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Abstract

Large language models (LLMs) increasingly rely on multi-
turn tool-integrated planning for knowledge-intensive and
complex reasoning tasks. Existing implementations typically
rely on a single agent, but they suffer from limited con-
text length and noisy tool responses. A natural solution is
to adopt a multi-agent framework with planner- and worker-
agents to manage context. However, no existing methods sup-
port effective reinforcement learning post-training of tool-
integrated multi-agent frameworks. To address this gap, we
propose Multi-Agent Tool-Integrated Policy Optimization
(MATPO), which enables distinct roles (planner and worker)
to be trained within a single LLM instance using role-specific
prompts via reinforcement learning. MATPO is derived from
a principled credit assignment mechanism across planner
and worker rollouts. This design eliminates the need to de-
ploy multiple LLMs, which would be memory-intensive,
while preserving the benefits of specialization. Experiments
on GAIA-text, WebWalkerQA, and FRAMES show that
MATPO consistently outperforms single-agent baselines by
an average of 18.38% relative improvement in performance
and exhibits greater robustness to noisy tool responses. Our
findings highlight the effectiveness of unifying multiple agent
roles within a single LLM and provide practical insights for
stable and efficient multi-agent RL training. Our code is avail-
able at https://github.com/mzf666/MATPO.

Introduction

Advancements in Al agent capabilities increasingly rely
on sophisticated multi-turn tool-integrated planning (TIP)
(Dong et al. 2025a; Qian et al. 2025), where large language
models (LLMs) iteratively perform planning and leverage
specialized tools, such as search tools for information re-
trieval, coding tools for analysis, and file-reading tools for
document processing. Among these tools, the search tools
have emerged as particularly crucial, allowing LLMs to ac-
cess external information that extends far beyond their para-
metric knowledge to support in-depth investigation and anal-
ysis.

Current implementations typically enable a single agent to
conduct deep research (Dong et al. 2025b; Jin et al. 2025)
through iterative multi-turn interactions with search tools,
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Figure 1: Multi-agent framework. At each step, the planner-
agent creates and assigns new subtasks to worker-agents; the
planner-agent generates successive subtasks or final answers
based on the worker-agents’ responses.
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allowing the agent to progressively gather, analyze, and
summarize information from multiple sources. However,
this single-agent approach faces several significant limita-
tions that hinder its effectiveness in complex, real-world re-
search scenarios: 1. tool-responses (e.g., searching or scrap-
ing websites) often consume a large number of tokens, mak-
ing long-range multi-turn TIP prohibitive under the LLM’s
limited context length; 2. tool-responses are often noisy and
can interfere with the LLM’s attention and planning, hinder-
ing its ability to plan high-quality subsequent actions.

A straightforward approach to address the above limitations
is to use a multi-agent framework (Hu et al. 2025) consist-
ing of a planner-agent coordinated with specialized worker-
agent browsing components, as shown in Figure 1. In the
multi-agent framework, the planner-agent orchestrates high-
level planning and decision-making while delegating spe-
cific browsing tasks to worker-agents, effectively contain-
ing noisy search responses within the worker agent’s local
context. This allows the planner-agent and worker-agents
to maintain manageable context lengths while enabling ex-
tended interactions through multiple rounds of coordinated
communication and task delegation.

While multi-agent systems offer promising solutions to con-
text and noise management challenges, they introduce new



complexities, particularly when each agent operates on sep-
arate models. Training such architectures poses significant
infrastructure challenges due to uneven workloads across
agents, requires substantially more token context, and leads
to higher parameter consumption compared to single-agent
alternatives.

In this paper, we explore Multi-Agent Tool-Integrated Policy
Optimization (MATPO), an algorithm specifically designed
for deep research applications, enabling multiple agent roles
(i.e., planner- and worker-agents) to coexist within a sin-
gle model instance. This approach leverages different agent
roles activated through distinct system prompts while main-
taining the ability to build upon existing reinforcement
learning (RL) training frameworks (e.g., veRL '), preserv-
ing the benefits of specialized training while achieving infra
efficiency. We try to address several core research questions
in multi-agent RL and system design: 1. How to perform
multi-agent RL training effectively using a single model? 2.
How should reward assignment be handled when worker-
agents operate without explicit reward signals? 3. Can a sin-
gle model be used to perform multiple roles, serving as both
the planner-agent and worker-agent?

Contributions. 1. We present MATPO, a principled ap-
proach to multi-agent with an end-to-end multi-agent-in-
one-model RL training framework; 2. We provide theoret-
ical analysis and a concrete implementation of MATPO; 3.
We provide comprehensive experiments to demonstrate that
MATPO achieves better performance compared to single-
agent baselines, accompanied by insights and findings that
advance our understanding of multi-agent learning dynam-
ics; 4. We offer practical recommendations for the im-
plementation and training of such systems; 5. We iden-
tify meaningful research directions for future exploration in
multi-agent RL training.

Related Work
Tool-Integrated Agent Frameworks

TIP has emerged as a crucial paradigm for enabling LLMs to
tackle complex and knowledge-intensive tasks through iter-
ative reasoning combined with external tool use (Zhao et al.
2023; Li et al. 2024; Xu and Peng 2025; OpenAl 2025).
Building on this advancement, a variety of TIP agent frame-
works have been proposed. Early TIP agent frameworks
generally follow a single-agent architecture, in which a pri-
mary LLM iteratively plans, autonomously invokes tools,
such as search APIs or code execution environments, and
integrates the tool-responses to refine its reasoning. Rep-
resentative approaches include function-calling-augmented
LLMs (Yang et al. 2025; Nguyen et al. 2025a), ReAct-
style agents (Yao et al. 2023; Li et al. 2025c,a; Tao et al.
2025), and agents employing more structured and sophisti-
cated workflows (Team et al. 2025).

Despite its simplicity, the single-agent TIP framework faces
several fundamental challenges: First, the LLM’s limited
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context window is quickly saturated by lengthy tool re-
sponses and extended multi-turn interaction histories, which
hinders scalability to deeper reasoning chains (Zhang et al.
2025); Second, tool responses are often noisy or unstruc-
tured, and their distribution deviates significantly from that
of the LLM’s generation distribution, which can disrupt the
LLM’s reasoning process and induce cascading reasoning
errors (Zhou et al. 2024).

To mitigate these issues, recent studies have explored multi-
agent frameworks (Hu et al. 2025; MiroMind 2025a), where
distinct planner- and worker-agents collaborate: the planner
performs high-level task decomposition and delegates sub-
tasks to workers, whose responses are then aggregated to
produce a final answer. This decomposition helps contain
noisy tool outputs within the worker’s local context, allow-
ing the planner to maintain a concise and focused reason-
ing state across turns. However, existing efforts only focus
on designing sophisticated multi-agent frameworks at infer-
ence time via prompt engineering, without providing train-
ing methodologies for multi-agent tool-integrated planning.
Liu et al. (2025) introduces a framework for training multi-
turn multi-agent zero-sum games. However, it is not tailored
to the challenges of tool-integrated planning.

Tool-integrated Agentic Reinforcement Learning

Reinforcement learning with verifiable rewards (RLVR)
methods have proven effective in training LLMs to improve
single-agent TIP performance (Shao et al. 2024; Jin et al.
2025; MiroMind 2025b; Nguyen et al. 2025b). Beyond stan-
dard RLVR, a variety of trajectory filtering techniques have
been explored in tasks including math problem solving with
code (Li, Zou, and Liu 2025; Xue et al. 2025; Feng et al.
2025) and open-ended GUI tasks (Dong et al. 2025b). An-
other line of work starts with supervised fine-tuning (SFT) or
direct preference optimization (DPO) (Rafailov et al. 2024)
on cold-start rollout trajectories, and then applies RLVR
with carefully designed rewards and rollout strategies, typi-
cally within a well-structured TIP agentic workflow (Li et al.
2025a; Tao et al. 2025; Wei et al. 2025; Ouyang et al. 2025;
Li et al. 2025b; MiroMind 2025b). While these methods
have demonstrated notable gains in single-agent settings,
principled extensions of RLVR to multi-agent frameworks
remain largely underexplored. This highlights the need for
training paradigms that efficiently coordinate multiple agent
roles, support principled credit assignment, and remain com-
patible with existing RL infrastructures.

Problem Setup
Single-Agent Multi-Turn Reinforcement Learning

We begin with a brief recap of single-agent multi-turn RL
before extending the formulation to the multi-agent setting.
Let 7y (+|-) be an LLM parameterize by 6. For each query ¢
sampled from an underlying distribution D, an LLM agent
aims to generate the correct answer to ¢ via a multi-turn tool-
integrated planning (TIP) process, as visualized in Figure 2.

Recent works (Dong et al. 2025a; Qian et al. 2025) have
shown that reinforcement learning with verifiable rewards



(RLVR) is a promising approach for enhancing LLMs’ abil-
ity to perform the multi-turn TIP process. Given a reward
function r(-) that assigns 1 to correct answers and 0 to in-
correct ones, the objective of single-agent multi-turn RL is

mein J(Tf’g) é EQNDJ‘N‘"B [T(T)]v T é [aly '517 (R3] GTL
ar ~ o (+|[psys, ¢, a1, S1, ..., St—1]), st ~ Tool(ar).

Specifically, psys is the system prompt defining the agent
role and tool schema, a; is the LLM-generated action at turn
t including planning and tool-call blocks, Tool(:|a;) is the
invoked tool conditioned on a,, s; is its response, and 7 de-
notes the complete TIP rollout trajectory.

Figure 2: Visualization of a single-agent multi-turn TIP roll-
out. The LLM solves a query through iterative planning and
tool-use. At each step, it plans a tool call, executes it with
the parsed parameters, and uses the tool response to decide
the next move, continuing until it is confident enough to pro-
duce a final answer.

Single-Agent Group Relative Policy Optimization
Among various RL algorithms, GRPO (Shao et al. 2024) has
proven to be one of the most effective and efficient meth-
ods to minimize J(7y). To adapt GRPO to the single-agent
multi-turn TIP setting, note that each rollout includes both
the LLM-generated tokens aq, ..., ar (the blue blocks in Fig-
ure 2) and tool response tokens si, ..., s7 (the purple blocks
in Figure 2). As the tool-response tokens are not generated
by 7, they do not contribute to the policy gradient for the
GRPO objective. Therefore, the single-agent GRPO objec-
tive masks out all tool-response tokens as follows:

G T;
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{r¥li~megy G o 2t lail =
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' 7Teold(aﬁlthSyS,Q70/1175‘57'“7“‘%71])7

Aiy 2 (r(m) — mean({r(r;) }51)) /std({r(m:) }ioy),

where 7y, denotes a periodically updated snapshot of the
target LLM 7y, and 7, is a fixed reference model (e.g., the
checkpoint from which RL training begins). G denotes the
group size of rollouts associated with each query ¢. Each
rollout is represented as 7; £ [ai,s},...,af], compris-

ing T; turns, with 23;1 |a}| indicating the total number of

LLM-generated tokens. R; ;(6) represents the likelihood ra-

tio of action ai between 7y and 7, A; . is the group-
relative normalized reward, and clip(-,1 — &,1 + ¢) is the
clipping function restricting values to [1 — &, 1 + €].

Multi-Agent Multi-Turn Reinforcement Learning

As mentioned in the introduction, multi-agent multi-turn
TIP frameworks are designed to overcome the context length
bottleneck and noisy tool-token issues present in single-
agent multi-turn TIP. For clarity and without loss of gener-
ality, this paper considers a multi-agent framework with one
planner-agent and one worker-agent. A multi-agent multi-
turn TIP rollout is visualized in Figure 3. Specifically de-
fine ¢ denotes the user query, and 7 represents the entire
multi-turn TIP rollout for handling it. ppianner 1S the system
prompt specifying the role of the planner agent. At each turn
t, the planner generates an action a; containing a thinking
block and either a subtask or the final answer, and receives
a response s; parsed from the worker agent’s output. The
planner proceeds for T turns in total. Each subtask query
Gsubtask—t parsed from a; is handled by a worker-agent roll-
out ¢, guided by the system prompt pyorker- Within 7¢, the
worker produces actions a} (each including a thinking block
and either a tool call or a final sub-answer) and receives tool
responses s.. Finally,  denotes the accuracy reward for the
final planner answer arp.
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Figure 3: Visualization of a multi-agent multi-turn TIP roll-
out. At each step, the planner agent generates and assigns a
subtask to the worker agent, which completes it via multi-
turn TIP and returns the result. The planner agent then de-
cides whether to generate a new subtask or produce the final
answer based on this response.

As shown in Figure 3, each multi-agent TIP rollout consists
of T single-agent TIP rollouts: one from the planner agent
and (T — 1) from worker agents handling their respective
subtasks. Specifically, a multi-agent TIP rollout is

[I>

T &lar, 7', 51, ar—1, 7 871, ar] ~ (g, Tool),
t

[I>

7t &lat, s, 35‘,,—17 atTtL S¢ ~ Parse(atTt), st ~ Tool(a}).



where Parse(af, ) is the worker-agent’s response to the ¢-
th subtask paIsed from the final content in the worker-agent
rollout, and Tool(af) is the tool-response based on the pa-
rameters parsed from action a! from the worker-agent.

Given a reward function r(-) that assigns 1 to correct an-
swers and 0 to incorrect ones, the objective of multi-agent
multi-turn RL can be formalized as:

mein Jmulti(ﬂ'e) = ]EqND,TN(Trg,Tool) [T(T)]a
ag ~ ﬂ-@(' |[pp1anner7 q,01, 81, .- St—l])7
t t t t
a; ~ 71'9(' ‘[pworker» Qsubtask—t, @1, 51y -+ 5]'—1])7

St~ Parse(aa), Gsubtask—¢ ~ Parse(at), s§- ~ Tool(a;-).

Notice that in Jiyuti(7g), a single LLM 7y is deployed to
serve as both the planner-agent and the worker-agent, dis-
tinguished only by different system prompts pplanner and
Pworker- 10 this paper, we refer to this deployment config-
uration as multi-agent-in-one-model.

An alternative configuration is to deploy separate models
for the planner-agent and worker-agents, which we refer to
as multi-agent-multi-model. The multi-agent multi-turn RL
objective can be directly generalized to this configuration.
Let the planner-agent be parameterize by mg and K worker-
agents parameterize by 7y, , ..., g, . The resulting multi-
agent-multi-model objective is

Jmulti(ﬂ—ea {ﬂ-d)k}ICG[K]) £ EqND,TN(ﬂ'@,{Tr(/)k }ke[K],Tool) [T(T)L
ag ~ ’T('(-)(- |[pplanner, G, Q15815 00y Stfl])
a;— ~ T (¢ |[pw0rker7QSubtask7t:aivsia- o ] 1)), k€ [K],

St ~ Parse(aé«t), (QSubtaskfh k’) ~ Parse(az), Sj ~ TOOl(aj)‘

In this paper, we focus on exploring RL training under the
multi-agent-in-one-model setting, as it offers several advan-
tages over the multi-agent-multi-model setting: 1) the multi-
agent-multi-model setting requires (K + 1) LLM rollout
engines and additional RL infrastructure optimization. In
contrast, the multi-agent-in-one-model framework uses only
ONE single LLM rollout engine and remains compatible
with off-the-shelf RL frameworks; 2) We are interested in
whether RL training can benefit the model when it is ex-
posed to experience from multiple agent roles.

Methodology

Multi-Agent Tool-Integrated Policy Optimization
A key challenge in extending single-agent GRPO to the
multi-agent setting is credit assignment: how should the
planner-agent rollout 7° and the worker-agent rollouts 7
share responsibility for the final accuracy of the full multi-
turn TIP rollout 7? The planner-agent’s final answer is di-
rectly verifiable, whereas worker-agent rollouts address un-
verifiable subtasks, making it essential to assess their contri-
bution to the planner’s final answer.

In this section, we derive the GRPO counterpart in the multi-
agent-in-one-model setting to optimize Jyui(7g). Notice
that the policy gradient Vg Jiuiti (79) equals to
Vo Jmu1ti(76) = VoEqaD, 7~ (mg, Tool) [1(T)]
:]EqND,Tw(Wg ,Tool) [T(T)VG log ]P)H (T)]7

where 7(7) denotes the accuracy reward associate to the
full multi-agent multi-turn TIP rollout 7, Py(7) denotes the
probability of generating 7 using LLM 7. This implies
]P)Q(T) £ PG([pplanncn q,a1, T17 S1yeeny TT717 ST-1, aT])
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As the tool-responses are not generated by the LLM 7y, it
holds that VgProo1(s¢|a;) = 0, and
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where 79 = [pplanner,q,ahsl,..,sT,l,aT] denotes the

rollout trajectory of the planner-agent and 7 is exactly the
t-th rollout trajectory of the worker-agent associated to the
t-th subtask.

Following the standard derivation of vanilla GRPO, we can
derive the MATPO objective as:

T;
clip
(rethon oo | G ZEt 'o 7] 2R

t=0

Juarpo(m) 2 E

R 2 min(Ri ¢ Ai, clip(Rit,1 —e,1+¢)Ai )
Ao & (r(ri) = mean({r(m:) }iZ1)) /std({r(m:) }ii1)

where 7; denotes the full multi-agent TIP rollout for the
i-th query g, containing 7T} subtasks; we denote 7, as the
planner-agent rollout and 7} (¢ > 0) as the ¢-th worker-agent
rollout within 7;; A; ; denotes the group-relative normalized
reward among G full rollouts. Specifically, R; ; defines the

log-likelihood ratio between 7y, ,, and mg of 7;, defined as

7r9‘,1(|(a§‘[pplanner7 q,Q1,81, -, ijlD
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T, t=0
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where Tj ; is the tool-calls count in the ¢-th subtask of 7.

We summarize the key distinctions between single-agent
GRPO and MATPO as follows: unlike GRPO, which per-
forms a single worker-agent rollout per update, MATPO exe-
cutes one planner-agent rollout followed by 1" worker-agent
rollouts. Moreover, while GRPO normalizes rewards across
G worker rollouts for credit assignment, MATPO normal-
izes across G x (T'+1) rollouts to jointly account for planner
and worker contributions.



Implementation

Figure 4 provides an illustrative visualization of the imple-
mentation of MATPO, showing how it can be built upon
single-agent multi-turn RL frameworks.
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Figure 4: An illustration of the implementation of MATPO.

For each user query, we first feed n.rollout rollout
requests to the rollout engine (e.g., vLLM or sglang).
Next, we modify the original rollout function so that when
a worker-agent is invoked, a nested rollout function is
launched within the outer one, and these processes execute
asynchronously. For each query, we generate n.rollout
planner-agent rollouts (the purple boxes in Figure 4), with
each one associated with a bundle of worker-agent rollouts
(the orange boxes enclosed in the braces in Figure 4) gen-
erated to tackle the subtasks assigned by their respective
planner-agents. Then, both the planner-agent and worker-
agent rollouts are converted from rollout requests to data
batches. After that, for each planner-agent rollout (the pur-
ple boxes), we compute its accuracy reward by verifying
whether its final answer block reveals the ground truth an-

swer to the user query. Following this, we compute ad-
vantages by normalizing this accuracy reward among the
group of planner-agent rollouts associated with each user
query. Subsequently, the computed advantages for a planner-
agent rollout are then broadcast to its corresponding worker-
agent rollouts. Finally, we concatenate the planner-agent
rollouts and the worker-agent rollouts into an augmented
batch (the stack comprising both purple and orange boxes on
the right). We compute the log likelihood on this augmented
batch using 7 and 7y, ,. With this, we compute the loss,
JmaTpo (), and mask out the entries of all tokens from
agent system prompts, the query, and tool responses. The
LLM Ty is then updated using the augmented batch through
the standard optimization process.

Experiments
Setups

In this work, we focus on the deep search scenario, where a
planner-agent and a worker-agent comprise a two-agent sys-
tem, aiming to find the answer of a given user query based
on searching and web scraping 2. Specifically We implement
our algorithm on top of veRL 3. The training hyperparame-
ters are provided in the training script released in the GitHub
repository. All experiments are conducted with 128 A800
GPUs. In this section, we introduce the implementation de-
tails of our proposed MATPO.

Dataset and Base Model. All experiments are conducted
on the Qwen3-14B-base model. We train the model with
either single-agent GRPO or MATPO on a filtered subset
of the MuSiQue (Trivedi et al. 2022) dataset, a multi-hop
QA dataset. We remove overly difficult queries for which
LLMs repeatedly fail to produce valid rollouts. Our mod-
els are then tested on GAIA-text (Mialon et al. 2023) 4,
WebWalkerQA (Wu et al. 2025), and FRAMES (Krishna
et al. 2025).

Agent System Prompt and Tool-Call Format. We use
an XML format to parse tool calls from both planner and
worker agents. The planner-agent’s system prompt speci-
fies the tool schema to call the worker-agent, while the
worker-agent’s system prompt specifies schema of tool-calls
of Google’s Serper API for search and scraping. After each
tool call, the tool’s responses are wrapped as a “user mes-
sage” and appended to the agent’s rollout trajectory. To help
the worker agent execute the user’s original query from the
planner agent, we include a recap of the query in the worker
agent’s system prompt, a process we call “user query recap-
ping.” The detailed system prompts and tool schemas of the
planner- and worker-agents are in Appendix.

2To avoid potential leakage of datasets hosted on HuggingFace,
search results from this site are blocked by default, unless noted.

3https://github.com/volcengine/verl

*GAIA-text is a curated subset of 103 text-only queries
drawn from the GAIA dataset (Mialon et al. 2023), a benchmark
for general Al assistants.



Reward Function. In this work, we use LLM-as-a-judge
3 to evaluate the accuracy of a model’s answer against the
ground-truth answer. The RL reward is set as reward =
0.9 * acc + 0.1 * fmt, where acc is a binary value
indicating whether the rollout is correct, fmt measures the
average correctness of the tool-calls generated by the model.
Specifically, for single-agent RL, we define fmt as the suc-
cess rate of all tool-call attempts parsed from the LLM’s
generated action. For MATPO, we define fmt= 0.5 x
fmt_p + 0.5 x fmt_w, where fmt_p denotes the suc-
cessful tool-call rate among a planner-agent rollout, and
fmt_w denotes the average successful tool-call rate among
all associated worker-agent rollouts.

Rollout Summary Mechanism. To encourage the agent
to generate answers based on the entire rollout trajectory,
we implement a final-summary mechanism. At the end of
each rollout, we instruct the model to stop further tool calls
and produce an answer based on a summary of the full roll-
out. We then perform an additional round of summarization
and append this final summary to the complete rollout tra-
jectory. ¢ To avoid exceeding the model’s maximum token
length, if a rollout reaches the limit, we remove the latest
messages from the trajectory until there is sufficient token
budget for the final summary. Both of the worker-agents in
single-agent and multi-agent RL settings are equipped with
such summary mechanism.

Results

MATPO consistently outperforms single-agent GRPO.
Figure 5 presents the testing accuracy on GAIA-text,
WebWalkerQa, and FRAMES across different train-
ing steps. MATPO consistently surpasses the single-
agent GRPO baseline, underscoring the effectiveness of
our approach. Specifically, MATPO achieves 42.60%,
33.00%, and 63.64% on GAIA-text, WebWalkerQa,
and FRAMES, respectively, compared to 32.16%, 30.14%,
and 56.22% for single-agent GRPO, leading to an aver-
age relative improvement of 18.38%. Moreover, MATPO
exhibits more stable gains as training progresses. For in-
stance, while the performance of single-agent GRPO drops
after step 120 on both GAIA-text and FRAMES, MATPO
continues to improve. We attribute this divergence to the
vulnerability of single-agent training: agentic RL often suf-
fers catastrophic drops in performance due to unstable envi-
ronmental feedback (e.g., missing or noisy responses from
the Serper API). In contrast, MATPO can invoke additional
browinsg subtasks, enabling the agent to perform more ro-
bust searches and maintain steady progress.

Ablation Studies and Practical Take-Aways

We conduct ablation studies on the key components of
MATPO and summarize implementation techniques that en-
hance its stability and performance. Figure 6a and Figure
6b show the testing (GAIA-text) and training (MuSiQue)

>We implement the LLM-as-judge based on GPT-40-mini with
instructions shown in Appendix.
SRollout summary prompt is detailed in Appendix.
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(c) Test accuracy on the FRAMES dataset
(Krishna et al. 2025).

Figure 5: Test accuracy on three benchmarks across different
training steps. Models are trained on the MusiQue dataset
(Trivedi et al. 2022).

accuracy under different RL settings. Each curve repre-
sents the following: Green: MATPO (standard full version);
Red: MATPO without user query recapping or HuggingFace
search blocking; Black: MATPO without final summary
or query recapping; Yellow: single-agent GRPO with final
summary; Blue: single-agent GRPO without final summary,
or HuggingFace search blocking. Higher curves reflect bet-
ter accuracy. Visually, the red curve (multi-agent with sum-
mary) stays consistently above the single-agent curves (blue
and yellow curves), highlighting the benefit of subtask de-
composition. The black curve lags behind the red, showing
the importance of including the final summaries mechanism
in the subagent tool. The blue curve nearly overlaps with the
red, indicating that blocking HuggingFace search results has
mild effect on performance.

Final summaries are necessary. Comparing red and
black curves in Figure 6a, we find that adding a worker-agent
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(b) The training accuracy on the MuSiQue dataset (Trivedi et al.
2022) (running average @15).

Figure 6: Ablation studies on key components of MATPO.

summary significantly improves performance. Without a fi-
nal summary, the planner-agent may be forced to consume
the raw final block, which is error-prone: 1) Long worker-
agent outputs may end with tool-call blocks instead of use-
ful answers; 2) The <think>...</think> blocks from
worker-agents can distract the planner-agent’s consecutive
action. The final summary mitigate both issues, leading to a
cleaner interface between the planner- and worker-agent.

Blocking HuggingFace search results has mild effects on
RL performance. Comparing yellow and blue curves in
Figure 6a, we observe that the presence or absence of block-
ing HuggingFace URLs does not significantly impact the ac-
curacy trend of RL training. In practice, we find that even
when HuggingFace URLs are not blocked, although a few
questions from validation datasets may appear in search re-
sults, the retrieved content rarely includes the full question
or any directly useful information, resulting in only a mild
risk of data contamination.

Recaping the original user query to Worker-agent im-
proves the multi agent RL performance. In this work,
we find that the context provided to the worker-agent (e.g.,
the input prompt) plays a crucial role in determining multi-
agent RL performance. A comparison between the green and
blue curves in Figure 6a clearly illustrates this effect: re-
capping the original user query in the worker-agent’s sys-
tem prompt results in a substantial performance gain. We
hypothesize that user query recapping provides the worker
agent explicit guidance toward fulfilling the original user
query, thereby improving both the stability and quality of
its browsing trajectory.

Formats of tool responses or worker-agent outputs need
to be improved. As shown in Appendix, we observe cases
where the planner-agent initially detects issues in a worker-
agent’s output but ultimately fails to maintain its objection,
leading to erroneous follow-up search directions. We hy-
pothesize that this occurs because presenting worker-agent
outputs as user messages may implicitly bias the planner-
agent toward compliance with “user” preferences, reducing
its willingness to challenge incorrect responses. In future
work, we plan to explore alternative message construction
formats for tool and worker-agent responses to mitigate this
issue and improve planner-agent reasoning.

Remember to block sensitive URLSs from searching APIL.
To mitigate potential data leakage, we recommend block-
ing URLs that may expose ground-truth answers (e.g., Hug-
gingFace or rollout-sharing websites). Otherwise, the LLM
may exploit these sources to “hack” the reward by retrieving
query—answer pairs directly from the internet.

Conclusions

In this paper, we explore multi-agent-in-one-model RL
training using MATPO. Our experimental results demon-
strate the effectiveness of the proposed method. While we
will continue working to improve the efficiency of the im-
plementation and integrate additional tools, we also want
to highlight several promising future directions for explo-
ration in the multi-agent-in-one-model RL setting: 1. ex-
tending multi-agent GRPO to more worker agents. For ex-
ample, can the framework be applied to specialized agents
such as a coding agent or a file-processing agent? 2. scaling
laws with respect to the number of agents. Does increasing
the number of agent roles played by the model have the po-
tential to induce the emergence of new forms of behavior
or stronger intelligence? 3. RL infrastructure optimization.
Designing more efficient infrastructure to support efficient
multi-agent, multi-turn RL rollout and training.
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response. You use tools step-by
-step to accomplish a given
task, with each tool-use
informed by the result of the
previous tool-use. Today is:
2025-07-16

# Tool-Use Formatting Instructions

~N o\ B

Tool-use is formatted using XML-—
style tags. The tool-use is
enclosed in <use_mcp_tool></
use_mcp_tool> and each
parameter is similarly enclosed

within its own set of tags.

e e}

9 The Model Context Protocol (MCP)
connects to servers that
provide additional tools and
resources to extend your
capabilities. You can use the
server’s tools via the *‘
use_mcp_tool ‘.

10

11 Description:

12 Request to use a tool provided by a

MCP server. Each MCP server
can provide multiple tools with
different capabilities. Tools
have defined input schemas that
specify required and optional

parameters.

13

14 Parameters:

15 - server_name: (required) The name
of the MCP server providing the
tool

16 - tool_name: (required) The name of
the tool to execute

17 - arguments: (required) A JSON
object containing the tool’s
input parameters, following the
tool’s input schema, quotes
within string must be properly
escaped, ensure it’s valid JSON

18

19 Usage:

20 <use_mcp_tool>
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<server_name>server name here</
server_name>

<tool_name>tool name here</
tool_name>

<arguments>
{
"paraml": "valuel",
"param2": "value2 "escaped string

nn

}
</arguments>
</use_mcp_tool>

Important Notes:

— Tool-use must be placed xxat the
endx* of your response, *xtop-—
levelx*, and not nested within
other tags.

- Always adhere to this format for
the tool use to ensure proper
parsing and execution.

String and scalar parameters should
be specified as is, while
lists and objects should use
JSON format. Note that spaces

for string values are not
stripped. The output is not
expected to be valid XML and is
parsed with regular
expressions.

Here are the functions available in
JSONSchema format:

## Server name: browsing_agent

### Tool name: search_and_browse

Description: This tool is an agent
that performs the subtask of
searching and browsing the web
for specific missing
information and generating the
desired answer. The subtask
should be clearly defined,
include relevant background,
and focus on factual gaps. It
does not perform vague or
speculative subtasks.

Args:
subtask: the subtask to be
performed.
Returns:

the result of the subtask.
Input JSON schema: {’properties’:
{’subtask’: {’title’: ’Subtask

", 'type’: ’string’}}, '
required’ : [’subtask’], ’'title
": ’search_and_browseArguments
", "type’: ’"object’}
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# General Objective

You accomplish a given task
iteratively, breaking it down
into clear steps and working
through them methodically.

## Task Strategy

1. Analyze the user’s request and

set clear, achievable sub-goals
Prioritize these sub-goals in
a logical order.

2. Start with a concise, numbered,

step-by-step plan outlining how
you will solve the task before
taking any action.

3. Work through these sub-goals
sequentially. After each step,
adjust your plan as needed.

4. Use tools strategically to
accomplish each sub-goal.

5. Revise earlier steps if new
information emerges.

## Tool-Use Guidelines

1. Each step must involve a single
tool call, unless the task is
already solved.

2. Before each tool call:

- Summarize what is known.

- Identify what is missing.

— Choose the most relevant tool.
- Verify all required parameters

3. All tool queries must include
full context.

4. Avoid vague queries. Each call
should retrieve actionable
information.

5. Extract and summarize partial
information if a tool result is

incomplete.

## Tool-Use Communication Rules

1. Do not include tool results in
your response.

2. Do not present the final answer
until the entire task is
complete.

3. Do not mention tool names.

4. Do not engage in unnecessary
back—-and-forth.

5. Do not use non-existent tools.

6. Respond in the same language as
the user’s message.

7. If the task does not require
tool use, answer directly.




88

87 # Agent Specific Objective

89 You are a task-solving agent that

uses tools step-by-step to
answer the user’s question.
Your goal is to provide
complete, accurate and well-
reasoned answers using
additional tools.

System Prompt and Tool Schema of the Worker-A

System Prompt:

1

2

~N o\ B~

10
11
12

13

15

16

17

In this environment you have access
to a set of tools you can use
to answer the user’s question.

3 You only have access to the tools

provided below. You can only
use one tool per message, and
will receive the result of that
tool in the user’s next
response. You use tools step-by
—-step to accomplish a given
task, with each tool-use
informed by the result of the
previous tool-use. Today is:
2025-07-08

# Tool-Use Formatting Instructions

Tool-use is formatted using XML-
style tags. The tool-use is
enclosed in <use_mcp_tool></
use_mcp_tool> and each
parameter is similarly enclosed

within its own set of tags.

The Model Context Protocol (MCP)
connects to servers that
provide additional tools and
resources to extend your
capabilities. You can use the
server’s tools via the
use_mcp_tool ‘.

Description:
Request to use a tool provided by a
MCP server. Each MCP server
can provide multiple tools with
different capabilities. Tools
have defined input schemas that
specify required and optional

parameters.
Parameters:
— server_name: (required) The name
of the MCP server providing the
tool
- tool_name: (required) The name of

the tool to execute
- arguments: (required) A JSON

ent
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object containing the tool’s
input parameters, following the
tool’s input schema, quotes
within string must be properly
escaped, ensure it’s valid JSON

Usage:
<use_mcp_tool>
<server_name>server name here</
server_name>
<tool_name>tool name here</
tool_name>
<arguments>
{
"paraml": "valuel",
"param2": "value2 \"escaped string
\" n
}
</arguments>
</use_mcp_tool>

Important Notes:

— Tool-use must be placed xxat the
endx* of your response, *xtop-—
levelx*, and not nested within
other tags.

- Always adhere to this format for
the tool use to ensure proper
parsing and execution.

String and scalar parameters should
be specified as is, while
lists and objects should use
JSON format. Note that spaces

for string values are not
stripped. The output is not
expected to be valid XML and is
parsed with regular
expressions.

Here are the functions available in
JSONSchema format:

## Server name:
search_and_scrape_webpage
### Tool name: google_search
Description: Tool to perform web
searches via Serper API and
retrieve rich results. It is
able to retrieve organic search
results, people also ask,
related searches, and knowledge
graph.
Input JSON schema: {’type’: ’'object
", 'properties’: {’gq’: {’'type’:
"string’, ’description’: ’
Search query string’}, ’"gl’: {’
type’: ’'string’, ’'description’:
"Optional region code for
search results in ISO 3166-1
alpha-2 format (e.g., ’'us’)"},
"hl’: {’'type’: ’"string’, '
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description’: "Optional
language code for search
results in ISO 639-1 format (e.
g., "en’)"}, "location’: {’'type
": ’string’, ’description’: "
Optional location for search
results (e.g., ’'SoHo, New York,
United States’, ’'California,
United States’)"}, ’'num’: {’/
type’ : 'number’, ’‘description’:
"Number of results to return (
default: 10)"}, ’"tbs’: {’type’:
"string’, ’description’: "Time
—-based search filter (’gdr:h’
for past hour, ’'gdr:d’” for past
day, ’'qgdr:w’ for past week, '
gdr:m’ for past month, ’‘qgdr:y’
for past year)"}, ’'page’: {’
type’: 'number’, ’'description’:
"Page number of results to
return (default: 1)"}, '
autocorrect’: {’type’: ’"boolean
", "description’: ’'Whether to
autocorrect spelling in query
"}}, ’'required’: ['qgq’, 'gl’, '
hl’1}

### Tool name: scrape

Description: Tool to scrape a
webpage and retrieve the text
and, optionally, the markdown
content. It will retrieve also
the JSON-LD metadata and the
head metadata.

Input JSON schema: {’type’: ’'object
", ’"properties’: {’url’: {’'type
": ’string’, ’'description’: ’
The URL of the webpage to
scrape.’}, ’includeMarkdown’ :
{"type’: "boolean’, '
description’: ’'Whether to
include markdown content.’, '
default’: False}}, 'required’:
[furl’]}

# General Objective

You accomplish a given task
iteratively, breaking it down
into clear steps and working
through them methodically.

## Task Strategy

1. Analyze the user’s request and
set clear, achievable sub-goals
Prioritize these sub-goals in
a logical order.
2. Start with a concise, numbered,
step-by-step plan outlining how
you will solve the task before

59
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taking any action.

3. Work through these sub-goals
sequentially. After each step,
adjust your plan as needed.

4. Use tools strategically to
accomplish each sub-goal.

5. Revise earlier steps if new
information emerges.

## Tool-Use Guidelines

1. Each step must involve a single
tool call, unless the task is
already solved.

2. Before each tool call:

— Summarize what is known.

- Identify what is missing.

— Choose the most relevant tool.
- Verify all required parameters

3. All tool queries must include
full context.

4. Avoid vague queries. Each call
should retrieve actionable
information.

5. Extract and summarize partial
information if a tool result is

incomplete.

## Tool-Use Communication Rules

1. Do not include tool results in
your response.

2. Do not present the final answer
until the entire task is
complete.

3. Do not mention tool names.

4. Do not engage in unnecessary
back-and-forth.

5. Do not use non-existent tools.

6. Respond in the same language as
the user’s message.

7. If the task does not require
tool use, answer directly.

# Agent Specific Objective

You are a task-solving agent that
uses tools step-by-step to
answer the user’s question.
Your goal is to provide
complete, accurate and well-
reasoned answers using
additional tools.
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[SYSTEM]
This is a direct instruction to you
This is your final turn. You
MUST NOT use any tools.

Your task is to provide a final,
structured report summarizing
all the information you have
gathered to answer your
assigned subtask.

[CONTEXT]

The main task was: "{main_query}"

Your assigned subtask was: "{
task_description}"

Your assigned subtask was intended
to help solve the main task.

[INSTRUCTIONS]
{failed_instruction}

Your final response MUST be a clear
, complete, and structured
report in markdown format.

Organize the content into logical
sections with the following
headings: ‘## Conclusion‘, ‘##
Supporting Information®, ‘“##
Observations‘, and ‘##
Contribution to Main Task®‘.

— **CRITICAL*%: Do NOT include raw
URLs. Replace any URLs with ([
link]) ‘.

- Your response should only contain

factual, specific, and well-
organized information based on
your previous actions.

— Do not include speculative filler
, vague summaries, or
conversational text.

Here is an example of the required
format:

# Final Response: [Title
summarizing the subtask]

## Conclusion:

[A concise summary of your findings
and the final answer for the
subtask. Bold key information.]

## Supporting Information:
[Detailed supporting facts, data,
or quotes you discovered. Use
bullet points or numbered lists
for clarity.]
— Source 1l: Brief description of

finding 1.
— Source 2: Brief description of
finding 2.

## Observations:
[Any additional context, confidence
level, or notes on how the
conclusion was reached.]

## Contribution to Main Task:

[Explain how the answer to your
subtask helps solve the overall
main task. What are the next
steps the main agent should
consider?]

Instruction Prompt for LLM-as-Judge.

System Prompt:
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Your job is to look at a question,
a gold target, and a predicted
answer, and then assign a grade

of either ["CORRECT", "
INCORRECT", "NOT_ATTEMPTED"].

First, I will give examples of each
grade, and then you will grade
a new example.

The following are examples of

CORRECT predicted answers.

Question: What are the names of

Barack Obama’s children?

Gold target: Malia Obama and Sasha

Obama

Predicted answer 1: sasha and malia
obama
Predicted answer 2: most people
would say Malia and Sasha, but
I'’m not sure and would have to
double check
Predicted answer 3: Barack Obama
has two daughters. Their names
are Malia Ann and Natasha

Marian, but they are commonly

referred to as Malia Obama and

Sasha Obama. Malia was born on

July 4, 1998, and Sasha was

born on June 10, 2001.

These predicted answers are all

CORRECT because:

— They fully contain the
important information in
the gold target.

— They do not contain any
information that
contradicts the gold target

— Only semantic meaning matters
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; capitalization,
punctuation, grammar, and
order don’t matter.

— Hedging and guessing are
permissible, provided that
the gold target is fully
included and the response
contains no incorrect
information or
contradictions.

The following are examples of
INCORRECT predicted answers.

Question: What are the names of
Barack Obama’s children?

Gold target: Malia and Sasha

Predicted answer 1: Malia.

Predicted answer 2: Malia, Sasha,
and Susan.

Predicted answer 3: Barack Obama
does not have any children.

Predicted answer 4: I think it’s
either Malia and Sasha. Or it
could be Malia and Jackie. Or
it could be Joey and Malia.

Predicted answer 4: While I don’t
know their exact names, I can
tell you that Barack Obama has
three children.

Predicted answer 5: It’s possible
you may mean Betsy and Olivia.
However, you should clarify
further details with updated
references if necessary. Is
that the correct answer?

Predicted answer 6: It may be the
case that Obama’s child is
named James. However, it’s
recommended to confirm the most

accurate and updated
information since this could
change over time. This model
may not always reflect the most
current information.

These predicted answers are all
INCORRECT because:

- A factual statement in the
answer contradicts the gold
target. Incorrect
statements that have some

hedging (e.g., "it is
possible that", "although i
'm not sure, i think") are

also considered incorrect.

The following are examples of
NOT_ATTEMPTED predicted answers
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Question: What are the names of
Barack Obama’s children?

Gold target: Malia and Sasha

Predicted answer 1: I don’t know.

Predicted answer 2: I need more
context about which Obama you
are talking about.

Predicted answer 3: Without
researching the web, I cannot
answer this question. However,
I can tell you that Barack
Obama has two children.

Predicted answer 4: Barack Obama
has two children. I know that
one of them is Malia, but I'm
not sure about the other one.

These predicted answers are all
NOT_ATTEMPTED because:

— The important information in
the gold target is not
included in the answer.

- No statements in the answer
contradict the gold target.

Also note the following things:

- For grading questions where the
gold target is a number, the
predicted answer needs to be
correct to the last significant

figure in the gold answer. For

example, consider a question "

How many citations does the

Transformer Paper have?" with

gold target "120k".

— Predicted answers "120k",
"124k", and 115k" are all
CORRECT.

— Predicted answers "100k" and
"113k" are INCORRECT.

— Predicted answers "around 100
k" and "more than 50k" are
considered NOT_ATTEMPTED
because they neither
confirm nor contradict the
gold target.

— The gold target may contain more
information than the question.
In such cases, the predicted
answer only needs to contain
the information that is in the
question.

- For example, consider the
question "What episode did
Derek and Meredith get
legally married in Grey’s
Anatomy?" with gold target
"Season 7, Episode 20:
White Wedding". Either "
Season 7, Episode 20" or "
White Wedding" would be
considered a CORRECT answer




56 - Do not punish predicted answers 67 Question: {}
if they omit information that 68 Gold target: {}
would be clearly inferred from 69 Predicted answer: {}
the question. 70 v
57 - For example, consider the 71
question "What city is 72 Grade the predicted answer of this
OpenAI headquartered in?" new question as one of:
and the gold target "San 73 A: CORRECT
Francisco, California". The 74 B: INCORRECT
predicted answer "San 75 C: NOT_ATTEMPTED
Francisco" would be 76
considered CORRECT, even 77 Just return the letters "A", "B",
though it does not include or "C", with no text around it.
"California".
58 — Consider the question "What
award did A pretrainer’s Lemon-Pick MATPO Rollout Trajectory

guide to training data:

data age, domain coverage,
quality, & toxicity win at 1
NAACL ’'24?", the gold 2
target is "Outstanding 3

# Query:

On Cornell Law School website’s

Paper Award". The predicted legal information institute,
answer "Outstanding Paper" under the fifth section of
would be considered federal rules alphabetically,

CORRECT, because "award" is what word was deleted in the
presumed in the question. last amendment to the first

59 — For the question "What is the rule in the article that has "
height of Jason Wei in witnesses" in the most titles
meters?", the gold target as of 20217 You should follow
is "1.73 m". The predicted the format instruction in the
answer "1.75" would be requestion strictly and wrap
considered CORRECT, because the final answer in \boxed{}.
meters is specified in the 4
question. 5 # Ground-truth answer: \boxed{
60 — For the question "What is the inference}
name of Barack Obama’s 6

wife?", the gold target is 7 # Rollout generated by a

"Michelle Obama". The intermediate checkpoint of

predicted answer "Michelle" MATPO:
would be considered 8

CORRECT, because the last 9 system

name can be presumed. 10

61 - Do not punish for typos in people 11 In this environment you have access
s name if it’s clearly the to a set of tools you can use
same name. to answer the user’s question.
62 - For example, if the gold 12

target is "Hyung Won Chung 13 You only have access to the tools
", you can consider the provided below. You can only

following predicted answers use one tool per message, and
as correct: "Hyoong Won will receive the result of that

Choong", "Hyungwon Chung", tool in the user’s next

or "Hyun Won Chung". response. You use tools step-by

63 -step to accomplish a given

64 task, with each tool-use

65 Here is a new example. Simply reply informed by the result of the
with either CORRECT, INCORRECT previous tool-use. Today is:
, NOT ATTEMPTED. Don’t 2025-07-16
apologize or correct yourself 14
if there was a mistake; we are 15 # Tool-Use Formatting Instructions
just trying to grade the answer 16

. 17 Tool-use is formatted using XML-—
66 ' style tags. The tool-use is




18
19

20
21
22

23

25

26

27

28
29
30
31

32
33
34

35
36

43

44
45

enclosed in <use_mcp_tool></

use_mcp_tool> and each

parameter is similarly enclosed
within its own set of tags.

The Model Context Protocol (MCP)
connects to servers that
provide additional tools and
resources to extend your
capabilities. You can use the
server’s tools via the
use_mcp_tool*‘.

Description:
Request to use a tool provided by a
MCP server. Each MCP server
can provide multiple tools with
different capabilities. Tools
have defined input schemas that
specify required and optional

parameters.
Parameters:
- server_name: (required) The name
of the MCP server providing the
tool
- tool_name: (required) The name of

the tool to execute
- arguments: (required) A JSON
object containing the tool’s
input parameters, following the
tool’s input schema, quotes
within string must be properly
escaped, ensure it’s valid JSON

Usage:

<use_mcp_tool>

<server_name>server name here</
server_name>

<tool_name>tool name here</
tool_name>

<arguments>
{
"paraml": "valuel",
"param2": "value2 "escaped string

nw

}

</arguments>
</use_mcp_tool>

Important Notes:

— Tool-use must be placed xxat the
endx* of your response, *xtop-—
levelx*, and not nested within
other tags.

— Always adhere to this format for
the tool use to ensure proper
parsing and execution.

String and scalar parameters should
be specified as is, while
lists and objects should use
JSON format. Note that spaces
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for string values are not
stripped. The output is not
expected to be valid XML and is
parsed with regular
expressions.

Here are the functions available in
JSONSchema format:

## Server name: browsing_agent

### Tool name: search_and_browse

Description: This tool is an agent
that performs the subtask of
searching and browsing the web
for specific missing
information and generating the
desired answer. The subtask
should be clearly defined,
include relevant background,
and focus on factual gaps. It
does not perform vague or
speculative subtasks.

Args:
subtask: the subtask to be
performed.
Returns:

the result of the subtask.
Input JSON schema: {’properties’:

{"subtask’: {’'title’: ’Subtask
", "type’: ’string’}}, '
required’: [’subtask’], ’title
": "search_and_browseArguments
", "type’: "object’}

# General Objective

You accomplish a given task
iteratively, breaking it down
into clear steps and working
through them methodically.

## Task Strategy

1. Analyze the user’s request and

set clear, achievable sub-goals
Prioritize these sub-goals in
a logical order.

2. Start with a concise, numbered,

step-by-step plan outlining how
you will solve the task before
taking any action.

3. Work through these sub-goals
sequentially. After each step,
adjust your plan as needed.

4. Use tools strategically to
accomplish each sub-goal.

5. Revise earlier steps if new
information emerges.
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##

##

Tool-Use Guidelines

Each step must involve a single
tool call, unless the task is
already solved.

Before each tool call:

- Summarize what is known.

— Identify what is missing.

— Choose the most relevant tool.
— Verify all required parameters

All tool queries must include
full context.

Avoid vague queries. Each call
should retrieve actionable
information.

Extract and summarize partial
information if a tool result is

incomplete.

Tool-Use Communication Rules

Do not include tool results in
your response.

Do not present the final answer
until the entire task is
complete.

Do not mention tool names.

Do not engage in unnecessary
back-and-forth.

Do not use non-existent tools.
Respond in the same language as
the user’s message.

If the task does not require
tool use, answer directly.

# Agent Specific Objective

You are a task-solving agent that

uses tools step-by-step to
answer the user’s question.
Your goal is to provide
complete, accurate and well-
reasoned answers using
additional tools.

LISIENS

On Cornell Law School website’s

legal information institute,
under the fifth section of
federal rules alphabetically,
what word was deleted in the
last amendment to the first
rule in the article that has "
witnesses" in the most titles
as of 20217 You should follow
the format instruction in the
requestion strictly and wrap
the final answer in \boxed{}.

106
107
108
109

assistant

<think>

110 Okay, let’s try to figure out this

111

question step by step. The user
is asking about a specific
change on the Cornell Law
School’s Legal Information
Institute website. They want to
know which word was deleted in
the last amendment to the
first rule in an article that
has "witnesses" in the most
titles. This article is under
the fifth section of the
federal rules alphabetically,
and they’re looking at the
status as of 2021.

112 First, I need to break down the

113

question into manageable parts.

Let me start by identifying
the fifth section of the
federal rules alphabetically.
The federal rules are organized

alphabetically, so the fifth
section would be the fifth
letter in the alphabet. Let’s
see: A, B, C, D, E. So the
fifth section is "E" rules. The
Federal Rules of Evidence are
under the E section because
they start with "E" (Federal
Rules of Evidence). So that’s
probably the section they’re
referring to.

114 Next, the article that has "

115

116 Now,

witnesses" in the most titles.
Looking at the Federal Rules of
Evidence, the main article
would be the Federal Rules of
Evidence itself. The titles of
the rules might include "
witnesses" in their headings.
For example, Rule 601 is about
competency of witnesses, Rule
602 about lay witnesses, etc.
So the Federal Rules of
Evidence article likely has
multiple rules with "witnesses"
in their titles.

the first rule in this article

The first rule in the Federal
Rules of Evidence is Rule 601,
which deals with the
competency of witnesses. The
question is about the last
amendment to this rule as of
2021. I need to check when Rule
601 was last amended before




2021. Wait, but the user said "
as of 2021," so I should
consider the amendments up to
that year.
117
118 I need to find out what changes
were made to Rule 601 in its
last amendment before 2021. The
original Rule 601 was amended
in 2011, I believe. Let me
check: the 2011 amendments to
the Federal Rules of Evidence
included changes to several
rules, including Rule 601. The
specific change was the
deletion of the word "competent
" from the rule. Originally,
the rule stated that a witness
must be competent, but the
amendment removed that term,
effectively eliminating the
competency requirement except
for certain exceptions.
119
120 Wait, but I should confirm this. If
the last amendment to Rule 601
before 2021 was in 2011, and
the change was the deletion of
the word "competent," then that
would be the answer. However,
I need to make sure that this
is accurate and that there
haven’t been any further
amendments after 2011 up to
2021. I should verify if there
were any other amendments to
Rule 601 after 2011 but before
2021. For example, the 2018
amendment to the Federal Rules
of Evidence included some
changes, but I need to check if
Rule 601 was affected.
121
122 Alternatively, maybe the user is
referring to a different rule.
Wait, the first rule in the
article is Rule 601. Let me
check the exact text of the
amendments. The 2011 amendment
to Rule 601 deleted the word "
competent" from the definition,
making the rule about the
qualifications of witnesses,
not their competency. This was
a significant change. So the
word "competent" was deleted.
123
124 But I need to confirm this through
the Cornell Law website. Since
I can’t access the internet, I’
11 have to rely on my existing
knowledge. However, to be
thorough, I should use the tool
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provided to search the Cornell
Law website.

So the steps would be:

1. Identify the fifth section of
the federal rules
alphabetically, which is "E" (
Federal Rules of Evidence).

2. Find the article under this
section that has the most
titles with "witnesses" in them

That would be the Federal
Rules of Evidence themselves,
particularly Rules 601-615.

3. Locate the first rule in this
article, which is Rule 601.

4. Check the last amendment to Rule

601 before 2021.

5. Determine which word was deleted

in that amendment.

Using the tools available, I should
start by searching the Cornell
Law website for the Federal
Rules of Evidence, specifically
Rule 601. Then check the
amendments to this rule as of
2021. The tool can help get the
exact text and amendments.
</think>

<use_mcp_tool>

<server_name>browsing_agent</
server_name>

<tool_name>search_and browse</
tool_name>

<arguments>

{

"subtask": "Identify the fifth
section of the federal rules
alphabetically on the Cornell
Law School’s Legal Information

Institute website."
}
</arguments>
</use_mcp_tool>

user

The fifth section of the federal
rules alphabetically on the
Cornell Law School’s Legal
Information Institute website
is *x"Federal Rules of
Bankruptcy Procedure."xx*

### Supporting Information:

The webpage at [https://www.law.
cornell.edu/rules] (https://www.
law.cornell.edu/rules) lists
the federal rules in the
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163
164
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166
167

168
169

170
171

following alphabetical order:

1. Federal Rules of Appellate
Procedure

2. Federal Rules of Civil Procedure

3. Federal Rules of Criminal
Procedure

4. Federal Rules of Evidence

5. xxFederal Rules of Bankruptcy
Procedurexx

6. U.S. Supreme Court Rules

This ordering is explicitly
presented on the site,
confirming the fifth entry as
the Bankruptcy Procedure rules.

assistant

<think>
Okay, let’s see. The user asked
about the fifth section of the
federal rules alphabetically on
the Cornell Law website. The
previous response correctly
identified it as the Federal
Rules of Bankruptcy Procedure.
But now, the next step is to
find the article under this
section that has "witnesses" in
the most titles.

Wait, the Federal Rules of
Bankruptcy Procedure might not
have many rules with "witnesses
" in their titles. The user
mentioned "the article that has

"witnesses’ in the most titles

as of 2021." Maybe I need to
check if there’s a specific
rule or article under
Bankruptcy Procedure that
references witnesses.
Alternatively, perhaps there’s
a mix-up here. The initial
assumption that the fifth
section 1is Bankruptcy Procedure

is correct based on the given
data, but maybe the user
intended a different section,
like Evidence, which is fourth.
However, the tool response
confirmed it’s fifth as
Bankruptcy.

Alternatively, maybe the user made

a mistake in the order, but I

have to proceed with the
information given. So, within

the Federal Rules of Bankruptcy
Procedure, I need to find
rules with "witnesses" in their
titles. Let me think:

Bankruptcy rules typically deal
with bankruptcy proceedings,
creditors, debtors, etc. Rules

about witnesses might be less
common here. However, perhaps
there’s a rule related to
testimony or evidence in
bankruptcy cases. For example,
Rule 3003 or something similar?
Not sure. Alternatively, maybe
the user confused the section,
but I need to follow the tool’
S response.
172
173 Alternatively, maybe the fifth
section is actually the Federal
Rules of Evidence, but the
tool response said Bankruptcy.
Wait, the tool response listed
the order as: Appellate, Civil,
Criminal, Evidence, then
Bankruptcy. So the fifth is
indeed Bankruptcy. But then,
the article with "witnesses"
would probably not be in
Bankruptcy. This might be an
error in the initial step. Wait
, perhaps the user intended the
fifth section as the Evidence
rules, but the tool response
said Bankruptcy. Let me double-—
check the alphabetization.
174
175 Federal Rules of Appellate
Procedure (A), Civil (C),
Criminal (C), Evidence (E),
Bankruptcy (B). Wait,
alphabetically, B comes before
C. So the correct order should
be: Appellate (A), Bankruptcy (
B), Civil (C), Criminal (C),
Evidence (E). But the tool
response listed them as A, C, C
, E, B. That seems incorrect.
Maybe the tool’s information is
wrong, or the ordering on the
site is different.
176
177 Alternatively, perhaps the site
lists them in the order of the
judiciary branches, not
strictly alphabetical. However,
the user said "alphabetically
," so the fifth should be the
fifth letter. This might be a
mistake in the tool’s response.
But since the tool response is
given, I need to proceed with
that. However, this
inconsistency could lead to
error. If the fifth section is
Bankruptcy, but the correct
alphabetical order would have
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Bankruptcy as the second
section, then the user might
have intended a different
section. This could be a
critical point.

179 Alternatively, maybe the user meant

180
181

182

the fifth section when
considering all federal rules,
including those from different
branches. But the initial
search result from the tool
seems to have ordered them as A
, C, C, E, B. This is confusing

However, I must proceed with
the given information.
Therefore, under the fifth
section (Bankruptcy), I need to

look for an article with "
witnesses" in the titles. If
there’s none, perhaps the
initial step was incorrect, but
the tool’s response is taken
as correct.

Alternatively, maybe the user’s

question has a mistake, and the

intended section is Evidence (
fourth), which would have rules
about witnesses. But the tool
response says fifth is
Bankruptcy. This is a conflict.
Given this, perhaps the
correct approach is to check
the Federal Rules of Evidence (
fourth section) for rules with
"witnesses" in titles and see
if the user confused the
section. However, strictly
following the tool’s response,
the fifth is Bankruptcy.

183 Given this confusion, the next step

184

is to check under the
Bankruptcy rules for any
mention of witnesses. If there
are none, then perhaps the
initial step was wrong, and the

user intended a different
section. But according to the
tool’s response, the fifth is
Bankruptcy. So, I’'"1ll proceed
under that and look for any
rules in Bankruptcy Procedure
with "witnesses" in their
titles. If none, the answer
might be that there’s no such
rule, but the user’s question
implies there is one. This
suggests a possible error in
the tool’s response or the
initial step.

185 Alternatively, perhaps the fifth
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The

section is actually the Federal
Rules of Evidence, and the
tool made a mistake in ordering
In that case, the correct
fifth would be Evidence. But I
need to follow the given tool
response. This is a dilemma.
However, since the tool
response is part of the process
, I must proceed with the
information provided, even if
it might be incorrect.
Therefore, I’1l1l proceed to
search within the Federal Rules
of Bankruptcy Procedure for
any rules with "witnesses" in
their titles, even though it’s
unlikely. If no such rules are
found, the answer might be that
the premise is incorrect, but
the user’s question requires an
answer based on the given
steps.
hink>

e_mcp_tool>
rver_name>browsing_agent</
server_name>

ol _name>search_and _browse</
tool_name>

guments>

ubtask": "Find the article under
the Federal Rules of
Bankruptcy Procedure that has
the most titles containing the
word 'witnesses’ as of 2021."

rguments>

se_mcp_tool>

r

article under the Federal Rules
of Bankruptcy Procedure that
contains the term "witnesses"
is *xRule 9014*x, titled *«"
Contested Matters"xx. This rule
governs procedures for
contested matters in bankruptcy
proceedings and explicitly
addresses the xxtestimony of
witnessesxx in disputed factual
issues. Here’s the detailed
supporting information:

*xRule 9014 Overviewxx:

Rule 9014 outlines procedures
for contested matters not
otherwise governed by other
rules. It mandates that
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217
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222

relief be requested by
motion, with notice and an
opportunity for a hearing.
It also specifies that
testimony of witnesses
regarding disputed factual
issues must be taken in the
same manner as in an
adversary proceeding ($
9014 (d)) .

**Direct Mention of Witnessesx*x:

The rule explicitly states:

> x"Testimony of witnesses with
respect to disputed material

factual issues shall be

taken in the same manner as
testimony in an adversary
proceeding."x

This directly ties the
procedural framework for
witness testimony to
adversarial proceedings
under the Bankruptcy Code.

*xContextual Relevancexx:
While no other rule in the 2021
edition of the Federal Rules
of Bankruptcy Procedure
explicitly includes the word
"witnesses" in its title,
Rule 9014 is the only rule
that addresses witnesses in
its content. It aligns with
broader bankruptcy
procedures where witness
testimony may be required in
contested matters (e.g.,
objections to claims,
motions for relief).

*xSource Verificationx*:

The content was retrieved from
the official 2021 Federal
Rules of Bankruptcy
Procedure website:

[https://www.

federalrulesofbankruptcyprocedu

.org/part-ix/rule-9014/] (
https://www.

federalrulesofbankruptcyprocedu

.org/part—-ix/rule-9014/)

### Conclusion:
*xRule 9014** is the sole article

under the Federal Rules of
Bankruptcy Procedure (2021)
that contains the term "
witnesses" in its text, making
it the answer to the query.

assistant

re

223
224

<think>

225 Okay, the user is asking about the

226

deletion of a word in the last
amendment to the first rule of
the article that has "witnesses
" in the most titles. From the
previous steps, we identified
that the fifth section is the
Federal Rules of Bankruptcy
Procedure, and the relevant
article is Rule 9014, which
mentions "witnesses" in its
text. However, Rule 9014 is not
the first rule in the
Bankruptcy Procedure section.
Wait, the user mentioned the
first rule in the article. So
maybe I made a mistake here.

227 Wait, the user’s original question

228

refers to the first rule in the
article that has "witnesses"
in the most titles. In the
previous steps, the assistant
found that Rule 9014 is the
only rule in the Bankruptcy
Procedure section with "
witnesses" in its text. But
Rule 9014 isn’t the first rule;
it’s part of Part IX. The
first rule in the Bankruptcy
Procedure is Rule 1001. However
, Rule 1001 doesn’t mention
witnesses. So there’s a
contradiction here.

229 Alternatively, perhaps the user

230
231

confused the sections, and the
intended section was the
Federal Rules of Evidence (
fourth section), which does
have multiple rules with "
witnesses" in their titles. For
example, Rules 601, 602, 603,
etc., all relate to witnesses.
If the fifth section was
mistakenly identified as
Bankruptcy, but the correct
fifth section alphabetically is
actually the Federal Rules of
Evidence (since E comes after B
), then the previous steps were
incorrect.

This suggests a possible error in

the initial step where the
fifth section was identified as
Bankruptcy. Alphabetically,
the order should be: Appellate
(A), Bankruptcy (B), Civil (C),
Criminal (C), Evidence (E).
Therefore, the fifth section is
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actually the Federal Rules of
Evidence, not Bankruptcy. The
tool’s response might have
incorrectly listed the order,
leading to confusion.

Given this, the user’s question
likely intended the Federal
Rules of Evidence (fourth
section) as the correct section

However, since the tool
response said fifth is
Bankruptcy, the assistant
proceeded with that. Now, the
current step is to check the
first rule in Rule 9014 (
Bankruptcy) for amendments. But

Rule 9014 is part of the
Bankruptcy Procedure, and the
first rule in that section is
Rule 1001. However, Rule 1001
doesn’t mention witnesses.
Therefore, there’s
inconsistency here.

235 Alternatively, perhaps the

236
237

238
239
240

assistant should re-evaluate
the initial step. If the fifth
section is actually the Federal
Rules of Evidence (E), then
the article with "witnesses" in
titles would be Rules 601-615.
The first rule there is Rule
601, which deals with the
competency of witnesses. The
last amendment to Rule 601
before 2021 was in 2011, where
the word "competent" was
deleted. That would make sense,
as the user’s question seems
to reference that change.

So, the mistake might be in the
initial identification of the
fifth section. If the fifth
section is actually the Federal

Rules of Evidence, then the
correct path would be: Federal
Rules of Evidence (E) as the
fifth section, leading to Rule
601 as the first rule in the
article with most "witnesses"
in titles. The last amendment
to Rule 601 deleted the word "
competent” in 2011. Hence, the
answer would be "competent".
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