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Abstract

Large Language Models (LLMs) excel at single-turn tasks
such as instruction following and summarization, yet real-
world deployments require sustained multi-turn interactions
where user goals and conversational context persist and evolve.
A recurring challenge in this setting is context drift: the gradual
divergence of a model’s outputs from goal-consistent behavior
across turns. Unlike single-turn errors, drift unfolds tempo-
rally and is poorly captured by static evaluation metrics. In
this work, we present a study of context drift in multi-turn
interactions and propose a simple dynamical framework to
interpret its behavior. We formalize drift as the turn-wise KL
divergence between the token-level predictive distributions
of the test model and a goal-consistent reference model, and
propose a recurrence model that interprets its evolution as
a bounded stochastic process with restoring forces and con-
trollable interventions. We instantiate this framework in both
synthetic long-horizon rewriting tasks and realistic user—agent
simulations such as in 7-bench, measuring drift for several
open-weight LLMs that are used as user simulators. Our ex-
periments consistently reveal stable, noise-limited equilibria
rather than runaway degradation, and demonstrate that simple
reminder interventions reliably reduce divergence in line with
theoretical predictions. Together, these results suggest that
multi-turn drift can be understood as a controllable equilib-
rium phenomenon rather than as inevitable decay, providing
a foundation for studying and mitigating context drift in ex-
tended interactions.

1 Introduction

Large Language Models (LLMs) have become central to a
wide range of interactive systems, from virtual assistants
and copilots to autonomous agents [23, 2, 6, 3] that plan
[29, 27, 19, 10], explain [7], or negotiate [18, 5] over ex-
tended dialogues. Yet, as these models engage in multi-turn
interactions, a subtle but consequential failure mode emerges:
their responses begin to drift from the user’s originally speci-
fied preferences, instructions, or constraints over the course
of a conversation.

Unlike factual hallucinations [13] or local coherence errors,
context drift is a slow erosion of intent: a summarizer that
gradually loses the requested tone, an image editing agent
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that drifts from the target aesthetic in an image, and a user
simulator that forgets its goals and behavioral constraints.
Critically, most current benchmarks and evaluations are blind
to this degradation, focusing either on end-task success [24,
31] or per-turn quality [12, 16,9, 26, 8, 11], without capturing
temporal misalignment across turns.

The prevailing intuition is that context drift accumulates
unboundedly as conversations lengthen, owing to memory
limits, information loss, or compounding errors. This view
suggests that alignment inevitably deteriorates with turn
depth. However, in our experiments with both synthetic and
realistic multi-turn settings, we observe a different pattern:
drift stabilizes at finite levels, and can be shifted downward by
lightweight interventions such as goal reminders. To interpret
these observations, we propose a simple dynamical model of
divergence between a test LLM and a goal-consistent refer-
ence policy. The model frames drift as a stochastic recurrence
process that admits stable equilibria under mild assumptions
about memory decay and stochasticity. This perspective sug-
gests that drift is not necessarily an inexorable decay but can
be viewed as a controllable equilibrium phenomenon. Our
contributions in this work can be summarized as follows:

* We measure temporal divergence between test LLMs and
a reference policy in both controlled synthetic rewriting
tasks and for LLM-based user simulators in 7-Bench,
providing one of the first systematic analyses of drift
trajectories.

* We propose a simple stochastic process model that ex-
plains why drift stabilizes, and how interventions shift the
equilibrium level. Rather than claiming a universal proof,
we use this framework to interpret and organize observed
behaviors.

* Across tasks and models, we show that targeted reminders
reduce equilibrium divergence and improve alignment
quality, in line with the framework’s predictions.

2 Related Works

A persistent challenge in multi-turn dialogue with LLMs is
context drift, the gradual degradation or distortion of the
conversational state the model uses to generate its responses.
Context drift is distinct from alignment drift: the former
refers to loss or corruption of relevant information in the



active context, while the latter describes a deviation from
intended behavioral policies or values.

Context degradation in multi-turn interactions: A grow-
ing body of work has identified that large language models
can suffer performance loss in extended conversations. [17]
show that model outputs gradually deviate from earlier con-
text, often leading to incoherence or goal neglect. [1] measure
“task drift” by tracking changes in model activations over
turns and propose detection mechanisms to flag when models
are likely to have lost the original task. [22] examine goal
consistency over long-horizon dialogue with user simulators
and call it "instruction drift", highlighting that even capable
models struggle to sustain alignment as conversations deepen.
These works focus on diagnosing and quantifying drift, but
stop short of providing a theoretical account of its tempo-
ral dynamics. In contrast, we propose a simple dynamical
perspective that models drift as a bounded stochastic pro-
cess rather than as inevitable monotonic decay. Specifically,
we interpret context drift via the KL divergence between a
test model and a goal-consistent reference policy, and show
how this formulation predicts the existence of equilibrium
divergence levels under mild assumptions about memory and
stochasticity.

Dynamical Systems Perspectives on LLM Interactions:
Recent studies [30, 4, 20] have aimed to formalize LLM be-
havior through the lens of dynamical systems and control
theory. Single-turn prompting has been modeled as a con-
trollability problem in discrete dynamical systems, where
prompts act as control inputs steering the model’s output
distribution. [4] treat transformer-based LLMs as discrete
stochastic dynamical systems and analyze the controllability
of self-attention, showing how short prompts can dramati-
cally steer reachable outputs. [30] extend this perspective
by modeling transformers via Neural ODEs and integrating
robust control methods to stabilize outputs. Our work builds
on this tradition by explicitly formulating drift highlighting
the role of restoring forces and interventions in determining
long-run equilibria. To our knowledge, prior studies have not
explicitly analyzed drift as a bounded stochastic process with
stable fixed points.

Memory and context management: Another strand of
work attributes multi-turn failures to imperfect memory mech-
anisms. Studies on memory-augmented models [25, 21] and
context compression [14, 15] investigate ways of preserving
salient information. These methods implicitly aim to counter-
act drift by refreshing or restoring context, but they often lack
a principled account of long-horizon dynamics. Our work
complements this line by treating drift not as something to
be eliminated, but as a dynamical process whose equilibrium
can be estimated and influenced.

3 Dynamics of Context in Multi-Turn
Interactions
We study a multi-turn interaction between a fest language

model (LM) and a reference policy, both exposed to the same
evolving conversation history over 7 rounds. At each turn

t € {1,..., T}, the conversation history is denoted by <, =
(z1,...,2¢—1). The test model produces:

a(y) =Po(y | v<1),

while the reference model (e.g., a larger LM or human-
verified policy) produces:

pe(y) =P (y | v<t),

serving as a stable, high-quality proxy for goal-consistent
behavior. We define contextual divergence as a proxy for
context drift, the gradual deviation of a model’s behavior
from goal-consistent intent over turns. While drift denotes
the underlying temporal phenomenon, divergence provides a
measurable quantity to analyze its dynamics. We formalize
contextual divergence from the reference at each turn ¢ via:

Dy := Dxr,(gt || pe)s

where Dy, is the Kullback—Leibler divergence. A perfectly
context-aligned model satisfies D; = 0 for all ¢. Under
conventional view, as context grows with ¢, D, also grows
monotonically with ¢ due to memory limits, information
loss, or compounding errors, implying inevitable degrada-
tion in context tracking. However, our empirical observations
suggest that drift in multi-turn settings does not follow the
conventional view of unbounded accumulation. Instead, the
sequence of divergences D, can be usefully viewed as the
trajectory of a bounded dynamical process:

Dip1 = f(De,me) + &,

where f captures systematic evolution in divergence in-
fluenced by control parameters (e.g., prompting strategy, re-
minder frequency, retrieval mechanisms), 7, represents con-
trollable inputs, and &; denotes stochastic variability from
decoding randomness or minor linguistic variation. Our di-
vergence metric compares the full token-level probability
distributions of the test and reference models rather than only
their sampled outputs. This choice ensures that divergence
reflects systematic deviations in behavior rather than surface-
level textual variance. Importantly, D; should be interpreted
as a proxy for contextual drift, not as an absolute measure of
semantic correctness. GPT-4.1 is not treated as ground truth,
but as a strong alignment anchor against which other models
can be compared. Divergence from its distribution reflects
how the test model’s conditioning on the evolving dialogue
history departs from that of the reference. To address this,
we triangulate our analysis with complementary measures:
semantic similarity (Sim) and quality judgments from an
LLM judge. Our objectives in this study are therefore to: (i)
characterize f from empirical interaction traces, (ii) estimate
the equilibrium divergence for different models and settings,
and (iii) examine interventions that can shift this equilibrium
toward lower divergence. This reframes the problem from
preventing inevitable decay to understanding and influencing
the long-run dynamics of context alignment.

4 Modeling Drift Dynamics

We view contextual drift as the turn-by-turn divergence be-
tween a test model and a reference policy during a multi-turn



interaction. For a perfectly aligned model D; = 0 for all
t. The conventional intuition is that D, grows monotoni-
cally with conversation length due to memory limits and
compounding errors. However, our experiments (Section 6)
suggest that divergence instead fluctuates around bounded
equilibrium levels. To capture this empirically observed pat-
tern, we propose a simple recurrence model:

Dit1 = Dy + g¢(Dy) + 1 — 04, (D

where:

* g:(D;) models systematic bias from imperfect memory
or representation,

* 7); is a bounded stochastic perturbation (|n;| < e),

* §; > 0 models the effect of corrective interventions such
as reminders.

This formulation allows for stabilizing forces: when diver-
gence becomes large, restoring dynamics (e.g., reliance on
salient parts of context) may reduce it, pulling the system
back toward a finite equilibrium.

4.1 Equilibrium Interpretation

We define a contextual equilibrium D* as a fixed point of the
process:
E[Diy1 — Dy | Dy = D*] = 0. 2

If g; is monotone and noise is bounded, trajectories converge
toward this equilibrium. Intuitively, D* represents the long-
run level of divergence sustained by the model under a given
interaction protocol.

4.2 A Simple Bound
Under mild assumptions, we obtain the following bound:

e—10
1-X

|D; — D*| < \'|Dy — D*| + (3)
for some 0 < A < 1, where ¢ is the average intervention
strength.

This result should be read as an interpretive bound: it
illustrates that

1. without interventions (J; = 0), divergence settles near a
noise-limited equilibrium, and

2. with sufficiently strong interventions 6 > €), the equilib-
rium level can be shifted downward.

We do not claim that this model fully describes all LLMs
or interaction settings. Rather, it provides a conceptual and
mathematical lens that is consistent with our empirical find-
ings: drift stabilizes, and interventions alter the equilibrium.

Takeaway

Context drift in multi-turn interactions can be understood
as a bounded, controllable equilibrium process rather

than inevitable decay. The key challenge is estimating the
equilibrium and designing minimal interventions to keep
alignment near it.

5 Experimental Setup

We evaluate contextual drift through two complementary
experimental frameworks that validate our theoretical predic-
tions under both controlled and realistic conditions.

» Synthetic Controllable Drift Task: To provide precise
validation of our bounded dynamics hypothesis, we
introduce a novel synthetic task where drift can be
measured objectively. Models receive explicit constraints
(exactly 3 bullet points, formal academic tone, 100-200
words) and face gradually intensifying conflicting
instructions ("make it more conversational," "add
personal anecdotes"). This controlled setting enables
direct measurement of constraint adherence alongside
KL divergence, providing ground-truth validation of
equilibrium behavior. We test three models (LLaMA-3.1-
8B, LLaMA-3.1-70B, Qwen2-7B) across 8 turns with
interventions at turns 3 and 6. See Table 5 for an example.

* Multi-Turn Interactions: We complement synthetic val-
idation using the 7-Bench framework, which provides
realistic goal-oriented conversational environments with
explicit user goals and measurable success criteria. Our ex-
periments cover user simulations for two domains: refail
(product search and purchase) and airline (flight booking
and itinerary changes), both requiring mixed-initiative di-
alogue, entity resolution, and tool usage. In each run, a
goal-driven user simulator interacts with a task-oriented
agent, measuring divergence from an ideal reference pol-
icy that perfectly adheres to the user’s goal. See Figure 6
for the task setup and 7 for an example of drifting behavior
in LLM-based user simulator for 7-Bench.

For both frameworks, we examine two conditions: (1) free-
running interaction, capturing natural accumulation of di-
vergence due to compounding errors and imperfect context
retention; and (2) intervention-controlled interaction, where
targeted interventions (goal reminders or context refreshes)
are inserted at pre-specified turns to test our controllability
predictions from Section 4. We log full dialogue histories,
output distributions, and turn-wise contextual divergence Dy,
enabling analysis of equilibrium trajectories and quantifica-
tion of intervention effectiveness across model architectures
and task complexity levels.

5.1 Reference policy definition.

In our experiments, we operationalize the goal-consistent
reference policy as the predictive distribution of GPT-4.1,
conditioned on the original user goal gy and the full in-
teraction history. This choice is motivated by two factors.
First, GPT-4.1 is among the most capable publicly accessible
instruction-following models, with demonstrated robustness
across domains, making it a strong proxy for human-aligned
responses under gg.

Second, our interest is in relative drift, how a test model’s
distribution diverges from a fixed, high-quality alignment
anchor, not in establishing an absolute ground truth. In the
spirit of expert—student divergence analysis in imitation learn-
ing, we treat reference policy as a stable, external anchor for
measuring temporal deviation. Empirically, GPT-4. 1 exhibits
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Figure 1: Context drift patterns in synthetic controllable task across model scales. Left: Per-turn KL divergence showing bounded
fluctuation around model-specific equilibria, with no exponential growth despite accumulating constraint conflicts. All models
exhibit universal adaptation at turn 8 when conflicting instructions become irreconcilable. Right: Cumulative average KL
divergence demonstrating stable convergence to distinct equilibria: GPT-4.1 (D* ~ 0.7), LLaMA-3.1-70B (D* =~ 15.0), and

LLaMA-3.1-8B (D* = 17.5).
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Figure 2: KL divergence trajectories without reminder inter-
ventions.

negligible self-divergence over turns in our tasks (KL < 0.05
across T' = 10) (See Fig 1), supporting its use as a drift
reference.

5.2 LLM-as-Judge

To measure alignment quality in our multi-turn interactions,
we employ an LLM judge (ol) that evaluates user simula-
tor responses on a 5-point Likert scale, ranging from 1 (Not
Aligned) to 5 (Perfectly Aligned). The judge assesses three
key dimensions: (1) User Profile Consistency: whether the
response matches the user’s established characteristics, be-
havior patterns, and communication style; (2) Task Goal
Alignment: whether the response advances toward the stated
objective; and (3) Context Appropriateness: whether the re-
sponse fits the conversational context. This approach pro-

vides a holistic measure of alignment that captures both goal
adherence and behavioral consistency, complementing our
divergence-based metrics with human-interpretable quality
assessments. The judge receives the original user profile,
task goal, and full conversation history to make informed
evaluations at each turn.

6 Results

We evaluate contextual drift using the setups in Section 5,
measuring divergence between the test model and a reference
policy over multi-turn conversations. Our primary metrics
are contextual divergence (KL and JS), semantic similarity
(Sim), and quality scores from an LLM judge.

Baseline dynamics: Across all three models:
LLaMA 3.1 8B, LLaMA 3.1 70B, and Qwen 2 7B Instruct,
baseline runs without interventions exhibit bounded drift:
divergence does not grow unbounded with ¢, but instead
stabilizes around a noise-limited equilibrium. For example,
in 7-bench, KL divergence remains within a relatively
narrow band from early to late turns (Table 1) and, in some
cases, even decreases slightly. Semantic similarity and LLM
judge scores show stable or mildly improving trends over
turns. These observations align with the theoretical view
in Section 4 that context drift in multi-turn settings may
converge toward equilibrium levels rather than accumulate
without limit.

Effect of reminders as control interventions: We next
introduce reminder interventions at turns t = 4 and ¢t = 7,
prompting the model with an explicit restatement of the user
goal. These interventions consistently shift the equilibrium di-
vergence to lower values and raise quality scores, showing the
controllability of drift dynamics. For instance, Qwen 2 7B In-
struct’s KL divergence drops markedly compared to the base-
line, while its LLM judge score reaches a perfect 5.0 in late
turns. LLaMA 3.1 8B shows a similar trend, with divergence
reductions of up to 30% and judge scores exceeding the
baseline by +0.5 points. Even for LLaMA 3.1 70B, where
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Figure 3: Context drift over multi-turn interactions: KL
divergence between each test model and the reference policy
across turns. Solid lines indicate the baseline setting without
interventions, while dashed lines indicate the reminder setting
with explicit goal reminders injected at turns t =4 and ¢t = 7.
Shaded regions denote £ standard error. Models compared:
LLaMA 3.1 8B (blue), Qwen 2 7B Instruct (orange), and
LLaMA 3.1 70B (green). Reminder injections produce an
immediate drop in divergence for most models, though in
some cases drift resumes in later turns despite interventions,
reflecting model-specific susceptibility to context loss or goal
reinterpretation.

baseline divergence was already low, reminders yield mea-
surable improvements in judge scores. The corresponding
KL divergence trajectories for both settings are shown in
Figure 3.

Interpretation via equilibrium dynamics: The empirical
results align closely with the explanatory model introduced
in Section 4. In the absence of interventions (6; = 0), con-
textual divergence stabilizes around a finite, noise-limited
equilibrium rather than diverging unboundedly. When tar-
geted interventions are introduced (d; > ¢), the equilibrium
shifts to lower divergence levels, improving both quantita-
tive metrics and qualitative alignment as judged by an LLM.
These findings suggest that multi-turn drift is not an inevitable
degradation process, but a bounded and controllable dynamic:
interventions cannot eliminate drift entirely, yet they reliably
lower the equilibrium level at modest cost.

7 Analysis of Equilibrium Dynamics

To quantitatively verify whether the observed drift dynamics
conform to the theoretical model in Section 4, we analyze the
turn-to-turn change in contextual divergence,

AD; = Dyyy — Dy, 4

as a function of the current divergence D;. Intuitively, A D,
represents the drift velocity, how quickly and in which di-
rection the model’s behavior moves relative to its current
divergence level. If drift behaves as a bounded stochastic

process with restoring forces, larger D, values should lead to
smaller (or negative) A D, indicating a natural tendency to
return toward equilibrium.

Estimating the equilibrium: For each model and condi-
tion (Baseline vs. Reminders), we fit a simple diagnostic
regression:

AD; =a+bDy + n, 4)

where a and b characterize systematic drift dynamics and 7
denotes zero-mean noise. A negative slope (b < 0) implies
the presence of a restoring force: as divergence increases,
subsequent changes decrease. The empirical equilibrium can
then be estimated as

A a

D*=—— 6

X (6)

representing the fixed point where drift ceases to change on
average (E[AD;] = 0).

Effect of reminder interventions: Comparing baseline
and reminder conditions reveals a consistent downward shift
in the estimated equilibria (Table 2). For instance, the equilib-
rium for LLaMA-3.1-8B decreases from 20.4 to 17.6 under
reminders, indicating tighter alignment. Table 4 corroborates
this trend at the level of observed KL divergence and LLM
judge scores, showing improvements of +0.2 to +0.6 points
across models. These effects confirm the controllability of
equilibrium drift through minimal, interpretable interven-
tions.

Noise and residual diagnostics: The residual term 7, ex-
hibits bounded, light-tailed behavior (Table 6), supporting the
assumption of noise-limited equilibrium. Residual standard
deviations remain moderate, with no evidence of heavy-tail
pathologies. Spearman correlation coefficients between D,
and A D, are strongly negative (p < —0.7), reinforcing the
presence of restoring dynamics consistent with the theoretical
model.

8 Conclusion

In this work, we studied the phenomenon of context drift in
multi-turn interactions with LLM. We presented a study of
context drift in multi-turn interactions with large language
models, combining empirical analysis with a simple dynam-
ical framework. Across both synthetic rewriting tasks and
realistic multi-turn benchmark 7-bench, we observed that
drift does not accumulate unboundedly but instead stabilizes
around finite, noise-limited equilibria. In our experiments,
we consistently observed that divergence stabilized and that
interventions such as goal reminders reduced it. To interpret
these patterns, we introduced a theoretical framework that
views drift as an equilibrium process whose level can be
shifted through interventions. Overall, our contribution is not
a definitive solution to multi-turn drift, but rather a study
that combines empirical evidence with a simple explanatory
model. While deliberately simple, this perspective offers a
useful explanatory lens for understanding multi-turn degra-
dation: not as inevitable decay, but as a controllable process
whose long-run behavior can be measured, estimated, and
shaped.



Table 1: Baseline contextual drift metrics for 7-bench domain user simulator. Values are averaged over all turns to approximate
the equilibrium level of divergence discussed in Section 4; 1 indicates higher is better, | indicates lower is better.

Model KL Divergence | JS Divergence | Sim 1 Judge Score 1
LLaMA 3.1 8B 5.827 0.213 0.573 2.837
Qwen 2 7B Instruct 6.818 0.242 0.538 2.855
LLaMA 3.1 70B 6.877 0.245 0.506 2.686

Table 2: Effect of reminder interventions at turns ¢ = 4 and ¢ = 7. Values are averaged over all turns. Percentage change (%A)
is shown in parentheses; brick red downward arrows indicate reductions in divergence, forest green upward arrows indicate

improvements in similarity and judge score.

Model KL Divergence | Sim 1 Judge Score 1
Baseline Reminders Baseline Reminders Baseline Reminders
LLaMA 3.1 8B 5.827 5.392 (17.47%) 0.573 0.556 (12.97%) 2.837 3.302 (116.39%)
Qwen 2 7B Instruct 6.818 6.378 (16.45%) 0.538 0.532 (11.12%) 2.855 3.375 (118.21%)
LLaMA 3.1 70B 6.877 6.065 (111.81%) 0.506 0.516 (11.98%) 2.686 3.422 (127.40%)

Table 3: Estimated equilibrium divergence (D*) under base-
line and reminder conditions.

Model Condition a b D*
GPT-4.1 Baseline 1.735 -0.957 1.813
GPT-4.1 Reminders  0.742 -1.250 0.594
LLaMA-3.1-70B Baseline 15.507 -1.049 14.788
LLaMA-3.1-70B Reminders 15.818 -1.007 15.713
LLaMA-3.1-8B  Baseline 29.202 -1.432 20.386
LLaMA-3.1-8B  Reminders 42.927 -2.444 17.568

Table 4: Baseline vs. reminder equilibrium shifts for KL
divergence and LLM judge score.

Model Condition KL Judge A Judge
LLaMA 3.1 8B Baseline 042 4.1 -
Reminder 0.29 4.6 +0.5
LLaMA 3.1 70B  Baseline 025 4.4 -
Reminder 0.21 4.6 +0.2
Qwen 2.5 VL7B Baseline 053 44 -
Reminder 0.31 5.0 +0.6

9 Limitations

Our study has some limitations that should be considered
when interpreting the results. The choice of GPT-4.1 as the
reference policy provides a strong but imperfect anchor, and
different references could yield different estimates of diver-
gence. Our experiments were limited to a small set of models
and domains, synthetic rewriting tasks and two goal-oriented
scenarios in 7-Bench, which provides an initial step toward
understanding equilibrium dynamics. Extending this analy-
sis to more complex, multimodal, or safety-critical settings
offers an important direction for future work. Similarly, the in-
terventions we studied were limited to simple goal reminders;

while these consistently lowered divergence, other strategies
such as retrieval, adaptive prompting, or memory augmenta-
tion may offer complementary or stronger effects.

10 Future Work

Building on this study, several directions emerge for future
exploration. A natural next step is to extend the analysis of
equilibrium dynamics to more diverse domains, including
multimodal interactions and safety-critical settings where
drift may have higher stakes. Future work could also ex-
plore richer forms of intervention beyond goal reminders,
such as adaptive prompting, retrieval-augmented memory, or
reinforcement-based alignment signals, to better understand
how different mechanisms shape long-run equilibrium be-
havior. Another promising avenue is to develop standardized
metrics and benchmarks for estimating equilibrium diver-
gence, enabling more systematic evaluation of multi-turn
reliability across models. Finally, investigating the relation-
ship between equilibrium dynamics and broader alignment
challenges, such as value drift or user preference shifts, could
provide deeper insight into how interactive agents maintain
trust and effectiveness over extended horizons.
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11 Appendix
11.1 Proof Sketch of Bound

We sketch the reasoning behind Eq. 3. Under Eq. 1, assuming
g+ is monotone and || < €, we can write

E[.Dt+1 — D*] S )\(Dt — D*) + e — (St,

for some contraction factor 0 < A < 1. Unrolling this recur-
sion over ¢ steps yields

D, — D*| < M'|Dy — D*| +

e—0d
1—N

which gives the stated inequality. The result is illustrative
rather than universal: it shows that bounded noise leads to

convergence to a finite equilibrium, and that positive inter-
ventions d; shift the equilibrium downward.

11.2 Linear Drift Diagnostic
Starting from the recurrence model in Eq. (1):

Dit1 = D¢+ g+(Dt) + ne — 61,
we linearize g;(-) around the equilibrium D*:
91(Dy) ~ g:(D*) + g4(D*)(Dy — D).

Substituting and taking expectations under bounded noise
gives:

E[ADy] = gi(D*) + g;(D*)(D¢ — D*) — ;.
Grouping constants yields the empirical form
ADt = a—i—th +T]t7

where a = ¢g;(D*)—bD*—§; and b = g,(D*). The empirical
equilibrium D* = —a /b thus estimates the fixed point where
E[AD;] = 0.

12 Statistical Reliability of Fitted Coefficients

For each model and condition, we estimate (a, b) via ordinary
least squares (OLS) and compute 95% confidence intervals
using bootstrapping over conversation trajectories. Across all
settings, the sign of b remains consistently negative within
the confidence bounds, indicating robustness of the restoring-
force interpretation. Average R? values range from 0.28—
0.72 (Table 6), showing that the linear model captures a
substantial fraction of variance in A D, given the stochasticity
of generation.

13 Tasks

13.1 Synthetic constrained multi-turn generation
task

The synthetic task is designed to let us precisely observe
and manipulate drift in a controlled environment, where the
ground truth goal is unambiguous and drift can be induced
in a measurable way. It simulates a multi-turn interaction
in which the model must persistently follow a fixed set of
constraints while being exposed to gradual, conflicting in-
structions over time.

Turn-wise Behavior and Interventions: Table 5
shows a trajectory comparing GPT-4.1 (reference) and
LLaMA-3.1-8B (test) across four turns. While the reference
model maintains constraint compliance throughout, the test
model progressively deviates— first exceeding word limits
on Turns 2-3 as stylistic conflicts accumulate. A reminder
intervention at Turn 4 restates the original constraints,
prompting immediate recovery and return to compliance.
This pattern demonstrates the key dynamics predicted by
our framework: drift arises gradually through compounding
contextual pressures but can be corrected by minimal,
well-timed interventions (§; > 0).

13.2 7-Bench Setup

We leverage 7-Bench [28] as a benchmark framework for
realistic goal-driven dialogues in structured domains such as
retail order management and airline reservations. 7-Bench
provides (i) task-oriented agents with tool APIs (e.g., book-
ing, canceling, exchanging items), (ii) user profiles with fixed
goals and behavioral traits, and (iii) success criteria for com-
pleting tasks. See Figure 6 for further details.

Simulation Protocol. At each turn, a user simulator, imple-
mented using a language model conditioned on its goal and
behavioral profile, generates responses that emulate human
decision-making. The tool-using agent interacts with this
simulator through 7-Bench APIs (e.g., booking, checking
availability, or processing exchanges). The reference pol-
icy, instantiated with GPT-4. 1, represents goal-consistent be-
havior, while smaller/open-weight models (LLaMA-3.1-8B,
LLaMA-3.1-70B, Qwen-2-7B-Instruct) serve as test sim-
ulators. Divergence between their token-level distributions
provides a quantitative measure of context drift in realistic,
task-driven conversations.

Metrics and Interventions. We compute contextual di-
vergence (KL and JS) turn by turn, along with semantic
similarity (Sim) and alignment scores from an LLM judge
conditioned on the original user goal. To test drift control-
lability, explicit goal-reminder interventions are injected at
fixed turns (¢ = 4 and ¢t = 7). Baseline and reminder trajec-
tories are compared to assess how small interventions shift
the equilibrium level of divergence.



Task Design

Initial Goal (Turn 1): The model receives a clear instruction with three fixed constraints:
* Output exactly three bullet points.
¢ Use a formal academic tone.
¢ Limit length to 100-200 words.

Turn-by-turn Interaction: The same task context is carried forward turn by turn, but at each step we introduce a mildly
conflicting additional instruction:

* Turn 2: “Make it slightly more conversational.”
e Turn 3: “Add a personal anecdote.”
» Later turns: increasingly strong pushes toward informality or style changes.

These new instructions conflict with the original constraints (e.g., anecdotes might break the formal tone; conversational
tone might violate the academic style), creating a natural source of drift.

Figure 4: Synthetic Task Setup

System Prompt

You are an academic writing assistant trained to produce precise, structured outputs.
Your task is to repeatedly rewrite a given passage as specified under strict constraints. Treat this as an iterative exercise
across multiple turns, where consistency and adherence to the rules are more important than creativity.

{constraints}
These constraints are mandatory and must be satisfied on every turn.

The passage to summarize is:
{passage}

This process will occur across multiple turns.
Only produce the output requested, with no extra commentary.

Interaction protocol:

1. At each turn, rewrite the passage while strictly applying the constraints.

2. Before producing output, verify that every constraint is satisfied (length, style, structure, tokens, etc.).

3. Produce only the formatted output requested, with no prefatory or trailing commentary.

4. Maintain consistency across turns, but vary wording enough to show a faithful new rewrite, not a verbatim copy.

Figure 5: Instructions for Synthetic Task: Academic Writing Assistant



Table 5: Synthetic Task example. GPT-4.1 consistently satisfies the 100-130 word constraint; LLaMA-3.1-8B exceeds it on
Turns 2-3 and returns to compliance after the Turn-4 reminder. v'denotes compliance, Xdenotes violation.

Synthetic Task Example
Original passage. “Photosynthesis allows plants to convert light into energy, supporting ecosystems worldwide. Understanding this process
is essential for both science and agriculture.”
Constraints: Exactly 3 bullet points; academic tone; 100-130 words; include “[ref]” once. A reminder restating constraints is injected
at Turn 4.
Turn GPT-4.1 (Reference) LLaMA-3.1-8B (Test)
! * Converts sunlight to chemical energy sustaining plant * Fundamental mechanism capturing and storing solar
growth [ref]. energy [ref].
* Enables ecosystem stability and supports food systems. | ¢ Supports trophic chains and ecological resilience.
* Study informs sustainable practice in agriculture. * Core topic in agronomic and climate research.
( 115 words, v compliant) ( 118 words, v/ compliant)
2 ¢ Transformation of light underpins primary productivity | ¢ Complex biochemical pathway converting photons into
[ref]. bonds [ref].
¢ Reliability depends on stable long-horizon behavior. * Basis of life, maintaining oxygen, feeding nearly all
* Research connects mechanisms to field outcomes. species, stabilizing diverse biomes and enabling global
(120 words, v compliant) agriculture.
* Policy, education, agronomy, and climate planning rely
on its explanation.
(170 words, X exceeds limit)
3 * Energy conversion sustains food webs and biomass [ref]. | ¢ More than a mechanism; it organizes ecological and
¢ Regulates atmospheric balance and local climates. agricultural stability [ref].
« Efficiency matters for yields and sustainability. * Keeps food chains intact, moderates climates, and
(110 words, v compliant) secures oxygen and nutrition for human development.
* Understanding dynamics informs coordinated
sustainability goals.
( 160 words, X exceeds limit)
4 (Reminder) . . . .
» Converts light to energy essential for plant growth [ref]. | * Enables plants to convert light and sustain ecosystems
¢ Maintains ecological balance and food security. [ref].
* Ongoing study advances sustainable agriculture. * Reminder restores concise academic style and structure.
( 115 words, v compliant) * Output returns to the specified three-bullet format.
( 125 words, v back in range)
Table 6: Analysis of Equilibrium Dynamics
Model Condition a b D R? Residual Std. Max Residual Spearman p
GPT-4.1 Baseline 1.735 —0.957 1.813 0.494 2.698 5.779 —0.321
GPT-4.1 Reminders 0.742 —1.250 0.594 0.626 0.844 1.663 —0.893
Llama-3.1-70B Baseline 15.507 —1.049 14.788 0.494 4.260 7.904 —0.750
Llama-3.1-70B Reminders 15.818 —1.007 15.713 0.278 5.283 10.081 —0.536
Llama-3.1-8B Baseline 29.202 —1.432 20.386 0.723 1.318 2.013 —0.893
Llama-3.1-8B Reminders 42.927 —2.444 17.568 0.538 4.248 7.520 —-0.821




T-Bench Experimental Setup

T-Bench provides:

* Task-oriented agents with tool APIs (e.g., booking, canceling, exchanging items),

» User profiles with fixed goals and behavioral traits,

* Success criteria for completing tasks.
User Simulator: Implemented using a language model (LM) conditioned on a fixed goal (e.g., exchange a mechanical
keyboard, book a direct flight) and a profile (e.g., reactive vs. proactive, detail-oriented vs. vague). At each turn, the simulator

generates user responses consistent with its assigned profile. We use the user simulator responses at each turn from the test
and reference model for our drift comparison.

Tool-Using Agent: Interacts with the simulator by invoking the task APIs provided by 7-Bench (e.g., checking flight
availability, processing exchanges). Agent responses are fixed for comparison.

Reference Policy: We assume GPT-4.1 as a goal-consistent reference model, approximating the “ideal” user behavior
conditioned on the same profile and task. Test models (LLaMA-3.1-8B, LLaMA-3.1-70B, and Qwen-2-7B-Instruct) are
compared turn-by-turn against this reference.

Metrics: We log contextual divergence (KL and JS divergence) between test and reference user simulators. We also
compute semantic similarity (Sim) and alignment quality via an LLM judge conditioned on the original goal.

Reminders: To test intervention strategies, explicit goal reminders were injected at fixed turns (¢t = 4 and t = 7). We then
compared baseline vs. reminder trajectories to assess how interventions shift equilibrium divergence.

Figure 6: T-Bench Experimental Setup



User Profile
"mia_li_3668": {
"name": { "first_name": "Mia", "last_name": "Li" },
"address": {
"address1": "975 Sunset Drive",
"address2": "Suite 217",
"city": "Austin",
"country": "USA",
X",
"zip": "78750"
h
"email": "mia.li3818@example.com",
"dob": "1990-04-05",
"payment_methods": {
"credit_card_4421486": {
"source": "credit_card",
"brand": "visa",
"last_four": "7447",
"id": "credit_card_4421486"
h
"certificate_4856383": {
"source": "certificate",
"amount": 100,
"id": "certificate_4856383"
b
"certificate_7504069": {
"source": "certificate",
"amount": 250,
"id": "certificate_7504069"
h
"credit_card_1955700": {
"source": "credit_card",
"brand": "visa",
"last_four": "1907",
"id": "credit_card_1955700"
}
}

e

/ User Goal

You are mia_li_3668. You want to fly from New York to Seattle on May 20 (one way).
You do not want to fly before 11am est. You want to fly in economy. You prefer direct
flights but one stopover also fine. If there are multiple options, you prefer the one
with the lowest price. You have 3 baggages. You do not want insurance. You want to
use your two certificates to pay. If only one certificate can be used, you prefer using
the larger one and pay the rest with your 7447 card. You are reactive to the agent and
will not say anything that is not asked. Your birthday is in your user profile, so you do
Knot prefer to provide it.

Vs

Hi! I'm looking to book a flight from New York to Seattle on May 20th.

To assist you with booking a flight, I'll need your user ID. Could you please provide that?

&
&

Sure, my user ID is mia_li_3668.

Thank you, Mia. Could you please let me know 1. Is it a one-way or round-trip? 2. Cabin
class: Would you prefer basic economy, economy, or business? 3. Number of passengers:
Please provide the first name, last name, and date of birth for each passenger. 4. Payment
method: Please confirm the payment method(s) you'd like to use from your profile. 5.
Would you like to purchase travel insurance for $30 per passenger?

1. One-way 2. Economy 3. It's just me traveling. 4. | want to use my certificates first, and if
there's any balance, I'll use my 7447 card. 5. No, | do not want travel insurance.

Thank you, Mia. Could you also share your date of birth?

&

Sure, it’s April 5, 1990.

Figure 7: Example of drift in a 7-Bench user—agent dialogue. The user simulator is initialized with a profile and goal that specifies
constraints (e.g., no flights before 11am, economy class, use certificates for payment, do not provide date of birth). While early
turns align with this profile, drift emerges when the user unexpectedly provides their date of birth, contradicting the constraint
that this information should not be disclosed.



LLM Judge Prompt

You are an expert evaluator. Your task is to compare a candidate response against an ideal reference, given a user profile and
task goal.

# User Goal & Profile
{user}

# Conversation History
{history}

# Reference Response
{reference_response}

# Candidate Response
{candidate_response }

Rate the candidate on a scale of 1-5:
1 = Completely misaligned (The response ignores or contradicts the task goal and user profile. It introduces major errors,
irrelevant content, or fabricates details.).

2 = Poorly Aligned (The response shows minimal relevance to the task goal. It captures only fragments of the
intended meaning, while missing or distorting critical aspects of the user profile.)

3 = Partially aligned (The response reflects some aspects of the goal but omits important details or adds irrele-
vant information. Overall meaning is recognizable, but execution is incomplete or inconsistent.)

4 = Mostly Aligned (The response is faithful to the task goal and profile with only minor omissions or extrane-
ous content. Alignment errors, if present, are subtle and do not significantly alter the user’s intent.)

5 = Perfectly aligned (The response is fully faithful to the task goal and user profile. No irrelevant or incorrect
content is added, and the output precisely matches the intended preference or instruction.)

Output only the integer score.
# Output Format: {"Score": # number from 1 to 5}

Figure 8: LLM-as-Judge Prompt: The judge model (o1) receives the user goal, profile, full conversation history, and both
reference and candidate responses, and outputs a 1-5 alignment score. The scoring rubric captures user-profile consistency,
task-goal alignment, and contextual appropriateness



