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Abstract
Large Language Model (LLM) agentic systems solve com-
plex tasks through coordinated workflows, but designing them
is a fragile, labor-intensive process. The Agentic Supernet
paradigm automates this by optimizing a probabilistic space of
architectures. However, its reliance on absolute performance
scores creates a critical flaw: the learning signal entangles
an architecture’s intrinsic merit with the extrinsic difficulty
of the evaluation query. This entanglement leads to unsta-
ble search, where simple queries misleadingly inflate weak
designs and difficult queries unfairly suppress strong ones.
To resolve this, we introduce RAAS (Relative Architecture
Adaptive Search), a framework that disentangles architectural
quality from problem difficulty. Instead of relying on noisy
absolute scores, RAAS evaluates a cohort of candidate archi-
tectures head-to-head on the same query. By learning from
their relative advantage, it synthesizes a stable, context-fair
learning signal that isolates true architectural superiority. This
intra-group, relative assessment provides clear and consistent
guidance for the search process. Extensive experiments across
six benchmarks show that RAAS not only discovers signifi-
cantly more performant architectures—improving HumanEval
pass@1 from 92.23% to 96.31% and MATH accuracy from
52.08% to 60.87%—but also does so with greater sample effi-
ciency and stability, demonstrating that disentangled, relative
evaluation is key to robust agentic architecture search.

Introduction
Large Language Models (LLMs) have unlocked new fron-
tiers in complex problem-solving through agentic systems,
where collaborative agents tackle tasks beyond the capability
of any single model (Brown et al. 2020; OpenAI 2023; Rus-
sell and Norvig 2020). Frameworks such as AutoGen (Wu
et al. 2024) and CAMEL (Li et al. 2023) provide structural
scaffolding for multi-agent coordination, enabling diverse
reasoning, planning, and tool-usage workflows. However,
the performance of these systems fundamentally depends
on the underlying agentic architecture—the configuration
of agents, their roles, and the communication topology that
governs their interaction.

As the complexity of tasks increases, manually designing
optimal agentic architectures becomes increasingly infeasi-
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Figure 1: Problem and Proposed Solution Overview. (A)
Absolute-score evaluation entangles architectural quality with query
difficulty, destabilizing search. (B) RAAS evaluates cohorts on the
same query and learns from relative advantage, yielding fair, stable
signals.

ble, motivating efforts to automate architecture discovery.
A recent paradigm shift is the Agentic Supernet (Zhang et al.
2025a), which optimizes over a probabilistic space of archi-
tectures instead of a single fixed structure. This reformulation
enables dynamic generation of task-specific workflows but
also inherits a critical flaw from prior work: learning from
absolute performance. When the score of an architecture de-
pends on both its intrinsic quality and the extrinsic difficulty
of a query, these two factors become entangled—corrupting
the optimization signal.

How can we evaluate an agentic system’s merit inde-
pendently of task difficulty, and how can we guide the
search toward genuinely superior architectures?



This entanglement leads to systematic failure in architec-
ture search. Easy queries yield deceptively strong signals for
weak architectures, while hard queries suppress genuinely
capable ones. As optimization proceeds, the search process
reinforces accidental correlations with query difficulty rather
than genuine architectural superiority, resulting in brittle,
underperforming systems.

To resolve this issue, we propose the Relative
Architecture Adaptive Search (RAAS) framework. RAAS
fundamentally reframes evaluation from absolute perfor-
mance to relative advantage. Instead of asking “How well did
this architecture perform?”, RAAS asks “How much better or
worse did this architecture perform relative to its peers on the
same query?” By evaluating cohorts of architectures head-to-
head, RAAS isolates architectural merit from task difficulty,
yielding a zero-centered and stable advantage signal that
guides the search reliably. Figure 1 illustrates this contrast:
while conventional methods are distorted by evaluation entan-
glement, RAAS achieves fair and stable optimization through
relative, group-wise comparisons.

Our contributions are summarized as follows:
❶ Problem Formulation. We are the first to formalize the en-

tanglement between architectural quality and task difficulty
as a fundamental source of instability in agentic supernet
optimization.

❷ Methodological Innovation. We introduce RAAS, which
learns from relative advantage signals to achieve stable,
difficulty-invariant evaluation and efficient architecture dis-
covery.

❸ Empirical Validation. Extensive experiments demonstrate
that RAAS consistently discovers stronger and more ef-
ficient architectures than state-of-the-art baselines across
multiple reasoning and planning benchmarks.

LLM Agents and Agentic Systems
The rapid progress of Large Language Models (LLMs) has
enabled the creation of powerful autonomous agents capable
of complex reasoning, planning, and tool use (Shen et al.
2023; Zhu et al. 2024). However, the performance of a single
agent remains inherently limited. Recent research demon-
strates that organizing multiple agents into a Multi-Agent
System (MAS) can substantially enhance problem-solving
capacity through structured communication and collabora-
tion (Wang et al. 2024).

Early representative works, including AutoGen (Wu et al.
2024), LLM-Debate (Du et al. 2024), and AgentVerse (Chen
et al. 2023b), explored role-based and debate-style collab-
orations, confirming the potential of collective intelligence.
Yet, these systems depend heavily on handcrafted role assign-
ments and communication schemas, demanding significant
domain expertise and limiting scalability. This motivates the
need for automated design of agentic architectures that
can adapt to varying task environments.

Automation of Agentic Workflows
To reduce manual effort and improve adaptability, automa-
tion of agentic workflows has become a key research di-
rection. Prior works can be broadly categorized into three

lines: (I) Prompt Optimization, where methods like Prompt-
Breeder (Fernando et al. 2023) and DsPy (Khattab et al. 2023)
automatically evolve prompts; (II) Communication Opti-
mization, where frameworks such as GPTSwarm (Zhuge
et al. 2024) and DyLAN (Liu et al. 2024) refine interaction
graphs; and (III) Role/Profile Evolution, where approaches
such as EvoAgent (Yuan et al. 2024) and AutoAgents (Chen
et al. 2023a) use evolutionary search to design agent behav-
iors.

More recent systems pursue full automation: ADAS (Hu,
Lu, and Clune 2025), AgentSquare (Shang et al. 2025), and
AFlow (Zhang et al. 2025b) automatically synthesize entire
workflows across vast search spaces. Our direct baseline,
MaAS (Zhang et al. 2025a), introduces the Agentic Supernet
paradigm—optimizing distributions of architectures rather
than single configurations—to generate query-specific work-
flows dynamically. Building upon this foundation, our work
targets the core instability of MaAS: its reliance on absolute
performance signals.

Robust Learning Signals

Automated agentic design parallels challenges in Neural Ar-
chitecture Search (NAS) (Ren et al. 2021), where reliable
optimization signals are essential for discovering performant
designs. Existing methods typically depend on absolute task
scores, which entangle architectural quality with query diffi-
culty and cause unstable learning dynamics.

Recent studies propose relative, peer-referenced evalua-
tion, where systems are compared within query-specific co-
horts rather than against global baselines. Examples include
sequence-level optimization in SCST (Rennie et al. 2017) and
grouped ranking approaches like GRPO (Shao et al. 2024),
both emphasizing fair, on-task comparison. Inspired by these
insights, our RAAS framework integrates grouped, per-query
relative evaluation into the Agentic Supernet paradigm, pro-
ducing stable and efficient search dynamics without requiring
additional critics or complex reward models.

Design Principles. To achieve stability and reliability in
automated agentic search, RAAS is grounded in three core
design principles:

Principles of Robust Agentic Supernet Design
❶ Optimality: Discover architectures that maximize
overall utility by balancing performance and computa-
tional cost.

❷ Stability: Ensure reliable optimization by leveraging
relative comparisons instead of volatile absolute scores.

❸ Efficiency: Accelerate discovery of high-quality ar-
chitectures through consistent, low-variance learning
signals.

In the subsequent sections, we demonstrate how RAAS
adheres to these principles to achieve stable, fair, and effi-
cient search through the formulation of Relative Advantage
Synthesis.



Figure 2: RAAS overview. For each query, RAAS samples a cohort from the agentic supernet, computes a peer-group baseline, synthesizes
zero-centered relative advantages, and applies advantage-weighted updates. Two lightweight controls (R, τ ) modulate exploration and early
stopping.

Figure 3: Ablation studies. Impact of key components on accuracy and stability across domains. Relative normalization and advantage-
weighted updates are most critical; controls (R, τ ) improve efficiency without hurting accuracy.

Methodology
RAAS: Relative Architecture Adaptive Search
In this section we present RAAS, a system-level optimization
framework for discovering effective agentic workflows within
the supernet paradigm. Unlike methods that score each sam-
pled architecture against absolute metrics, RAAS evaluates

cohorts of designs on the same query and reasons about their
relative merit, yielding stable, difficulty-invariant learning
signals.



Table 1: Main results across agentic systems. Accuracy (%) on multiple benchmarks. Best and second-best are bold and underlined.

Backbone: gpt-4o-mini Backbone: qwen-2.5-70b
Method

MATH GSM8K HumanEval MBPP Average MATH GSM8K HumanEval MBPP Average

Vanilla 46.30 87.45 87.08 71.83 73.16 43.29 83.22 84.03 69.85 70.10

CoT 46.89 ↑0.59 87.28 ↓0.17 88.52 ↑1.44 74.21 ↑2.38 74.23 ↑1.07 45.83 ↑2.54 86.91 ↑3.69 87.82 ↑3.79 72.96 ↑3.11 73.38 ↑3.28

ComplexCoT 46.91 ↑0.61 87.18 ↓0.27 87.82 ↑0.74 73.95 ↑2.12 73.97 ↑0.81 45.58 ↑2.29 86.77 ↑3.55 87.21 ↑3.18 72.83 ↑2.98 73.10 ↑3.00

Self-Consistency 48.47 ↑2.17 87.78 ↑0.33 89.12 ↑2.04 76.18 ↑4.35 75.39 ↑2.23 47.18 ↑3.89 87.27 ↑4.05 88.57 ↑4.54 75.12 ↑5.27 74.54 ↑4.44

MultiPersona 45.74 ↓0.56 87.69 ↑0.24 88.83 ↑1.75 73.61 ↑1.78 73.97 ↑0.81 44.68 ↑1.39 86.95 ↑3.73 87.74 ↑3.71 72.58 ↑2.73 72.99 ↑2.89

LLM-Debate 48.85 ↑2.55 89.17 ↑1.72 88.76 ↑1.68 75.63 ↑3.80 75.60 ↑2.44 47.94 ↑4.65 88.51 ↑5.29 88.19 ↑4.16 74.87 ↑5.02 74.88 ↑4.78

LLM-Blender 47.16 ↑0.86 88.47 ↑1.02 88.93 ↑1.85 74.72 ↑2.89 74.82 ↑1.66 46.21 ↑2.92 87.84 ↑4.62 88.41 ↑4.38 74.09 ↑4.24 74.14 ↑4.04

DyLAN 48.97 ↑2.67 90.18 ↑2.73 90.54 ↑3.46 76.52 ↑4.69 76.55 ↑3.39 48.41 ↑5.12 89.76 ↑6.54 90.08 ↑6.05 75.94 ↑6.09 76.05 ↑5.95

AgentVerse 47.56 ↑1.26 89.92 ↑2.47 89.31 ↑2.23 75.64 ↑3.81 75.61 ↑2.45 46.73 ↑3.44 89.45 ↑6.23 88.71 ↑4.68 75.03 ↑5.18 74.98 ↑4.88

MacNet 45.27 ↓1.03 87.96 ↑0.51 84.64 ↓2.44 72.59 ↑0.76 72.62 ↓0.54 44.52 ↑1.23 87.48 ↑4.26 84.02 ↓0.01 71.97 ↑2.12 71.99 ↑1.89

AutoAgents 45.43 ↓0.87 87.73 ↑0.28 87.71 ↑0.63 71.94 ↑0.11 73.20 ↑0.04 44.67 ↑1.38 87.29 ↑4.07 87.18 ↑3.15 71.48 ↑1.63 72.66 ↑2.56

GPTSwarm 48.17 ↑1.87 89.26 ↑1.81 89.43 ↑2.35 75.61 ↑3.78 75.62 ↑2.46 47.52 ↑4.23 88.87 ↑5.65 89.02 ↑4.99 75.14 ↑5.29 75.14 ↑5.04

ADAS 43.47 ↓2.83 86.28 ↓1.17 84.36 ↓2.72 71.38 ↓0.45 71.37 ↓1.79 42.84 ↓0.45 85.89 ↑2.67 83.94 ↓0.09 70.91 ↑1.06 70.90 ↑0.80

AgentSquare 48.76 ↑2.46 87.78 ↑0.33 89.25 ↑2.17 75.27 ↑3.44 75.27 ↑2.11 48.09 ↑4.80 87.34 ↑4.12 88.81 ↑4.78 74.79 ↑4.94 74.76 ↑4.66

AFlow 51.43 ↑5.13 91.27 ↑3.82 91.04 ↑3.96 77.91 ↑6.08 77.91 ↑4.75 50.79 ↑7.50 90.87 ↑7.65 90.71 ↑6.68 77.46 ↑7.61 77.46 ↑7.36

MaAS 52.08 ↑5.78 91.84 ↑4.39 92.23 ↑5.15 78.71 ↑6.88 78.72 ↑5.56 51.49 ↑8.20 91.42 ↑8.20 91.91 ↑7.88 78.27 ↑8.42 78.27 ↑8.17

RAAS (Ours) 60.87 ↑14.57 95.16 ↑7.71 96.31 ↑9.23 84.18 ↑12.35 84.13 ↑10.97 60.14 ↑16.85 94.69 ↑11.47 95.96 ↑11.93 83.59 ↑13.74 83.59 ↑13.49

Figure 4: Convergence comparison across benchmarks. RAAS converges faster and more stably than baselines across all domains. The red
curve (RAAS) reaches higher performance with fewer steps and reduced variance (confidence bands).

Agentic Supernet Foundation
Following the supernet formulation (Zhang et al. 2025a), we
define the Agentic Supernet A = {π,O} as a probabilistic
composition of operators over L layers:

A =
{{

πl(O)
}
O∈O

}L

l=1
, πl(O) = p(O | A1:l−1). (1)

A concrete architecture G activates operator sets Vl layer-wise
with joint probability

p(G) =
L∏

l=1

∏
O∈O

πl(O)IO∈Vl . (2)

We seek a query-conditioned distribution P(G | q) that maxi-
mizes cost-adjusted utility:

max
P(G|q)

ED[Uλ(G; q)] s.t. G ⊂ A, Uλ = U − λC. (3)

The central difficulty is evaluation: absolute scores R(G, q)
conflate architectural quality with query difficulty, destabi-
lizing optimization (easy queries inflate weak designs; hard
queries depress strong ones).

Core Principle: Relative Advantage
RAAS replaces absolute scoring with peer-normalized com-
parison. For query q, instead of “How good is Gi?”, we ask



Method Level 1 Level 2 Level 3 Average

GPT-4o-mini 7.53 4.40 0.00 3.98

GPT-4 9.85 ↑2.32 2.12 ↓2.28 2.31 ↑2.31 4.76 ↑0.78

AutoGPT 13.54 ↑6.01 0.00 ↓4.40 4.12 ↑4.12 5.89 ↑1.91

TapeAgent 24.12 ↑16.59 15.02 ↑10.62 10.68 ↑10.68 16.61 ↑12.63

Sibyl 22.08 ↑14.55 16.31 ↑11.91 4.42 ↑4.42 14.27 ↑10.29

AutoAgents 16.67 ↑9.14 0.00 ↓4.40 0.00 5.56 ↑1.58

GPTSwarm 24.38 ↑16.85 17.12 ↑12.72 2.27 ↑2.27 14.59 ↑10.61

ADAS 14.42 ↑6.89 4.68 ↑0.28 0.00 6.37 ↑2.39

AgentSquare 23.25 ↑15.72 16.44 ↑12.04 6.78 ↑6.78 15.49 ↑11.51

AFlow 10.75 ↑3.22 8.81 ↑4.41 4.08 ↑4.08 8.00 ↑3.35

MaAS 25.91 ↑18.38 22.01 ↑17.61 6.25 ↑6.25 18.06 ↑13.41

RAAS (Ours) 29.53 ↑22.00 25.32 ↑20.92 7.68 ↑7.68 20.84 ↑16.86

Table 2: GAIA results. Accuracy (%) by difficulty. Best and second-
best are bold and underlined.

Figure 5: Impact of max sampling rounds R and success threshold
τ on efficiency and final performance. Larger R improves discovery
on hard queries; moderate τ avoids over-exploration on easy ones.

“How much better or worse is Gi than its cohort on q?”.
As shown in Fig. 2, RAAS samples a cohort, executes all
candidates on the same query, constructs a peer baseline,
computes zero-centered advantages, and applies advantage-
weighted updates. Two simple controls—maximum rounds
R and success threshold τ—adjust exploration breadth and
early stopping without altering the core mechanism.

Mechanism: Relative Advantage Synthesis (RAS)
Cohort Evaluation. For each query q, sample N workflows
Cq = {G1, . . . ,GN} and obtain scores R(Gi, q). Define the
peer baseline:

R̄(q) =
1

N

N∑
i=1

R(Gi, q). (4)

Let Ri = R(Gi, q) and Ai = Arel(Gi, q). Variability decom-
poses as

Var[Ri] = Var[R̄(q)] + Var[Ai] + 2Cov(R̄(q), Ai), (5)

where Var[R̄(q)] captures query difficulty (removed by nor-
malization), and Var[Ai] isolates architectural differences.

Figure 6: Cost–performance analysis. RAAS achieves superior
accuracy under equal or reduced compute budgets compared to
automated and hand-crafted baselines.

Figure 7: Stability of learning signal. Compared to absolute-score
optimization, RAAS delivers lower-variance signals and smoother
progress across steps, mitigating difficulty-induced oscillation.

Advantage Synthesis. Define the relative advantage

Arel(Gi, q) = R(Gi, q)− R̄(q), (6)

a zero-centered signal independent of difficulty. The supernet
controller with parameters ϕ updates via advantage weight-
ing:

∇ϕJRAAS(ϕ; q) =
1

N

N∑
i=1

gi(ϕ)Arel(Gi, q), (7)

where gi(ϕ) =
∑T−1

t=0 ∇ϕ log πϕ(ai,t | si,t) accumulates ar-
chitectural decision gradients. Positive Arel reinforces effec-
tive patterns; negative Arel downweights weak ones, stabiliz-
ing discovery by filtering query-induced variance.



System-Level Controls
To ensure practicality, RAAS exposes two lightweight con-
trols. Max sampling rounds R sets exploration breadth. For
each query, sample {G(1), . . . ,G(R)} and select

r⋆ = arg max
1≤r≤R

Arel(G(r), q), G⋆
q = G(r⋆). (8)

This increases the chance of discovering consistently positive-
advantage designs. Success threshold τ enables adaptive
early stopping when recent candidates repeatedly achieve
nonnegative advantage:

cr =

r∑
j=r−τ+1

⊮
{
Arel(G(j), q) ≥ 0

}
≥ τ. (9)

This saves computation on easy queries while preserving
deeper exploration on hard ones, improving efficiency with-
out compromising RAAS’s core relative-evaluation princi-
ple.

Experiments
Experimental Setup
Tasks and Benchmarks. We evaluate RAAS on three comple-
mentary domains to reflect practical deployment: (1) math
reasoning—GSM8K (Cobbe et al. 2021), MATH (Hendrycks
et al. 2021), MultiArith (Roy and Roth 2016); (2) code gener-
ation—HumanEval (Chen et al. 2021), MBPP (Austin et al.
2021); and (3) complex tool use—GAIA (Mialon et al. 2024).
We follow standard splits and evaluation protocols consistent
with prior work (Zhang et al. 2025a) for fair comparison.
Baselines. We compare against (i) single-agent methods
(CoT (Wei et al. 2023), Self-Consistency (Wang et al. 2023));
(ii) hand-crafted multi-agent systems (LLM-Debate (Du
et al. 2024), AgentVerse (Chen et al. 2023b)); and (iii) au-
tomated agentic systems (GPTSwarm (Zhuge et al. 2024),
AgentSquare (Shang et al. 2025), AFlow (Zhang et al. 2025b),
MaAS (Zhang et al. 2025a)).
Implementation Details. Following the MaAS setup, we
adopt the same multi-domain arrangement covering math
reasoning, coding, and knowledge Q&A to optimize super-
net parameters. All experiments use gpt-4o-mini and
qwen-2.5-70b as underlying LLMs.

Superiority (Q1)
We report cross-domain results in Table 1. RAAS consis-
tently surpasses automated baselines and hand-crafted sys-
tems across all benchmarks.
Headline results. RAAS attains 60.87% on MATH (+8.79
over MaAS), 95.16% on GSM8K (+3.32), 96.31% on Hu-
manEval (+4.08), and 84.18% on MBPP (+5.47), yielding
an average +5.41 points. On GAIA (Table 2), RAAS ad-
vances the SOTA at all difficulty levels, reaching 20.84%
average (+2.78 over MaAS) with comparable compute.
Cross-domain generalization. Obs. ❶ Math reasoning:
+8.79 on MATH (∼16.9% relative) indicates effectiveness un-
der high difficulty variance. Obs. ❷ Code generation: Gains
on HumanEval (+4.08) and MBPP (+5.47) show transfer
beyond reasoning to structured generation where syntactic

and semantic correctness must be jointly optimized. Obs. ❸
Tool use: On GAIA, improvements across all difficulty lev-
els confirm that RAAS handles multi-step planning and tool
invocation where agent coordination is critical.

Ablation Studies
We ablate key components of RAAS (cohort size, peer base-
line, advantage-weighted update, and controls R, τ ). As
shown in Fig. 3, each component contributes; removing rela-
tive normalization or advantage weighting notably degrades
both stability and final accuracy.

Cost-Performance (Q3)
We assess the compute–accuracy trade-off in Fig. 6. Under
comparable or lower cost, RAAS reaches higher accuracy than
baselines, reflecting more sample-efficient search guided by
relative advantages.

Stability (Q2)
Relative advantage reduces variance by normalizing out
query difficulty. We visualize signal stability across training
in Fig. 7: RAAS exhibits smoother trajectories with narrower
bands, avoiding premature convergence traps observed in
absolute-reward methods.

Conclusion
Our work addresses evaluation signal entanglement in agentic
architecture search—where absolute scores conflate architec-
tural merit with query difficulty. We reframe automated multi-
agent design from pursuing point-wise accuracy to seeking
comparative advantage through peer evaluation. RAAS evalu-
ates architectures head-to-head on identical queries, selecting
designs by relative advantage, while Relative Advantage Syn-
thesis aggregates peer comparisons to provide stable, query-
normalized learning signals. This gradient-free approach adds
only linear overhead in cohort size while maintaining effi-
ciency. Across mathematical reasoning, code generation, and
tool-use tasks, RAAS consistently achieves 5.41 points av-
erage improvement while remaining computationally prac-
tical. Future work includes extending relative advantage to
multi-turn interactions, designing task-aware cohort sampling
strategies, and deepening theory connecting peer evaluation
with generalization.
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