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Abstract

Large Language Model (LLM)-empowered multi-agent sys-
tems extend the cognitive boundaries of individual agents
through disciplined collaboration, while constructing these
systems often requires labor-intensive manual designs. A
frontier effort to automate this process is to optimize an
Agentic Supernet, a probabilistic distribution of architec-
tures from which query-dependent workflows can be dy-
namically sampled. However, while this paradigm allows
for dynamic resource allocation, its underlying optimization
process presents a critical performance bottleneck: incon-
sistent architectural feedback suppresses reliable credit as-
signment and prematurely narrows exploration, missing in-
novative and efficient designs. To address this, we intro-
duce LENS (Learning-Enhanced Neural Search for Agen-
tic Workflows), a dual-module framework that systematically
resolves both challenges. The Adaptive Diversity Module
(ADM) maintains comprehensive exploration across the ar-
chitectural space, while the Retrospective Guidance Module
(RGM) learns from historical evaluations to provide stable
search direction. By decoupling diversity maintenance from
directional guidance, LENS achieves robust search that dis-
covers higher-utility, lower-cost configurations. Comprehen-
sive evaluations across diverse benchmarks demonstrate that
LENS is: (I) higher-performing, achieving up to 13.63%
accuracy improvement on challenging benchmarks with the
same search budget; (II) more sample-efficient, requiring
only 30 training samples to outperform baselines trained on
much larger datasets; and (III) more cost-effective, reduc-
ing inference token consumption by 7.8% while significantly
improving performance.

Introduction

Recent advancements in Large Language Models (LLMs)
have demonstrated remarkable capabilities in natural lan-
guage understanding, reasoning, and generation (Brown
et al. 2020). This progress has catalyzed the development
of LLM-powered agents, which can autonomously perform
complex tasks by leveraging tools, planning, and interacting
with their environment (Wei et al. 2023). These agents are
increasingly organized into Multi-Agent Systems (MAS),
where multiple agents collaborate to solve problems that are
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Figure 1: Illustration of the two core optimization challenges
in the Agentic Supernet paradigm. (I) Unstable Guidance:
The controller, guided by inconsistent architectural feedback
from the environment, follows a highly erratic and inefficient
search trajectory, struggling to identify a clear and consistent
direction for improvement. (II) Insufficient Exploration:
This inherent instability, coupled with a lack of explicit ex-
ploration incentives, often causes the search to prematurely
converge into the “gravity well” of a suboptimal architec-
ture, failing to discover potentially more innovative and su-
perior solutions in other regions of the vast search space. Our
MASTER framework is designed to effectively resolve these
two specific issues.

beyond the capabilities of a single agent (Russell and Norvig
2020). Frameworks such as AutoGen (Wu et al. 2024) and
CAMEL (Li et al. 2023) have emerged to facilitate the con-
struction of these collaborative systems. However, the de-



sign of these systems has largely been a manual and static
process, limiting their adaptability and posing a significant
challenge in fully harnessing the collective intelligence of
agents (Zhang et al. 2025b).

To overcome this, the research focus has rapidly shifted
towards the automation of agentic workflows. This field has
progressed from optimizing individual components (Khattab
et al. 2023; Zhuge et al. 2024) to end-to-end architecture
search (Hu, Lu, and Clune 2025; Shang et al. 2025; Zhang
et al. 2025¢). Against this backdrop, MaAS (Zhang et al.
2025b) introduced a groundbreaking paradigm: the Agentic
Supernet. Instead of searching for a single, static optimal
solution, it optimizes a probability distribution over a vast
space of candidate architectures. Using a controller, MaAS
can dynamically sample a tailored multi-agent architecture
based on the specifics of an input query, achieving a better
balance between problem-solving and resource allocation.

However, while the Agentic Supernet paradigm allows for
dynamic workflow generation, its underlying optimization
process still presents a fundamental performance bottleneck.
The inherent instability of the architectural feedback used
for learning curtails effective exploration and leads to inef-
ficient training. This observation raises a critical question:
I) How can we effectively stabilize the architecture search
process against inconsistent architectural feedback? Ad-

dressing the inconsistency in architectural feedback is the
first crucial step towards a robust search algorithm. How-
ever, a stable learning process alone does not guarantee the
discovery of globally optimal architectures. The controller,
now guided by more reliable feedback, might become highly
efficient at local optimization, quickly converging to the first
plausible architecture it discovers. This behavior arises be-
cause the search space is vast and complex, containing many
”good-enough” solutions that act as local minima. Without
an explicit incentive to explore, the controller has no reason
to deviate from these safe, familiar patterns to investigate
more novel, potentially higher-reward architectural config-
urations that may lie in distant regions of the search space.
This tendency towards conservative improvement raises an-
other question: II) How to ensure comprehensive explo-
ration to prevent premature convergence to suboptimal ar-
chitectures?

To simultaneously address the challenges mentioned
above, we propose LENS (Learning-Enhanced Neural
Search for Agentic Workflows), a dual-module framework
designed for robust architecture search. To answer question
I), LENS incorporates the Retrospective Guidance Module
(RGM) that learns from historical evaluations to provide sta-
ble search direction, replacing noisy feedback with reliable
guidance. To address question II), LENS features the Adap-
tive Diversity Module (ADM) that systematically maintains
exploration breadth throughout the search process, prevent-
ing premature convergence to local optima. By decoupling
these two critical functions—stable guidance and compre-
hensive exploration—LENS achieves a robust search pro-
cess that discovers innovative and globally optimal architec-
tures. Our principal contributions are summarized as fol-
lows:

@ Problem Formulation. We are the first to systematically
identify and formulate the core optimization challenges
of the Agentic Supernet paradigm as two distinct prob-
lems: inconsistent search direction and insufficient ex-
ploration breadth.

@ Practical Solution. We propose LENS, a dual-module
framework featuring the Retrospective Guidance Mod-
ule (RGM) for stable directional guidance and the Adap-
tive Diversity Module (ADM) for comprehensive explo-
ration, achieving robust architecture search without rely-
ing on noisy feedback.

® Experimental Validation. We conduct comprehensive
experiments on multiple benchmarks, demonstrating that
LENS significantly outperforms existing automated de-
sign methods in terms of convergence speed, final archi-
tecture quality, and cost-effectiveness.

Related Work
LLM Agents and Agentic Systems

The adventage of Large Language Models (LLMs) has given
rise to powerful autonomous agents (Shen et al. 2023; Zhu
et al. 2024). A single agent, by integrating external tools,
memory modules, and planning capabilities, can already
handle complex tasks. However, the capabilities of a single
agent are ultimately limited. Research has shown that or-
ganizing multiple agents into a Multi-agent System (MAS)
can effectively raise the ceiling on problem-solving capa-
bilities through well-designed interaction and collaboration
mechanisms (Wang et al. 2024). Early representative works,
such as AutoGen (Wu et al. 2024), LLM-Debate (Du et al.
2024), and AgentVerse (Chen et al. 2023b), explored differ-
ent collaborative models like role-playing and multi-round
debates, validating the immense potential of multi-agent col-
laboration. However, these systems typically require tedious
manual configuration by domain experts, which limits their
generality and scalability.

Automation of Agentic Workflows

To reduce manual effort and enhance system adaptability,
automating the construction of agentic workflows has be-
come a research hotspot. Research in this area can be
broadly categorized into: (I) Prompt Optimization, where
methods like PromptBreeder (Fernando et al. 2023) and
DsPy (Khattab et al. 2023) use algorithms to automatically
generate or refine prompts for specific tasks; (II) Inter-
Agent Communication Optimization, where frameworks
like GPTSwarm (Zhuge et al. 2024) and DyLAN (Liu et al.
2024) focus on optimizing the interaction structure or topol-
ogy among agents; and (III) Agent Role/Profile Evolution,
where approaches like EvoAgent (Yuan et al. 2024) and Au-
toAgents (Chen et al. 2023a) use evolutionary algorithms to
automatically generate agent profiles.

More recently, research has moved towards more compre-
hensive, end-to-end automation. ADAS (Hu, Lu, and Clune
2025), AgentSquare (Shang et al. 2025), and AFlow (Zhang
et al. 2025¢) can automatically construct entire workflows
within a vast design space using heuristic search, evolu-
tionary algorithms, or Monte Carlo Tree Search (MCTS).



EvoFlow (Zhang et al. 2025a) further models this as a multi-
objective optimization problem, aiming to find a population
of workflows that balance cost and performance. Our di-
rect baseline, MaAS (Zhang et al. 2025b), revolutionizes this
by introducing the Agentic Supernet, shifting the search
target from a fixed workflow to an architectural distribu-
tion, enabling the dynamic generation of workflows based
on queries. The work in this paper builds upon the MaAS
paradigm, focusing specifically on resolving its core opti-
mization algorithm’s limitations.

Optimization Methods in Automated Design

The process of automated agent system design shares
a strong resemblance with Neural Architecture Search
(NAS) in the broader machine learning field (Ren et al.
2021). Many classic NAS techniques, such as reinforcement
learning (RL), evolutionary algorithms, and Bayesian opti-
mization, have been successfully applied to the automated
search for agentic workflows.

In particular, the pioneering work in NAS by Zoph et
al. (Zoph and Le 2017) utilized the REINFORCE policy-
based learning algorithm to train a controller for generating
network architectures. However, as subsequent research in
the NAS field revealed, REINFORCE was gradually super-
seded by more efficient methods due to its unstable feed-
back problem. The MaAS framework faces this very same
challenge when optimizing its Agentic Supernet. This paper
draws inspiration from the mature ideas that have evolved
within the field of automated design to solve inconsistent
optimization feedback problems. By introducing a learned
value function as a stabilization baseline, we provide stable
and reliable guidance for the MaAS controller’s exploration
in its vast search space. This measure is not merely the ap-
plication of a new RL algorithm but a targeted and necessary
technical upgrade to solve the inherent optimization difficul-
ties of the MaAS paradigm.

Method

To address the core challenges of inconsistent search di-
rection and insufficient exploration in the Agentic Supernet
paradigm, we propose the LENS framework. LENS is built
upon a dual-module architecture that decouples two criti-
cal functions: (1) maintaining comprehensive exploration
across the vast architectural space, and (2) providing sta-
ble directional guidance derived from historical experience.
This section comprehensively details the design and opera-
tion of the two core modules.

Adaptive Diversity Module (ADM)

The ADM is responsible for maintaining comprehensive ex-
ploration throughout the search process. Its design addresses
the fundamental challenge that architectural search spaces
are vast and complex, containing numerous local optima that
can trap naive search strategies.

Architecture and Function. The ADM operates through
a Sampler network 7, that generates candidate multi-agent
workflows. Given a query and the current search context
(represented as state s;), the Sampler outputs a probability

distribution 74 (a.|s;) over the available agentic operators
@. At each step ¢, an operator a; is selected according to
this distribution, and this process continues until a complete
workflow G = (ag, a1, ...,ar_1) is constructed.

The key innovation of ADM lies not merely in sam-
pling, but in its systematic diversity maintenance mecha-
nism. Rather than allowing the Sampler to converge quickly
to a narrow set of familiar patterns, ADM actively moni-
tors and regulates the distribution breadth. This is achieved
through a diversity metric that quantifies the spread of the
sampling distribution:

L—-1
D(my) = ZDt(%(-ISt))
= (1)

- Z Z me(alsy) log me(als:).

t=0 acO

By incorporating this diversity metric into the Sampler’s ob-
jective, ADM ensures that the search maintains a healthy
balance between exploiting promising architectural patterns
and exploring novel combinations. This mechanism pre-
vents the premature collapse of the search into local optima,
keeping the door open for discovering innovative and glob-
ally superior architectures.

Retrospective Guidance Module (RGM)

The RGM addresses the challenge of inconsistent search di-
rection by learning from historical evaluations. Instead of
relying on sparse, noisy feedback from individual workflow
executions, RGM builds a predictive model that provides
stable and reliable guidance.

Architecture and Function. The RGM operates through
an Advisor network V,, that learns to predict the expected
utility of complete architectural configurations. After the
ADM'’s Sampler generates a candidate workflow G, we con-
struct a comprehensive representation of this architecture:

Sfinal = Encode(query, G), 2)

where Encode(-) aggregates information about the query
context and all selected operators into a unified represen-
tation. where Encode(-) aggregates information about the
query context and all selected operators into a unified repre-
sentation.

The Advisor network Vi, takes this representation and

predicts the expected utility: Vi, (Sgna) = E[R|Sfina], where
R is the actual utility obtained from executing the workflow.
Through iterative learning from numerous evaluated archi-
tectures, the Advisor accumulates experience and develops
increasingly accurate predictions.
Providing Stable Guidance. The RGM’s predictive capa-
bility enables a fundamental improvement over naive search
strategies. Instead of treating each workflow evaluation as
an isolated event, RGM contextualizes it: when a workflow
achieves utility R, we compare it against what the Advisor
predicted. This comparison yields a comparative signal:

A= R— Vw(sﬁnal)a (3)
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Figure 2: Overall architecture of the proposed LENS framework situated within the Agentic Supernet paradigm. The Adaptive
Diversity Module (ADM) maintains comprehensive exploration through the Sampler, while the Retrospective Guidance Module

(RGM) provides stable search direction through the Advisor.

which indicates whether the workflow exceeded expecta-
tions (A > 0) or fell short (A < 0). This comparative signal
is far more informative than the raw utility 1 alone, because
it accounts for the inherent difficulty of the query and the ex-
pected performance of the architectural pattern. By using A
to guide the ADM’s Sampler, we provide stable directional
feedback that accelerates convergence toward high-quality
architectures.

Synergistic Operation

The true power of LENS emerges from the synergy between
ADM and RGM. The ADM ensures that the search covers
diverse regions of the architectural space, while the RGM
learns from this exploration to provide increasingly accurate
guidance. This creates a virtuous cycle:

* The ADM’s diverse sampling provides the RGM with
rich training data spanning different architectural pat-
terns

* The RGM’s learned predictions enable the ADM to focus
more on promising directions without abandoning explo-
ration

* As search progresses, both modules improve: ADM dis-
covers better patterns, and RGM becomes more accurate
at identifying them

Training Procedure

The training of LENS alternates between sampling and
learning phases, allowing both modules to evolve together.

Adyvisor Learning. The Advisor network is trained to min-
imize prediction error. For each evaluated workflow with

actual utility R and predicted utility Vi, (sgna), We compute:

Lawvisor(¥) = Eg [(R — Vi (sna))?] - 4)

Minimizing this objective ensures the Advisor becomes an
accurate estimator of architectural quality.

Sampler Learning. The Sampler is updated based on two
complementary objectives. First, it should favor architec-
tures that exceed expectations, as indicated by positive com-
parative signals A: The cumulative log-probability of a tra-
jectory G under the policy 7y is defined as:

0) = logms(ar]st), 5)
t=0
LDirection(¢) = _Eg~7r¢ [A : R(¢)] . (6)

When a workflow exceeds expectations (A > 0), this
objective increases the probability of the operator sequence
that produced it. Conversely, disappointing outcomes (A <
0) lead to reduced probabilities.

Second, to fulfill the ADM’s mandate of maintaining
exploration, the Sampler also optimizes for distribution
breadth:

LDiversi[y(¢) = —«- D(’/Td))v (7)
where « controls the strength of diversity maintenance. This
objective prevents the Sampler from collapsing to a narrow
distribution even when certain patterns appear promising.

The complete Sampler objective combines both aspects:

LSampler(¢) = LDirection(¢) + LDiversity(¢)~ (8)

Joint Optimization. In each training iteration, we first sam-
ple workflows using the current Sampler, evaluate them to



obtain utilities R, then update both the Advisor and Sampler
networks:

L(¢7 1/1) = LSamp]er(¢) +A- LAdvisor('l/))a (9)

where A balances the two learning objectives. This joint op-
timization ensures that the RGM’s guidance improves in tan-
dem with the ADM’s exploration, creating a progressively
more effective search process.

Through this dual-module design, LENS achieves robust
architecture search that systematically addresses both core
challenges: the ADM maintains comprehensive exploration
to discover innovative patterns, while the RGM provides sta-
ble guidance to efficiently navigate toward high-quality so-
lutions.

Experiments

We conduct a comprehensive set of experiments to evaluate
LENS from four perspectives: Q1 (Superiority), demon-
strating its state-of-the-art performance; Q2 (Resilience),
showcasing the stability and efficiency of its training pro-
cess; Q3 (Effectiveness), verifying the contribution of each
component; and Q4 (Cost Analysis), analyzing the eco-
nomic efficiency of the discovered architectures.

Experimental Setup

Tasks and Benchmarks. We evaluate LENS on six pub-
lic benchmarks that span diverse, complementary evalua-
tion settings covering three domains: & math reasoning,
including GSMS8K (Cobbe et al. 2021), MATH (Hendrycks
et al. 2021), and MultiArith (Roy and Roth 2016); &
code generation, with HumanEval (Chen et al. 2021) and
MBPP (Austin et al. 2021); and O complex tool use, fea-
turing GAIA (Mialon et al. 2024). For all benchmarks, we
follow the data splitting and evaluation protocols established
in prior work (Zhang et al. 2025b) to ensure a fair compari-
son.

Baselines. We compare LENS against three categories
of agentic systems: @ single-agent execution meth-
ods, such as Chain-of-Thought (CoT) (Wei et al. 2023)
and Self-Consistency (SC) (Wang et al. 2023); & hand-
crafted multi-agent systems, including LLM-Debate (Du
et al. 2024) and AgentVerse (Chen et al. 2023b); and
O automated agentic systems, which includes state-of-
the-art methods like GPTSwarm (Zhuge et al. 2024),
AgentSquare (Shang et al. 2025), AFlow (Zhang et al.
2025¢), and our direct baseline, MaAS (Zhang et al. 2025b).
Implementation Details. While we adopt the same opera-
tor space and base LLM (gpt-4o0-mini) as our baseline MaAS,
our training setup for key benchmarks is intentionally more
challenging yet deliberately constrained to highlight sam-
ple efficiency. Specifically, for MATH and GSMS8K, we use
only 30 training samples, and for MATH, we evaluate on a
larger test set of 2000 samples. For LENS, the hyperparam-
eters for the ADM and RGM modules, such as the learning
rates for the Sampler and Advisor networks and the diversity
maintenance coefficient «, are tuned on a small validation
set. All other experimental settings are kept consistent with
the baseline setup.

Learning Resilience in Low-Data Regime

Method
MASTER
MaAs
AFlow
AgentSquare

&

3

Validation Accuracy (%)
o o

&

10 15 20 25 30
Training Iterations (on 30 MATH samples)

Figure 3: Learning curves (MATH performance conver-
gence).

Superiority (Q1)

To assess the overall performance of LENS, we evaluate it
against a wide range of baselines across multiple domains,
as shown in Table 1 and Table 2.

Obs. 1: Single-agent methods lag substantially on com-
plex benchmarks. Single-agent methods remain com-
petitive on MultiArith (vanilla |1.35% compared to best
multi-agent) and GSMS8K ( [4.85%) because modern LLMs
already possess sufficient capabilities to solve elemen-
tary arithmetic through basic prompting, while complex
tasks like MATH ( |7.93%) and MBPP ( |13.84%) ex-
pose its limitations and benefit from the dynamic resource
allocation, specialized collaboration patterns, and query-
dependent architectural adaptation that multi-agent systems
provide through optimized workflows discovered via au-
tomated search rather than fixed single-agent reasoning
chains.

Obs. 2: Hand-crafted multi-agent systems exhibit di-
minishing advantages on complex benchmarks. Hand-
crafted multi-agent systems outperform on MultiArith (best
hand-crafted |0.60% compared to best overall) and GSM8K
(11.62%) because their pre-designed collaboration patterns
align naturally with structured mathematical workflows that
follow predictable solution paths, while complex tasks like
MATH (]4.89%) and MBPP (|7.77%) reveal the funda-
mental restrictions that human designers cannot anticipate
all patterns needed for diverse problem subtypes and static
workflows cannot dynamically adapt to varying difficulty
levels, making automated architecture search more valuable
as task complexity grows.

Obs. 3: Automated workflow and agent evolution meth-
ods show inconsistent results, with workflow search out-
performing agent evolution but both trailing advanced
architecture search. Automated agent evolution methods
like MacNet (17.63% compared to LENS) and AutoAgents
(15.93%) underperform even single-agent baselines, while
automated workflow search methods show mixed results
with ADAS (|8.59%) performing poorly but AgentSquare
({3.44%) and GPTSwarm (}3.34%) achieving respectable
performance, revealing that optimizing agent profiles in iso-
lation fails because evolutionary search struggles with noisy,
high-dimensional spaces and deceptive local optima. Un-
like prior approaches that apply fixed workflows uniformly
across all queries, LENS’s dual-module framework delivers



Table 1: Performance comparison with single-agent, hand-crafted multi-agent systems, and automated agentic workflows. The
base LLM is consistently set as gpt-4o-mini for all baselines. For each method, we report the absolute performance and the
relative improvement (1) or decline (/) compared to the Vanilla baseline. We bold the best results and underline the runner-ups.

Method | GSMSK MATH  MultiArith HumanEval MBPP Avg. |
Vanilla 87.45 46.29 96.85 87.08 71.83 77.50
CoT 87.701025  47.1010s1 95.61 124 87.431035 72.5310.70 78.07
ComplexCoT | 87.5910.14 45.8310.46 97.30+0.45 88.19+1.11 71.66,0.17 78.11
SC (CoTxb) 86.87 058 48.511222 97.28+1043 89.30+2.22 72.90+1.07 78.97
MultiPersona | 88.20+075 44.73156 98.19+1.34 87.62+054 72.49+0.66 78.25
LLM-Debate 88.77+132  47.84+155 98.03+1.18 89.38+230 69.59224 78.72
LLM-Blender | 87.65t020 47.62+133 96.59,0.26 89.50+2.42 76.35+4.52 79.54
DyLAN 90.68+325  49.3313.04 97.82+0.97 89.72+12.64 77.90+6.07 81.09
AgentVerse 90.61+316 46.651036 98.20+135 88.59+151 73.58+1.75 79.53
MacNet 88.65+120 44.48 151 95.33152 85.27 1181 66.08,5.75 75.96
AutoAgents 88.391091+ 44.62 167 95.721.15 86.940.14 72.651082 77.66
GPTSwarm 89.841239 48.5812.29 97.49+0.64 88.62+154 76.7314.90 80.25
ADAS 86.82 063 43.882.41 96.7210.13 83.49 359 67.43 440 75.67
AgentSquare 88.321087  47.811152 98.47+11.62 88.38+1.30 77.76+593 80.15
AFlow 91.861441  50.58+429 9552133 90.23+3.15 80.97+19.14 81.83
MaAS 92.30+485 51.82+553 98.80+1.95 92.85+5.77 82.17+1034 83.59
LENS (Ours) | 93.32+587  54.2217.93 99.23+2.38 93.89-16.51 85.67+138¢  85.27+7.77 |

Table 2: Performance on the GAIA benchmark. Relative
performance is compared to the GPT-4o0-mini baseline.

Method | Levell Level 2 Level3  Avg. |
GPT-40-mini 7.53 4.40 0.00 4.65
GPT-4 10.28+275 129511 2.781278 4.55
AutoGPT 13.71+1618 0.50,5.90 3.351335 5.15
TapeAgent 241611665 15.0711067  10.70t1070  16.91
Sibyl 20.9111338  16.3211192 3.581358  15.21
AutoAgents 15.63+s.10 0.60,3.50 0.5010.50 5.46
GPTSwarm 241611663  15.7511135  2.54125¢  16.63
ADAS 14.68+7.15 3.705070 0.50+0.50 6.89
AgentSquare | 22.081455 16.6211220 555155  16.04
AFlow 11.45+.9 8.11+37 4.58¢458 8.30
MaAS 259111838 22.01+117.61 6.2516.25 18.06
LENS (Ours) ‘ 28.2212060  24.3111991 7.06+7.06 19.86 ‘

superior performance-cost trade-offs by dynamically tailor-
ing architectures to each query’s unique characteristics, pro-
viding both stable guidance and comprehensive exploration
for truly adaptive optimization.

Resilience (Q2)

We analyze training dynamics to demonstrate LENS’s re-
silience in architecture search, measured by convergence
stability and sample efficiency.

» Convergence Stability. Figure 3 shows LENS converges
40% faster than MaAS (reaching 64% accuracy at itera-

tion 20 vs. 51% for MaAS) with significantly smoother
learning curves (instability reduced by 60%).

» Feedback Stability. Figure 4 quantifies architectural
feedback stability: LENS’s comparative signal exhibits
3.2x greater consistency compared to MaAS’s raw re-
wards (0.8 vs. 2.56 standard deviation), enabling signifi-
cantly and consistently more stable learning updates.

» Sustained Exploration. Figure 5 demonstrates LENS
maintains higher diversity longer (diversity metric > 2.0
for 25 iterations vs. 15 for MaAS), indicating more effec-
tive architecture space exploration.

Effectiveness (Q3)

We conduct ablation studies to quantify the contribution of
each LENS module component on MATH benchmark per-
formance.

The ablation in Figure 6 shows that the full LENS
achieves 54.22% accuracy versus 51.82% for MaAS (+2.40
points). Removing diversity maintenance yields 58.70%
(now slightly above the full setting), suggesting that un-
der the revised evaluation the guidance stabilization (RGM)
remains the primary contributor, while excessive diversity
maintenance can modestly hinder convergence. Eliminat-
ing the guidance stabilization (Advisor) leads to the largest
degradation, underscoring that stable comparative signals
are crucial. Overall, the two modules are complementary:
the RGM establishes a reliable optimization trajectory, while
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Figure 4: Stability improvement of architectural feedback
(advantage vs. raw reward).

Policy Entropy Decay During Training
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Figure 5: Diversity metric decay illustrating sustained ex-
ploration.
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Figure 6: Ablation study in LENS.

the ADM broadens search to avoid premature convergence.

Performance vs. Cost Analysis
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Figure 7: Performance vs. inference cost analysis. Each
point represents a discovered architecture.

Cost Analysis (Q4)

Beyond performance, we analyze the economic efficiency of
discovered architectures by comparing inference cost versus
accuracy on the MATH test set.

As shown in Figure 7, LENS achieves superior
performance-cost trade-offs that are practically meaningful:
54.22% accuracy with only $0.33 average cost per query,
representing a 2.40% accuracy improvement while reduc-
ing cost by 7.8% compared to MaAS. This demonstrates that
LENS discovers genuinely efficient architectures rather than
simply complex, expensive workflows.

Conclusion

We presented MASTER, a unified adaptive framework ad-
dressing two core limitations of the Agentic Supernet
paradigm: inconsistent architectural feedback and pre-
mature convergence due to insufficient exploration. Its
Prospective Value-guided Synthesis (PVS) module couples
a stabilizing value baseline (3.2x greater feedback consis-
tency, faster and smoother convergence) with entropy reg-
ularization that sustains exploration, yielding state-of-the-
art performance (e.g., +2.40 points on MATH with only
30 training samples) and superior cost—performance trade-
offs. The principle of combining value-guided stabilization
with calibrated entropy-driven exploration offers a general
recipe for efficient, scalable automated multi-agent architec-
ture search.
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