different taxonomies to divide the MCP servers

* An evaluation dataset of thousands of MCP servers clas-
sified according to the taxonomies

» The JSPLIT system used for selecting the servers accord-
ing to the user’s query

* A test dataset that connects queries with the correct
server to use for completing the task

Related Work

The growing adoption of Al agents capable of interfac-
ing with external tools and services has introduced press-
ing challenges around context management. As these agents



are tasked with increasingly complex and diverse operations,
the volume of supporting information required for effective
reasoning and decision-making can quickly lead to severe
prompt bloating. In response, recent research has explored
strategies for mitigating context overload, particularly in
the areas of task selection and scalable prompt construction
within modular Al agent systems. A key benchmark in this
space is introduced in (Roberts, Han, and Albanie 2025),
where the authors evaluate large language models’ (LLMs)
ability to retrieve and reason over information spread across
contexts approaching a million tokens. Their work focuses
on needle threading tasks—scenarios in which models must
follow long chains of related information buried within vast
prompt windows. They demonstrate that retrieval perfor-
mance tends to degrade as context size increases, under-
scoring a fundamental limitation that motivates the core
problem addressed in this paper. To address the challenge
of effective tool selection, (Kachuee et al. 2025) propose
enhancing retrieval through LLM-based query generation.
Rather than depending exclusively on dense retrievers or
embedding similarity, their approach leverages the LLM’s
own contextual reasoning abilities to generate more targeted
queries. They explore zero-shot prompting, supervised fine-
tuning, and alignment learning—ultimately showing that
alignment learning provides robust performance, particu-
larly in out-of-domain scenarios. Their findings suggest that
LLMs can serve not only as language generators but also
as intelligent retrievers of their own operational context.
Building on this idea, our work introduces a taxonomy-
based selection mechanism that further improves retrieval
success rates in long prompts while also reducing token us-
age throughout the agent’s operation. Complementary ap-
proaches to tool selection have also been explored. (Gao
et al. 2024) present Confucius, a tool-learning framework
designed to enhance LLMs’ ability to interact with complex
tools in real-world tasks. Their curriculum-based training
procedure—consisting of warm-up, in-category, and cross-
category phases—gradually teaches tool use while refining
the training data via introspective feedback (ISIF), which
helps the model focus on nuanced tool behaviors. Another
related line of work is ToolkenGPT, introduced by (Hao
et al. 2023), which takes a different approach by learning
new embeddings to support tool selection. Their framework
augments frozen language models with a wide array of ex-
ternal tools by learning tool embeddings that integrate into
the generation process. ToolkenGPT employs a two-stage
training strategy that aligns tool usage with the language
modeling objective, enabling parameter-efficient inference
without modifying the base model’s weights. Unlike these
approaches, which require model fine-tuning or embedding
updates, our method (JSPLIT) operates post-training with-
out altering the LLM’s parameters. This makes our approach
more modular and broadly applicable, especially in settings
where model weights are inaccessible or frozen.

Method
JSPLIT is an intelligent agent framework designed to run
Al agents by combining large language model (LLM) rea-
soning with external tool execution through a structured and

explainable control pipeline. Users provide textual queries
or task descriptions, which JSPLIT resolves by orchestrat-
ing interactions between an LLM and a suite of tool servers
that connect the system to the external world. At the core of
JSPLIT is the Taxonomy-MCPResolver, a module responsi-
ble for intelligently selecting the most relevant tool servers
based on a semantic classification of the user’s query. This
selective routing enables efficient and context-aware execu-
tion of complex tasks by ensuring that only the appropri-
ate tools are invoked during the resolution process. In real-
world applications, JSPLIT is expected to be integrated into
general-purpose Al orchestration frameworks that support
tool-augmented reasoning. These frameworks facilitate iter-
ative interactions between LLMs and external tools, allow-
ing complex tasks to be decomposed, delegated, and refined
until a satisfactory result is achieved.

System Overview

JSPLIT is a modular framework for Al agents that com-
bines LLM reasoning with access to large pools of external
services, known as Model Context Protocol (MCP) servers.
It enables efficient and scalable tool use through intelligent
server selection and iterative query resolution. When a user
query enters the system, the Taxonomy-MCPResolver de-
termines which MCP servers are relevant. It uses a hier-
archical taxonomy that classifies servers by functionality
and matches the query to human-readable class descriptions.
Only the servers mapped to the most semantically appropri-
ate categories are retained for further processing. The se-
lected MCP servers and the query are then passed to the
LLM, which attempts to resolve the task through an iter-
ative process called the call loop. At each step, the LLM
decides whether to directly answer the query based on its
current context or to invoke tools on the selected MCP
servers. If tools are invoked, their outputs are appended
to the prompt, updating the context for the next iteration.
The loop continues until the LLM produces an answer or
a maximum number of iterations is reached. The final out-
put includes the LLM’s answer (if one was generated), the
list of MCP servers used, and token usage statistics. JS-
PLIT also supports a baseline mode in which the Taxonomy-
MCPResolver is replaced with a Passthrough-MCPResolver.
In this configuration, no filtering is applied, and all MCP
servers are made available to the LLM. This allows perfor-
mance comparisons between intelligent and unfiltered tool
selection strategies. In the next section we will explore more
in detail the core component of the JSPLIT system: the
Taxonomy-MCPResolver

Taxonomy Resolver

This component performs intelligent selection of Model
Context Protocol (MCP) servers by combining a hierarchical
taxonomy of the servers with the large language model clas-
sification. The resolver is instantiated with a configuration
file defining available MCP servers, a JSON-formatted tax-
onomy file, and a client interface to a large language model
(LLM). The core resolution logic follows a two-phase se-
quence: taxonomy classification and MCP selection.
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Figure 2: The overall logic of the Taxonomy-MCPResolver
component

In the taxonomy classification phase, the system first pre-
processes the taxonomy by filtering it to retain only cate-
gories that have at least one associated MCP in the current
agent’s state, then formats the remaining structure into a hi-
erarchical string structured as a tree. It constructs a classi-
fication prompt by inserting this formatted taxonomy into
a predefined template that instructs the LLM to choose the
most specific leaf-level category for the input query. The
query and prompt are submitted to the LLM, whose output is
parsed to extract a valid taxonomy identifier corresponding
to the selected category.

In the MCP mapping and LLM-based ranking phase, the
resolver retrieves MCPs directly mapped to the identified
taxonomy category via dictionary lookup; if only one MCP
matches, the resolver selects it directly. If multiple MCPs
are eligible, the resolver generates a ranked-list prompt that
describes each candidate with a truncated summary and asks
the LLM to rank the options, returning a comma-separated
list of indices for the top-k MCPs. The system validates the
returned indices, uses them to index into the candidate list,
and assembles the selected MCPs into the final result. Figure
2 illustrates the overall schema of the Taxonomy Resolver

Datasets and Taxonomies

In this section, we introduce the core datasets and tax-
onomies that represent the backbone of the JSPLIT system.
These foundational resources enable the platform to classify
tools, resolve queries, and guide language model reasoning
in a structured and interpretable way. The datasets provide
labeled examples of both tools and queries, while the tax-
onomies offer a hierarchical framework for organizing and
navigating the tool landscape. Together, they support the de-
velopment, evaluation, and continuous improvement of JS-
PLIT’s resolution and orchestration capabilities.

Taxonomies

To support structured tool reasoning and precise query res-
olution, the JSPLIT system relies on a functional taxon-
omy—a hierarchical classification system that organizes

MCP (Model Context Protocol) servers based on what they
do. This taxonomy enables the language model to reason
over tool capabilities, supports accurate prompt generation,
and guides the system in selecting the most relevant services
for a given user query. Over the course of JSPLIT’s devel-
opment, two versions of the taxonomy have been created:
Taxonomy v1 and a more advanced Taxonomy v2.

Taxonomy v1 was the first structured attempt to catego-
rize the growing ecosystem of MCP servers. It was designed
with simplicity and flexibility in mind, using a hierarchical
structure based on primary functionality, supported by op-
tional secondary tags for data type (e.g., text, image, struc-
tured) and provider (e.g., OpenAl, Microsoft). Each server
was assigned a single primary category from a three-level
hierarchy, with additional tags allowed for multi-functional
tools. The taxonomy emphasized eight broad functional ar-
eas, including search, knowledge management, data pro-
cessing, simulation, and communication. It supported multi-
tool tagging, allowing servers to reflect multiple capabilities
without violating the core hierarchy. Taxonomy-v1 served
as a preliminary foundation, enabling early experimentation
with tool classification and routing, and ultimately guiding
the development of the more comprehensive and structured
Taxonomy-v2.

Taxonomy v2 builds directly over vl but introduces a
deeper and more structured framework. It expands the num-
ber of top-level categories to eleven, covering new domains
such as developer tools, specialized industries (e.g., finance,
entertainment), and multi-domain orchestration. Each sub-
category is now paired with a clear definition, ensuring con-
sistency in both manual and automated classification. Tax-
onomy v2 introduces fallback subcategories for tools that
don’t neatly fit into existing slots, providing a formal mech-
anism for handling outliers. It also improves clarity in nam-
ing and scope, and it integrates hybrid and cross-functional
tools more explicitly.

Datasets

The JSPLIT system is developed and evaluated using two
complementary datasets that reflect different aspects of its
functionality: the MCP Server Dataset and the MCP Query
Dataset. Each serves a distinct role—one capturing the struc-
ture and capabilities of the tool landscape, and the other
modeling the types of tasks users might pose to the system.

The MCP Server Dataset is a comprehensive catalog
of approximately 2,000 Model Context Protocol (MCP)
servers, retrieved from Smithery, a widely used MCP reg-
istry. Each MCP represents an external tool or service that
can be invoked during the JSPLIT query resolution process.
Every server entry includes a name, a human-readable de-
scription of its functionality, and a machine-readable spec-
ification of the tools it provides, all formatted according
to the JSON schema defined in the MCP protocol. To
support structured tool selection, we categorized all MCP
servers under a multi-level taxonomy that reflects their func-
tional domains and capabilities. This taxonomy underpins
the intelligent routing performed by JSPLIT’s Taxonomy-
MCPResolver, enabling the system to reason about which
tools are most appropriate for a given task. Classification



of the dataset was conducted in two stages: an initial sub-
set was manually annotated by domain experts to ensure
high-quality labels, and these examples were then used
to guide automated expansion using an external language
model (Claude Sonnet 3.7). The LLM generalized from the
expert-labeled entries to assign taxonomy categories to the
remaining servers, resulting in a fully labeled and opera-
tional dataset.

The MCP Query Dataset contains approximately 200 en-
tries, each representing a realistic user query paired with a
ground-truth annotation. For each query, the dataset speci-
fies the correct MCP server that should be used to fulfill the
request, along with the appropriate taxonomy category. This
dual annotation provides a structured foundation for evaluat-
ing both tool selection accuracy and end-to-end task resolu-
tion within the JSPLIT pipeline. The dataset is constructed
to rigorously test the full capabilities of JSPLIT, including
query interpretation, taxonomy-based reasoning, and tool in-
vocation. By defining both the intended outcome and the tax-
onomy context, it supports detailed evaluation of intermedi-
ate steps as well as overall task success. Roughly 50% of
the entries were initially generated using a language model
and then manually refined to ensure they contained all nec-
essary information for tool invocation. These queries were
carefully adjusted for clarity and confirmed to succeed when
evaluated in isolation (i.e., without irrelevant tools present).
The remaining 50% were automatically generated by select-
ing MCP tools and producing corresponding queries with
the goal of maximizing taxonomy coverage. Each automati-
cally generated query was validated end-to-end through the
JSPLIT system, and only retained if the correct tool was suc-
cessfully invoked in a clean execution environment.

Experimental setup

To evaluate JSPLIT’s performance, a structured experimen-
tal setup was designed to simulate an Al orchestration
pipeline and test the system under various configurations.
The experiments aimed to measure both the correct selec-
tion and invocation of MCP servers, and the LLM-related
costs, such as token usage.

Each experiment followed a “needle in a haystack™ de-
sign: for every user query in the MCP Query Dataset, the
correct target MCP server (the “needle”) was embedded
among a set of irrelevant, randomly sampled “noise” MCP
servers (the “haystack™). These noise MCPs were drawn
from a larger pool of approximately 2,000 MCP servers, ex-
cluding any from the same leaf-level taxonomy category as
the target. To assess scalability and robustness, the number
of noise MCPs was varied incrementally, from 1 up to 1,000,
allowing the system’s performance to be evaluated under in-
creasing levels of task complexity and tool-space clutter.

For each query: (1) a list of available MCPs was con-
structed by mixing the target server with a randomly se-
lected set of noise MCPs. (2) The user query and this list
were passed into the JSPLIT system.(3) JSPLIT executed
its full pipeline, including the Taxonomy-MCPResolver (if
enabled), LLM reasoning, and tool invocation. (4) The out-
put was recorded, and LLM token usage and estimated

Accuracy - Direct answer or call loop MCP selection
100
90

%o V ﬁ\‘\ \\QA

70 = —
60
50
40

30
20
10

Accuracy in %

1 5 10 50 100 300 600 1000
No. of noise MCPs

e——Passthrough ====Taxonomy-vl ====Taxonomy-v2

Figure 3: Accuracy of correct tool selection over the number
of MCP servers. "Passthrough” represent the vanilla system
that embeds all description into the context, "Taxonomy-v1”
refers to the use of JSPLIT using the v1 version of the tax-
onomy, and “Taxonomy-v2” represents JSPLIT using the v2
taxonomy

costs were logged. (5) Accuracy was computed by check-
ing whether the target MCP was correctly invoked.

Over 95% of outputs were tool-call executions. An out-
put was marked correct if any tool from the target MCP
server was used. For the minority of direct LLM answers
(<5%), a LLM-as-a-judge method was employed: a sepa-
rate LLM was asked to evaluate the correctness of the an-
swer by comparing it to the known ground truth. This setup
also enabled controlled comparison between two configura-
tions of JSPLIT: one using the Taxonomy-MCPResolver for
intelligent server filtering, and one using the Passthrough-
MCPResolver, which passes all MCP servers to the LLM
without filtering. This allowed for a quantitative assessment
of the benefits of taxonomy-based routing in terms of both
effectiveness and computational efficiency.

Results

In this section, we evaluate the effectiveness of the JSPLIT
system in reducing input token cost and improving tool se-
lection accuracy when the number of MCP server connected
to the agent arise. Our experiments are designed to assess
both the overall performance of taxonomy-based filtering
compared to baseline approaches, and the sensitivity of the
system to variations in the underlying model used during the
filtering phase.

The first experiment evaluates three system config-
urations: (1) a baseline condition in which all MCP
server descriptions are directly injected into the LLM
context (Passthrough); (2) the JSPLIT system employing
Taxonomy-v1 for tool filtering; and (3) the same system
utilizing the more refined Taxonomy-v2. In all configura-
tions, GPT-4.1-mini is used as the language model across
all AT interaction steps. As illustrated in Figure 3, JS-
PLIT demonstrates improved tool selection accuracy over
the baseline when the number of MCP servers is low
(fewer than five). A slight decrease in performance is ob-
served as the number of servers increases over ten MCP
servers, corresponding to a rapid expansion in the num-
ber of candidate taxonomy classes injected in the LLM
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prompt during the selection phase. However, as the server
pool continues to grow—reaching into the hundreds—the
performance of JSPLIT stabilizes, whereas the accuracy of
the Passthrough approach deteriorates markedly, with the
Passthrough approach culminating on less than 40% ac-
curacy, while JSPLIT with Taxonomy-v2 remains stable
around 69%. Taxonomy-v2 show comparable performance
with Taxonomy-v1l when the noise servers are below five,
but it demonstrate better performance from then on. Figure
4 reports the cumulative cost (in USD) of input tokens re-
quired to complete a batch of 200 queries as the number
of connected MCP servers increases. The results clearly in-
dicate that JSPLIT achieves a substantial reduction in token
cost—exceeding two orders of magnitude—compared to the
baseline. This demonstrates the effectiveness of JSPLIT in
controlling computational and financial overhead while scal-
ing to large tool ecosystems.

The second experiment is an ablation study designed to
assess how the choice of language model within JSPLIT’s
inner loop component responsible for selecting relevant tax-
onomy classes and MCP tools—affects overall system per-
formance. Specifically, we compare three variants of JS-
PLIT, each using a different model for the classification
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Figure 6: Input token cost for running 200 queries to the
LLM over the number of MCP servers using different mod-
els for the MCP filtering step of the JSPLIT system

step: a local LLM (Qwen3-8B-AWQ), a small API-based
model (GPT-4.1-mini), and a larger API-based model (GPT-
4.1). The final interaction step is completed using GPT-4.1-
mini in all three environments. Figure 5 presents the results
in terms of tool selection accuracy. The findings show that
both API-based models achieve comparable levels of perfor-
mance, whereas the local model results in a substantial drop
in accuracy. This suggests that while local models can sup-
port inference at lower cost, they may struggle to generalize
effectively in complex selection tasks. In Figure 6, we re-
port the input token cost (in USD) associated with each vari-
ant. As expected, the local model offers the lowest cost, but
its savings are offset by a significant decrease in accuracy.
The small API model provides a strong balance, maintain-
ing high accuracy while keeping costs relatively low. The
use of the larger API model yields only a marginal improve-
ment in accuracy over the smaller one, but incurs a notice-
able increase in token-related expenses. These results high-
light a trade-off between computational cost and model per-
formance, suggesting that lightweight API models may offer
the best compromise for many practical deployments.

Classification Error Analysis

The following analysis operates at a diagnostic depth en-
abled exclusively by the hierarchical taxonomy embedded
within the JSPLIT framework. The structured organization
of tools into semantically coherent classes allows for a sys-
tematic tracing of misclassifications across multiple abstrac-
tion levels. This hierarchical arrangement provides a unique
foundation for interpretability, facilitating precise debugging
of classification errors and a deeper understanding of the
agent’s decision dynamics. The confusion matrix in Figure 7
provides insight into the classification behavior of the JS-
PLIT system when using Taxonomy v2 in the presence of
1000 noise MCPs not relevant to the target queries. Each row
corresponds to the ground truth top-level taxonomy class,
while each column shows the predicted top-level class. Val-
ues off the diagonal indicate misclassifications at the top
category level, while non-zero diagonal entries reflect cor-
rect top-level classification with errors at deeper levels of
the taxonomy. The top classes are namely: (1)Search and
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Figure 7: Confusion matrix representing classification errors
between top-level classes of the taxonomy-v2

information retrieval, (2)Memory and knowledge manage-
ment, (3)Simulation and planning, (4)Navigation and map-
ping, (5)Data extraction and manipulation, (6)System and
device control, (7)Communication and interaction, (8)Spe-
cialized domains, (9)Developer tools and programming, (10)
Multi-domain orchestration, (11) Others.

Several classes exhibit consistent confusion with semanti-
cally similar or overlapping categories: Memory and Knowl-
edge Management (2) is frequently confused with Search
and Information Retrieval (1) and Multi-Domain Orchestra-
tion (10). This likely stems from the overlap between tools
that store and retrieve personal knowledge and those used
for general search or coordination across domains. Simula-
tion and Planning (3) shows notable misclassification toward
Data Extraction and Manipulation (5) and System and De-
vice Control (6), possibly due to the presence of data-driven
decision tools and modeling systems that share similar op-
erational features. These patterns highlight the challenge of
distinguishing categories that involve compound or overlap-
ping workflows, especially under weak signal conditions or
when server descriptions are brief or ambiguous.

The category Search and Information Retrieval (1) ap-
pears across multiple rows in the matrix, indicating that it
is often selected even when it is not the correct ground truth
class. Misclassifications from categories such as Data Ex-
traction and Manipulation (5), Specialized Domains (8), and
Memory and Knowledge Management (2) frequently target
this class. This suggests that descriptions of tools involv-
ing data access, content lookup, or general retrieval behavior
may be semantically close to those found in search-related
services. This over-selection highlights the need for more
discriminative features or clearer category boundaries be-
tween search and related data access functionalities. The
Specialized Domains (8) category suffers from significant
misclassification, particularly into Search and Information
Retrieval (1) and System and Device Control (6). This is
unsurprising, as tools in specialized domains (e.g., finance,

healthcare) often reuse common backend technologies and
may not be distinguishable without highly domain-specific
context.

Conclusion and Future Work

In this paper, we introduced JSPLIT, a system designed to
address the challenge of prompt bloating in Al agent archi-
tectures that operate over large pools of external tools. Us-
ing a taxonomy-based filtering mechanism, JSPLIT dynam-
ically selects a subset of relevant MCP servers to include
in the language model’s context, significantly reducing to-
ken usage while preserving the agent’s operational effective-
ness. Our evaluation, based on a large dataset of classified
MCP servers and a set of task-linked queries, demonstrates
that JSPLIT consistently reduces prompt size without signif-
icantly sacrificing task accuracy. In particular, as the num-
ber of available servers scales into the hundreds, the sys-
tem shows clear advantages over baseline approaches that
inject the full tool context. Notably, JSPLIT achieves bet-
ter tool selection accuracy under these high-density condi-
tions, highlighting the importance of structured pruning in
this type of agent environment. Beyond efficiency gains, the
hierarchical taxonomy introduced by JSPLIT contributes an
additional benefit in terms of interpretability and traceability
of agent behaviors. By providing explicit mappings between
tools, their functional categories, and the contextual triggers
leading to their selection, the taxonomy enables systematic
introspection into the agent’s decision-making process. This
structure allows developers and researchers to analyze how
specific classes influence selection outcomes, identify points
of semantic overlap or ambiguity, and trace the reasoning
chain that led to tool activation.

While these results are encouraging, several areas remain
open for improvement. One key direction involves refin-
ing the descriptions associated with taxonomy categories,
which play a central role in semantic matching between user
queries and tool functions. Improving these descriptions,
both in clarity and coverage, could further enhance the qual-
ity of classification and context filtering. Additionally, we
plan to explore the development of a real-time classification
mechanism for onboarding new MCP servers. Currently,
classification relies on a static initial annotation, which lim-
its the system’s adaptability in dynamic environments. A
live, model-assisted classification pipeline would allow JS-
PLIT to scale more fluidly and remain aligned with evolv-
ing tool ecosystems. In parallel, we have begun work on
a more sophisticated Taxonomy-v3, which introduces more
independent categories and separates domain as its own clas-
sification dimension. While still under development and re-
quiring further experimentation, the design of Taxonomy-v3
shows promise as a more flexible and expressive foundation
for future iterations of JSPLIT.

Overall, this work demonstrates that taxonomy-guided
context management is a viable and effective strategy for
improving the scalability, interpretability, and reliability
of Al agents working with large sets of tools and MCP
servers. Continued improvements in adaptability and taxon-
omy structure are likely to further extend the system’s capa-
bilities in real-world deployments.
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Taxonomy-v1l

Approach
e Primary Axis: Functionality (What the server does)

e Secondary Dimensions: Data Type, Provider

Handling Multi-Tool Servers
e Allow servers to be tagged with multiple categories.

e This deviates from “Single Inheritance” but enables recognition of ambi-
guity and allows proposing alternatives or refining requests.

Primary Classification Rules

e Dominant Function: Classify by the server’s primary or most prominent
capability.

e Each MCP server must have a single, primary classification (Level 1, 2,
or 3) to preserve the search hierarchy.

e Secondary Function: Additional functionality tags are allowed.

e Example: A server primarily offering “1.1.1 General Web Search” but
also “5.1.1 NLP” is classified under 1.1.1 and tagged with 5.1.1.

1. SEARCH AND INFORMATION RETRIEVAL

Definition: Servers that locate, fetch, and deliver information from various
sources.



1.1 Web Search and Discovery

e 1.1.1 General Web Search: Broad internet search engines (Google,
Bing, DuckDuckGo)

e 1.1.2 Academic and Research: Scholarly databases, research reposi-
tories

e 1.1.3 News and Media: Real-time news, media monitoring
e 1.1.4 Social Media Search: Platform-specific content discovery
e 1.1.5 Specialized Directories: Professional networks, business directo-

ries

1.2 Database and Repository Access
e 1.2.1 Structured Databases: SQL databases, data warehouses

e 1.2.2 Document Repositories: File systems, document management
systems

e 1.2.3 Version Control: Git repositories, code hosting platforms

1.2.4 Cloud Storage: Object storage, file sharing services

1.2.5 External API Data Access: REST API Clients, GraphQL Clients,
Service-Specific APIs

2. MEMORY AND KNOWLEDGE MANAGEMENT
Definition: Servers that store, organize, retrieve, and manage information for

persistence and reuse.

2.1 Personal Knowledge Systems
e 2.1.1 Note-Taking Platforms: Notion, Obsidian, Roam Research
e 2.1.2 Personal Wikis: Individual knowledge bases

e 2.1.3 Bookmark Management: Link organization and retrieval

2.2 Organizational Knowledge

e 2.2.1 Enterprise Knowledge Bases: Corporate wikis, documentation
systems

e 2.2.2 Collaborative Platforms: Shared workspaces, team knowledge

e 2.2.3 Documentation Systems: Technical documentation, help sys-
tems



2.3 Memory Persistence

e 2.3.1 Conversation Memory: Chat history, interaction logs
e 2.3.2 Context Preservation: Session state, user preferences

e 2.3.3 Learning Systems: Adaptive knowledge accumulation

2.4 Knowledge Graphs and Ontologies
e 2.4.1 Semantic Networks: RDF, OWL-based systems

e 2.4.2 Entity Relationship Systems: Knowledge graph databases

e 2.4.3 Taxonomy Management: Classification systems, controlled vo-
cabularies

3. SIMULATION AND PLANNING

Definition: Servers that model scenarios, predict outcomes, and generate
strategic plans.

3.1 Computational Simulation

e 3.1.1 Mathematical Modeling: Numerical simulations, equation solv-
ing

e 3.1.2 Physical Simulations: Physics engines, material modeling

e 3.1.3 System Dynamics: Complex system behavior modeling

3.2 Strategic Planning

e 3.2.1 Project Planning: Task scheduling, resource allocation
e 3.2.2 Decision Support: Multi-criteria analysis, option evaluation

e 3.2.3 Scenario Analysis: What-if modeling, risk assessment

3.3 Predictive Analytics

e 3.3.1 Forecasting: Time series prediction, trend analysis
e 3.3.2 Machine Learning Models: Trained model inference

e 3.3.3 Statistical Analysis: Hypothesis testing, correlation analysis

4. NAVIGATION AND MAPPING

Definition: Servers that provide spatial awareness, location services, and nav-
igation capabilities.



4.1 Geographic Information Systems
e 4.1.1 Mapping Services: Google Maps, OpenStreetMap integrations
e 4.1.2 Geospatial Analysis: GIS operations, spatial queries

e 4.1.3 Location Intelligence: Place recognition, geocoding

4.2 Navigation and Routing
e 4.2.1 Route Planning: Optimal path calculation
e 4.2.2 Real-time Navigation: Turn-by-turn directions

e 4.2.3 Traffic and Conditions: Dynamic routing with live data

4.3 Virtual Space Navigation
e 4.3.1 Digital Environment Mapping: Virtual world navigation
e 4.3.2 Information Architecture: Website/app structure navigation

e 4.3.3 Network Topology: System architecture exploration

5. DATA EXTRACTION AND MANIPULATION
Definition: Servers that process, transform, analyze, and manipulate various
data types.
5.1 Text Processing

e 5.1.1 Natural Language Processing: Parsing, analysis, generation

e 5.1.2 Document Processing: OCR, format conversion, extraction

e 5.1.3 Content Analysis: Sentiment, classification, summarization

5.2 Structured Data Operations
e 5.2.1 Data Transformation: ETL processes, format conversion
e 5.2.2 Analytics and Reporting: Statistical analysis, visualization

e 5.2.3 Database Operations: CRUD operations, query execution

5.3 Multimedia Processing

e 5.3.1 Image Processing: Computer vision, image manipulation, image
generation

e 5.3.2 Audio Processing: Speech recognition, speech to text, audio anal-
ysis

e 5.3.3 Video Processing: Video analysis, content extraction



5.4 Web Data Extraction
e 5.4.1 Web Scraping: HTML parsing, content extraction

e 5.4.2 API Data Harvesting: Automated data collection

e 5.4.3 Real-time Monitoring: Change detection, alert systems

6. REMOTE DEVICE CONTROL

Definition: Servers that interface with and control external devices, systems,
or IoT endpoints.

6.1 Smart Home and IoT

e 6.1.1 Home Automation: Smart devices, environmental control
e 6.1.2 Security Systems: Cameras, alarms, access control

e 6.1.3 Energy Management: Smart meters, efficiency optimization

6.2 Industrial and Enterprise Systems

e 6.2.1 Network Infrastructure: Router, switch, firewall management
e 6.2.2 Server Administration: Remote system management

e 6.2.3 Manufacturing Control: Industrial IoT, process control

6.3 Mobile and Wearable Devices

e 6.3.1 Smartphone Integration: Device control, sensor access
e 6.3.2 Wearable Technology: Fitness trackers, smartwatches

e 6.3.3 Location-based Services: GPS, proximity systems

7. COMMUNICATION AND INTERACTION

Definition: Servers that facilitate communication between entities, manage
interactions, and handle messaging.

7.1 Messaging and Chat
e 7.1.1 Instant Messaging: Real-time chat platforms

e 7.1.2 Email Integration: Email sending, management, processing

e 7.1.3 Social Media Interaction: Platform posting, engagement



7.2 Collaboration Tools
e 7.2.1 Video Conferencing: Meeting platforms, screen sharing
e 7.2.2 Shared Workspaces: Collaborative editing, project management

e 7.2.3 Workflow Automation: Process orchestration, approval systems

7.3 Notification and Alerting
e 7.3.1 Push Notifications: Mobile, desktop alerts
e 7.3.2 Monitoring Alerts: System health, threshold notifications

e 7.3.3 Event Broadcasting: Webhook delivery, event streaming

8. MULTI-DOMAIN ORCHESTRATION

Definition: Servers that aggregate multiple tools, coordinate complex work-
flows, or provide meta-functionality across domains.
8.1 Tool Aggregators

e 8.1.1 Multi-Service Hubs: Zapier-like integrations

e 8.1.2 Workflow Orchestrators: Complex process automation

e 8.1.3 API Gateways: Service mesh, API management

8.2 Meta-Programming Interfaces
e 8.2.1 Code Generation: Automated programming assistance
e 8.2.2 System Integration: Cross-platform connectivity

e 8.2.3 Configuration Management: System setup, deployment

8.3 Hybrid Functionality Servers
e 8.3.1 Platform-Specific Suites: Single-provider multi-tool servers

e 8.3.2 Domain-Crossing Tools: Servers spanning multiple primary cat-
egories

e 8.3.3 Adaptive Interfaces: Context-sensitive tool selection

Taxonomy-v2

Approach
e Primary Axis: Functionality (What the server does)

e Secondary Dimensions: Data Type, Provider



Handling Multi-Tool Servers
e Allow servers to be tagged with multiple categories - PREFERRED.

e This deviates from “Single Inheritance” but enables recognition of ambi-
guity and allows proposing alternatives or refining requests.
Primary Classification Rules

e Dominant Function: Each MCP server must have a single, primary
classification based on its most prominent functionality (Level 1, 2, or

e Secondary Function: Allow tagging the server with one or more addi-
tional functionalities.

e Example: A server with primary function “1.1.1 General Web Search”
and secondary capability “5.1.1 Natural Language Processing” should be
classified under 1.1.1 and tagged with 5.1.1.

e “Other” Categories: Use x.9 or x.x.9 for broader uncategorized items.

Secondary Dimensions (Tags)

These may be considered Level 4, but are treated as separate filters:

e Data Type: Text, Image, Audio, Video, Multimodal, Structured, Un-
structured

e Provider: Google, Microsoft, OpenAl, Custom, Open Source



1. SEARCH AND INFORMATION RETRIEVAL

Definition: Servers that locate, fetch, and deliver information from external
sources including web search, databases, and external APIs.

1.1 Web Search and Discovery

e 1.1.1 General Web Search: Broad internet search engines providing
web results (e.g., Google, Bing, DuckDuckGo, general search APIs)

e 1.1.2 Academic and Research: Specialized search for scholarly content
including research papers, academic databases, scientific repositories, and
educational resources

e 1.1.3 News and Media: Real-time news aggregation, media monitoring,
journalism databases, and current events tracking systems

e 1.1.4 Social Media Discovery: Platform-specific content discovery
across social networks

1.1.5 Specialized Directories: Professional networks, business directo-
ries, industry-specific databases, and niche community platforms

1.2 Database and Repository Access

e 1.2.1 Structured Databases: Direct access to SQL databases, data
warehouses, and structured data stores

e 1.2.2 Document Repositories: File systems, document management
systems, enterprise content management, and document libraries

e 1.2.3 Version Control: Git repositories, code hosting platforms, source
control systems, and development collaboration tools

1.2.4 Cloud Storage: Object storage services, file sharing platforms,
cloud-based storage systems, and distributed file systems

1.2.5 External API Data Access: REST API clients, GraphQL clients,
service-specific APIs, and third-party integration endpoints

2. MEMORY AND KNOWLEDGE MANAGEMENT
Definition: Servers that store, organize, retrieve, and manage internal infor-
mation for persistence, reuse, and knowledge building.

2.1 Personal Knowledge Systems

e 2.1.1 Note-Taking Platforms: Digital note-taking systems including
Notion, Obsidian, Roam Research, and personal note management

e 2.1.2 Bookmark and Reference Management: Link organization,
reference collection, citation management, and personal library systems



2.2 Organizational Knowledge Systems

e 2.2.1 Enterprise Knowledge Bases: Corporate wikis, institutional
documentation systems, and organizational memory platforms

e 2.2.2 Collaborative Knowledge Platforms: Shared workspaces, team
knowledge systems, and collaborative documentation tools

e 2.2.3 Documentation and Help Systems: Technical documentation,
user guides, help desk knowledge bases, and support systems

2.3 Memory Persistence

e 2.3.1 Conversation Memory: Chat history, interaction logs, session
continuity, and dialogue state management

e 2.3.2 Context Preservation: User preferences, personalization data,
and settings management

e 2.3.3 Learning and Adaptation Systems: Knowledge accumulation,
user behavior learning, and adaptive interfaces

2.4 Knowledge Graphs and Semantic Systems

e 2.4.1 Semantic Networks: RDF systems, OWL-based ontologies, linked
data platforms, and semantic web technologies

e 2.4.2 Entity and Relationship Systems: Knowledge graph databases,
entity recognition, relationship mapping, and graph-based knowledge sys-
tems



3. SIMULATION AND PLANNING

Definition: Servers that model scenarios, predict outcomes, generate strategic
plans, and support decision-making processes.

3.1 Computational Simulation

e 3.1.1 Mathematical Modeling: Numerical simulations, equation solv-
ing, computational mathematics, and algorithmic modeling

e 3.1.2 Physical and Scientific Simulations: Physics engines, material
modeling, scientific simulations, and engineering analysis

e 3.1.3 System Dynamics: Complex system behavior modeling, network
simulations, and dynamic system analysis
3.2 Strategic Planning and Management

e 3.2.1 Project and Task Management: Task scheduling, resource al-
location, project planning tools, and workflow management

e 3.2.2 Decision Support Systems: Multi-criteria analysis, option eval-
uation, strategic planning, and business intelligence

e 3.2.3 Scenario and Risk Analysis: What-if modeling, risk assessment,
contingency planning, and strategic scenario evaluation
3.3 Predictive Analytics

e 3.3.1 Forecasting and Trend Analysis: Time series prediction, market
forecasting, trend identification, and predictive modeling

e 3.3.2 Machine Learning Inference: Trained model deployment, Al-
powered predictions, and intelligent decision support

e 3.3.3 Statistical Analysis: Hypothesis testing, correlation analysis,
data mining, and statistical modeling
4. NAVIGATION AND MAPPING
Definition: Servers that provide spatial awareness, location services, naviga-
tion capabilities, and geographic information systems.
4.1 Geographic Information Systems

e 4.1.1 Mapping Services: Google Maps, OpenStreetMap integrations,
cartographic services, and geographic visualization

e 4.1.2 Geospatial Analysis: GIS operations, spatial queries, geographic
data processing, and location intelligence
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e 4.1.3 Location and Place Services: Geocoding, place recognition, ad-
dress validation, and location-based information
4.2 Physical Navigation and Routing

e 4.2.1 Route Planning: Optimal path calculation, multi-modal routing,
and travel planning systems

e 4.2.2 Real-time Navigation: Turn-by-turn directions, live traffic inte-
gration, and dynamic route guidance

e 4.2.3 Traffic and Environmental Conditions: Real-time traffic data,
weather-aware routing, and condition-based navigation
4.3 Virtual and Digital Navigation

e 4.3.1 Digital Environment Mapping: Virtual world navigation, game
environment mapping, and 3D space orientation

e 4.3.2 Information Architecture Navigation: Website structure ex-
ploration, app navigation assistance, and content hierarchy mapping

e 4.3.3 Network and System Topology: Infrastructure mapping, sys-
tem architecture exploration, and network navigation

5. DATA EXTRACTION AND MANIPULATION
Definition: Servers that process, transform, analyze, and manipulate various
data types including text, multimedia, and structured data.

5.1 Text and Document Processing

e 5.1.1 Natural Language Processing: Text parsing, language analysis,
generation, translation, and linguistic operations

e 5.1.2 Document Processing: OCR, format conversion, document ex-
traction, and file format manipulation

e 5.1.3 Content Analysis: Sentiment analysis, text classification, sum-
marization, and content understanding
5.2 Structured Data Operations

e 5.2.1 Data Transformation: ETL processes, format conversion, data
cleaning, and structural data manipulation

e 5.2.2 Analytics and Reporting: Statistical analysis, data visualization,
business intelligence, and reporting systems

e 5.2.3 Database Operations: CRUD operations, query execution, database
management, and data persistence
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5.3 Multimedia Processing

e 5.3.1 Image Processing: Computer vision, image manipulation, image
generation, and visual content analysis

e 5.3.2 Audio Processing: Speech recognition, audio analysis, sound pro-
cessing, and voice-to-text conversion

e 5.3.3 Video Processing: Video analysis, content extraction, video edit-
ing, and multimedia content processing
5.4 Web Data Extraction

e 5.4.1 Web Scraping: HTML parsing, content extraction, web crawling,
and automated data harvesting

e 5.4.2 API Data Collection: Automated data gathering from APIs,
bulk data retrieval, and systematic data acquisition

e 5.4.3 Monitoring and Change Detection: Real-time monitoring, alert
systems, and automated change tracking

6. SYSTEM AND DEVICE CONTROL

Definition: Servers that interface with and control external devices, systems,
applications, or IoT endpoints.

6.1 Smart Home and IoT

e 6.1.1 Home Automation: Smart devices, environmental control, light-
ing systems, and household device management

e 6.1.2 Security and Monitoring: Cameras, alarms, access control, and
home security systems

e 6.1.3 Energy and Utilities Management: Smart meters, efficiency

optimization, utility monitoring, and resource management

6.2 Enterprise and Infrastructure Systems

e 6.2.1 Network Infrastructure: Router, switch, firewall management,
and network device configuration

e 6.2.2 Server and System Administration: Remote system manage-
ment, server operations, and infrastructure control

e 6.2.3 Industrial and Manufacturing Control: Industrial IoT, process
control, manufacturing systems, and operational technology
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6.3 Computer and Application Control

e 6.3.1 Operating System Control: Desktop automation, system-level
operations, OS-specific integrations (Windows, macOS, Linux)

e 6.3.2 Browser and Application Control: Web browser automation,
application scripting, and software control interfaces

e 6.3.3 Mobile and Wearable Devices: Smartphone integration, device
sensor access, wearable technology, and mobile device management

7. COMMUNICATION AND INTERACTION

Definition: Servers that facilitate communication between entities, manage
interactions, handle messaging, and coordinate collaborative activities.

7.1 Messaging and Social Interaction

e 7.1.1 Instant Messaging: Real-time chat platforms, messaging apps,
and communication channels

e 7.1.2 Email Integration: Email sending, management, processing, and
email automation systems

e 7.1.3 Social Media Interaction: Platform posting, social engagement,
community management, and social media automation
7.2 Collaboration and Scheduling

e 7.2.1 Video Conferencing: Meeting platforms, screen sharing, virtual
collaboration, and video communication tools

e 7.2.2 Calendar and Scheduling: Meeting scheduling, calendar man-
agement, appointment booking, and time coordination

e 7.2.3 Shared Workspaces: Collaborative editing, team coordination,
document sharing, and group productivity tools
7.3 Workflow and Process Automation

e 7.3.1 Workflow Automation: Process orchestration, approval systems,
business process automation, and workflow management

e 7.3.2 Event-based Alerts: Push notifications, system alerts, event
broadcasting, and notification management

e 7.3.3 Event and Integration Management: Webhook delivery, event
streaming, system integration, and inter-service communication
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8. SPECIALIZED DOMAINS

Definition: Domain-specific servers tailored for particular industries, activities,
or specialized use cases.

8.1 Financial Services

e 8.1.1 Personal and Business Finance: Budget planning, expense
tracking, financial health analysis, accounting integration

e 8.1.2 Trading and Investments: Stock trading, crypto, portfolio man-
agement, and market research

e 8.1.3 Payment Processing: Payment gateways, money transfers, digi-
tal wallets, and payment services

e 8.1.4 Market Data and Analytics: Financial data feeds, economic
indicators, and financial research
8.2 Entertainment and Gaming

e 8.2.1 Gaming Platforms: Game APIs, player statistics, platform inte-
grations

e 8.2.2 Game Development: Game engines, development frameworks,
and tools

e 8.2.3 Media and Entertainment: Streaming platforms, music, pod-
casts, and content recommendation
8.9 Other Specialized Domains

e Definition: Domains like Shopping, Food, Health, or Travel not covered
above.

9. DEVELOPER TOOLS AND PROGRAMMING

Definition: Servers that assist software development, provide programming
utilities, code management, and development workflow support.

9.1 Code Development and Management

e 9.1.1 Code Generation and AI Assistance: Automated program-
ming, code completion

e 9.1.2 Code Analysis and Quality: Review, testing frameworks, quality
tools

¢ 9.1.3 Development Environment: IDE integrations, toolchains
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e 9.1.4 API Development and Testing: API design, documentation,
and testing

e 9.1.5 Development Utilities: Build tools, package and dependency
management
9.2 Development Operations

e 9.2.1 Deployment and CI/CD: Integration pipelines, deployment au-
tomation

e 9.2.2 Infrastructure as Code: Provisioning, configuration automation

e 9.2.3 Monitoring and Debugging: Application monitoring, perfor-
mance analysis

e 9.2.4 Integration and Connectivity: Middleware, service mesh, inte-
gration platforms
10. MULTI-DOMAIN ORCHESTRATION

Definition: Servers that aggregate multiple tools, coordinate complex work-
flows across domains, or provide meta-functionality spanning multiple cate-
gories.

10.1 Integration and Orchestration

e 10.1.1 Multi-Service Integration: Zapier-like tools, API gateways,
cross-platform workflows

e 10.1.2 Workflow and Process Orchestration: Enterprise workflow
systems, BPM, approval workflows

10.2 Cross-Domain and Platform Tools

e 10.2.1 Platform-Specific Suites: Vendor ecosystems, integrated toolsets

e 10.2.2 Domain-Crossing Applications: Servers spanning multiple pri-
mary categories

11. Other

Definition: Servers that do not fall into any of the available categories.
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