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Abstract

Attribution methods seek to explain language model predic-
tions by quantifying the contribution of input tokens to gen-
erated outputs. However, most existing techniques are de-
signed for encoder-based architectures and rely on linear
approximations that fail to capture the causal and seman-
tic complexities of autoregressive generation in decoder-only
models. To address these limitations, we propose HEssian-
enhanced ATtribution (HEAT), a novel attribution frame-
work tailored for decoder-only language models. HEAT com-
bines three complementary components: a semantic tran-
sition vector that captures token-to-token influence across
layers, Hessian-based sensitivity scores that model second-
order effects, and KL divergence to measure information
loss when tokens are masked. This unified design produces
context-aware, causally faithful, and semantically grounded
attributions. Additionally, we introduce a curated bench-
mark dataset for systematically evaluating attribution qual-
ity in generative settings. Empirical evaluations across multi-
ple models and datasets demonstrate that HEAT consistently
outperforms existing methods in attribution faithfulness and
alignment with human annotations, establishing a new stan-
dard for interpretability in autoregressive language models.

Introduction
As machine learning systems achieve increasingly high per-
formance, they are being deployed in high-stakes domains
such as healthcare, autonomous driving, and finance. How-
ever, despite their success, deep neural networks remain dif-
ficult to interpret due to their large parameter spaces, layered
architectures, and nonlinear computations, earning them the
reputation of “black box” models (Benı́tez, Castro, and Re-
quena 1997). This opacity can erode trust, impede debug-
ging, and raise ethical or regulatory concerns. To address
these challenges, the field of Explainable AI (XAI) emerged,
with the goal of making model decisions more transparent,
interpretable, and trustworthy.

A wide range of interpretability methods such as
LIME (Ribeiro, Singh, and Guestrin 2016), Ker-
nelSHAP (Lundberg and Lee 2017), Integrated Gradi-
ents (Sundararajan, Taly, and Yan 2017), Grad-CAM (Sel-
varaju et al. 2017), and Layer-wise Relevance Propagation

(LRP) (Bach et al. 2015) have been developed under the
classical feature attribution paradigm, which aims to quan-
tify the contribution of input features to a model’s output.
Most of these methods are based on linear or first-order
derivative approximations and assume local model linearity.
However, this assumption often breaks down in the context
of autoregressive language models, where token interactions
are nonlinear and highly contextual. Despite their practical
utility, these techniques frequently produce inconsistent
attributions for the same input and model (Hooker et al.
2019), casting doubt on their reliability. Although some
efforts have introduced axiomatic foundations to formalize
attribution (Han, Srinivas, and Lakkaraju 2022; Bressan
et al. 2024), a universally accepted definition of explanation
quality remains elusive. Furthermore, these attribution
methods have primarily been designed for encoder-based
architectures, and recent work (Zhao and Shan 2024)
shows that directly applying them to decoder-only lan-
guage models in generative tasks is non-trivial and often
unfaithful. The discrepancy arises from architectural and
functional differences, where encoder models leverage
bidirectional attention and require a single attribution map,
while decoder-only models generate outputs autoregres-
sively and demand attribution at each token position. Figure
1 illustrates the complexity of the attribution task for a
generative model, highlighting how input words contribute
to the generation of a specific output word. Although model-
agnostic approaches have been proposed for generative
settings (Zhao and Shan 2024), they typically ignore the
dense semantic structure encoded in the internal layers of
large language models (Chen, Bruna, and Bietti 2024; Xu
et al. 2020), thereby limiting their ability to capture deep
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token-level influence.

To address the shortcomings of gradient-based attribution
methods in autoregressive models, we propose HEssian-
enhanced ATtribution (HEAT), a framework tailored for
decoder-only architectures. HEAT combines semantic flow
tracing, Hessian-based sensitivity, and KL-based informa-
tion loss to yield faithful, token-level attributions. By mod-
eling attention-weighted value flow and capturing second-
order and informational effects, HEAT offers a principled
and robust alternative that respects the causal and contextual
structure of generative language models. The key contribu-



tions of this work are:

• We propose HEssian-enhanced ATtribution (HEAT),
a novel attribution method for decoder-only language
models that integrates semantic flow for causal direc-
tionality, Hessian-based sensitivity for capturing second-
order interactions, and KL-divergence for quantifying
information-theoretic impact.

• We construct and release a new curated dataset specifi-
cally designed for evaluating token-level attributions in
autoregressive generation tasks, enabling systematic as-
sessment of attribution faithfulness, robustness, and hu-
man alignment.

• We conduct extensive experiments across four diverse
decoder-only models and a broad suite of strong attri-
bution baselines. Results show that HEAT consistently
outperforms existing methods in faithfulness, robustness,
and semantic alignment, while exhibiting remarkable sta-
bility under both decoding hyperparameter changes and
syntactic rephrasings.

Motivation
Understanding which input tokens influence a generative
language model’s output is central to interpretability. How-
ever, existing attribution methods based on attention weights
or first-order sensitivity are fundamentally limited in faith-
fully capturing token-level influence.

Attention-based methods (Abnar and Zuidema 2020),
while widely used, are not reliable indicators of causal influ-
ence. Attention weights reflect where the model attends, not
what actually affects the output, and can often be perturbed
without significantly altering predictions (Jain and Wallace
2019). Moreover, attention mechanisms—especially when
aggregated across layers or heads—often fail to account for
indirect or multi-hop influence paths that propagate through
residual connections and MLP layers (Lu et al. 2021). In
decoder-only models, attention is explicitly masked to pre-
vent information flow from future tokens; yet, post-hoc at-
tention aggregations that disregard this constraint may inad-
vertently assign importance to tokens that are not causally
connected to the output. As a result, attention alone should
not be treated as a faithful attribution signal.

First-order attribution methods, such as pointwise gradi-
ents, Input×Gradient (Shrikumar, Greenside, and Kundaje
2017), and DIG (Sanyal and Ren 2021), measure the lo-
cal linear sensitivity of the model’s output with respect to
its inputs. While computationally efficient, these methods
can entirely miss meaningful influence in regions where the
gradient vanishes but the function remains sensitive to fi-
nite perturbations. Integrated Gradients (IG) (Sundararajan,
Taly, and Yan 2017) partially addresses this by accumulat-
ing gradients along a path from a baseline to the input, but
its attributions depend heavily on the choice of baseline and
path, and can underrepresent influence near sharp transitions
or in highly nonlinear regimes.

To illustrate this limitation, consider the model’s predic-
tion function f(x) = logP (xT | x<T ), where x denotes
the concatenated input embeddings (or intermediate hidden

states) and T is the target position. Even if f is differen-
tiable, it is possible for the partial derivative with respect
to some input dimension to be zero while a finite pertur-
bation in that direction still causes a nontrivial change in
f(x). More formally, for some i ∈ {1, . . . , n}, we may have
∂f(x)
∂xi

= 0 but f(x + ϵei) ̸= f(x) for some ϵ > 0, indicat-
ing that the gradient fails to detect influence that manifests
at higher orders.

This phenomenon is captured by the second-order Taylor
expansion:

f(x) = f(x0)+∇f(x0)
⊤(x−x0)+

1
2 (x−x0)

⊤∇2f(ξ)(x−x0),

for some ξ on the segment between x0 and x. When the
gradient at x0 vanishes, changes in the function are driven
entirely by the curvature encoded in the Hessian, and the
contribution scales quadratically with the perturbation norm.
For example, in the smooth activation f(x) = log(1 +
exp(w⊤x + b)), the gradient can be nearly zero in the sat-
urated regime (w⊤x + b ≪ 0), yet the function value still
changes significantly for finite perturbations. In such cases,
gradient-based attribution methods underestimate or entirely
miss the relevant influence (see appendix for details).

Recent studies like, ContextCite (Cohen-Wang et al.
2024), TDD (Feng et al. 2024), and Peering into the Mind
of LMs (Phukan et al. 2024) all aim to attribute outputs
in generative language models, but each exhibits notable
limitations. ContextCite relies on a sparse linear surrogate
trained through extensive ablations, which makes it sen-
sitive to redundancy and indirect dependencies, computa-
tionally expensive, and limited to sentence-level attribution
without next-token conditioning. TDD projects hidden states
through the model’s output head (logit lens), conflating cor-
relation with causation and producing saliency scores that
are highly sensitive to the choice of target–alternative to-
ken pairs and vocabulary dynamics. Peering matches hid-
den states of generated answer tokens to context tokens
using cosine similarity with layer-specific thresholds, a
representation-matching approach that performs well pri-
marily for verbatim spans but lacks robustness to paraphras-
ing, reordering, or indirect evidence chains.

These limitations, namely, the inability of attention to
capture causal importance and the failure of first-order
gradients to model non-linear sensitivity, underscore the
need for more robust attribution frameworks. Existing
methods remain unstable under decoding hyperparameter
changes and syntactic rephrasings (see Section). We propose
HEssian-enhanced ATtribution (HEAT), which integrates
causal semantic flow, second-order sensitivity, and output-
aware information gain. Together, these components yield
stable, faithful, and interpretable attributions for decoder-
only LMs.

Background
Understanding token-level influence in transformer models
requires going beyond raw attention weights or local gra-
dients. Two complementary strands of research have high-
lighted important limitations and proposed more robust al-
ternatives. (Kobayashi et al. 2020) demonstrated that atten-
tion weights alone are insufficient for faithful interpretation,
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Figure 1: Overview of HEAT. The pipeline (a) rolls out attention–value flows that end at the target token to form a causal gate
over input tokens, (b) estimates token-level curvature via scalable Hessian–vector products to capture nonlinear interactions,
and (c) measures KL-based information impact under token masking. The final attribution combines causal gating, curvature
sensitivity, and information gain to produce target-conditioned, token-level explanations.

as they neglect the scale of the value vectors being attended
to. They proposed a norm-based approach that combines
attention weights with the magnitude of the transformed
value projections, offering a more accurate view of token in-
fluence within self-attention. This formulation captures not
only alignment (via attention) but also semantic strength (via
vector norms), leading to more faithful attributions.

Separately, Hessian-based sensitivity methods provide
deeper insight into model behavior by accounting for
second-order interactions between inputs and outputs.
Specifically, the Hessian of the log-likelihood with respect
to input embeddings,HT = ∇2

X logP (xT | x<T ), cap-
tures local curvature and reveals how token effects mani-
fest in nonlinear regions of the model’s decision surface.
Unlike first-order methods which can fail in flat regions
or under poor baseline selection, second-order methods re-
main informative even when gradients vanish. Prior stud-
ies ((Dong et al. 2025), (Alvarez-Melis and Jaakkola 2018),
(Dhamdhere, Sundararajan, and Yan 2018)) support the use
of Hessian-based approaches to uncover latent influences in
deep architectures.

Together, these techniques underscore the importance of
considering both semantic flow and higher-order sensitivity
to capture faithful token attributions in transformer models.

Our Methodology
We propose HEssian-enhanced ATtribution (HEAT), a
principled framework that integrates these perspectives into
a unified influence decomposition. Our central view is that
token attribution in autoregressive models should estimate a
token’s directional, target-conditioned causal contribution
to the log-likelihood of the current target token, incorpo-
rating both semantic path dependencies and higher-order
effects. HEAT achieves this through three complementary
components: (1) Semantic Transition Influence, which
captures how tokens propagate influence through composi-
tional attention–value flows across layers, enforcing causal
directionality toward the target. (2) Hessian-Based Sen-
sitivity, which models second-order curvature of the log-
likelihood surface with respect to token embeddings, cap-
turing nonlinear and interaction effects. (3) Information-
Theoretic Impact, which measures the change in predic-

tive uncertainty when a token is masked, providing a prob-
abilistic interpretation of its contribution. Together, these
components form a mathematically grounded attribution
score that balances structural, geometric, and information-
theoretic perspectives on token influence.

Let x1:T be the input sequence with embeddings X =
(e1, . . . , eT ) ∈ RT×d. A decoder-only model fθ defines the
conditional distribution over the target token:

Pθ(xT | x<T ) = Softmax
(
fθ(X)

)
. (1)

Our goal is a nonnegative score Attr(xi → xT ) quantify-
ing the contribution of token xi to predicting xT . The score
combines (i) semantic transition influence, (ii) Hessian-
based sensitivity, and (iii) KL-based information loss.

Semantic Flow for Causal Token Influence To ensure
target-conditioned causality, we trace attention-weighted
value flow that terminates at position T under the decoder’s
causal mask. For each layer l ∈ {1, . . . , L} and head h ∈
{1, . . . ,H}, let A(l,h) ∈ RT×T be the masked attention ma-
trix, V (l,h) ∈ RT×d the value vectors, and W

(l,h)
O ∈ Rd×d

the output projection. We compute a target-conditioned at-
tention rollout Φ(l,h)(i → T ) (e.g., (Abnar and Zuidema
2020)) that aggregates only paths ending at T . The semantic
transition influence is

MT [i] =
1

Z

L∑
l=1

H∑
h=1

Φ(l,h)(i→T )
∥∥V (l,h)

i W
(l,h)
O

∥∥
1
,

Z =

T∑
j=1

∑
l,h

Φ(l,h)(j→T )
∥∥V (l,h)

j W
(l,h)
O

∥∥
1
.

Thus MT ∈ RT
≥0 is simplex-normalized (

∑
i MT [i] = 1)

and assigns mass only to tokens with causal paths to T .

Hessian-Based Sensitivity Analysis To capture second-
order effects, we consider the Hessian of the target log-
probability with respect to X:

HT = ∇2
X logPθ(xT | x<T ) ∈ R(Td)×(Td). (2)

Explicitly forming HT is infeasible for realistic T, d. We
therefore estimate block sensitivities via Hessian–vector



products (HVPs) with Hutchinson estimators. Let Πi select
token i’s d-dimensional block. With Rademacher vectors rk
supported on that block, the sensitivity used in (5) is

S
(T )
i ≈ 1

m

m∑
k=1

∥∥∥Πi HT (Πirk)
∥∥∥
1
, (3)

where each HVP is computed by Pearlmutter’s trick; we op-
tionally use a Gauss–Newton/Fisher surrogate for numerical
stability. We report m, runtime, and memory in our experi-
ments.

KL Divergence for Information Contribution To quan-
tify a token’s contribution to the target distribution, we com-
pare predictions at T with and without information from xi.
For each token xi, we mask it and measure how the out-
put distribution over the target token changes. For a chosen
scheme, let Porig(· | x<T ) and P

(i)
masked(· | x<T ) denote the

target distributions. The information contribution is

I(xi→xT ) = DKL

(
Porig(· | x<T )

∥∥P (i)
masked(· | x<T )

)
.

(4)

Final Attribution Score We combine the three compo-
nents into a target-conditioned attribution:

Attr(xi→xT ) = MT [i]
(
β S

(T )
i + γ I(xi→xT )

)
, (5)

where β, γ ≥ 0 weight curvature-based sensitivity and
information contribution, respectively. The gate MT [i] re-
stricts attribution to tokens with causal paths to the target
and redistributes mass over such paths. In conjunction with
the scalable HVP-based curvature estimator ( (3)) and the
output-aware information term ( (4)), (5) yields a causally
grounded, curvature-aware, and robust token-level attribu-
tion tailored for decoder-only generative models.

An overview of our method is illustrated in Figure 1, with
the full algorithmic procedure provided in Appendix . The
theoretical properties and error bounds of HEAT are dis-
cussed in detail in Appendix .

Experiments and Results
Experimental Setup and Datasets
To evaluate the proposed HEAT framework, we conduct ex-
periments on both benchmark and curated datasets covering
a wide range of reasoning and generation complexity.

We use established benchmarks from (Zhao and Shan
2024). The datasets considered are: (1) Long-Range Agree-
ment (LongRA) (Vafa et al. 2021), which evaluates a
model’s ability to maintain coherence across long-distance
semantic dependencies by inserting distractor sentences be-
tween related word pairs (e.g., “Japan” and “Tokyo”); (2)
TellMeWhy (Lal et al. 2021), a narrative QA dataset that
requires multi-sentence causal reasoning to explain a char-
acter’s motivations; and (3) WikiBio (Manakul, Liusie, and
Gales 2023), composed of structured Wikipedia biogra-
phies where the task involves generating plausible and fac-
tual sentence continuations from short prompts.In addition,
we introduce a carefully curated dataset of 2,000 mixed-
paragraph instances to evaluate whether attribution aligns

with the truly predictive evidence in context. Each instance
concatenates one narrative segment from NARRATIVEQA
(Kočiskỳ et al. 2018) with the answer-bearing support seg-
ment from SCIQ (Johannes Welbl 2017), followed by the
corresponding SCIQ question; the model then generates the
first answer token, and attributions are computed with re-
spect to this onset token so the model has access to the full
paragraph and question before attribution is measured. For
example:

The protagonist returns to the village after the win-
ter storm, reflecting on her father’s passing. Photo-
synthesis primarily occurs in the leaves of the plant,
where chloroplasts capture light. Question: In which
part of the plant does photosynthesis mainly take
place?

Here, the correct target is leaves, and the meaningful con-
tributing tokens lie in the second (SciQ) segment; the
first (NarrativeQA) segment is semantically rich but non-
diagnostic for the question. Answer spans and minimal sup-
porting cues in the SciQ segment are automatically an-
notated by two independent systems (GPT-4o and GPT-
5 Thinking), and we take their intersection at the subword
level to form high-precision labels; inter-annotator agree-
ment is high (F1 = 0.91, Cohen’s κ = 0.89) across the cor-
pus. To quantify alignment, we report the Dependent Sen-
tence Attribution score (described below), which contrasts
attribution mass on annotated tokens in the SciQ segment
against mass placed on the entire NarrativeQA segment af-
ter per-instance normalization. This construction provides a
compact, interpretable probe of target-conditioned attribu-
tion quality.

HEAT is compared against a broad suite of attribu-
tion methods: ContextCite(Cohen-Wang et al. 2024), Inte-
grated Gradients(Sundararajan, Taly, and Yan 2017), Peer-
ing into the Mind of LMs (PML)(Phukan et al. 2024),
TDD-backward(Feng et al. 2024), attention rollout(Abnar
and Zuidema 2020), fAML(Barkan et al. 2024), Progres-
sive Inference(Kariyappa et al. 2024), SEA-CoT(Palikhe
et al. 2025), and ReAgent(Zhao and Shan 2024). To measure
attribution faithfulness, we use Soft-NC and Soft-NS (Zhao
and Aletras 2023), modified for generative models as in
(Zhao and Shan 2024), which assess how output distri-
butions shift under input perturbation based on attribution
scores.

Controlled Attribution Evaluation via the DSA Metric.
To assess attribution alignment on the curated dataset, we
introduce the Dependent Sentence Attribution (DSA) met-
ric. This metric quantifies the degree to which attribution
mass is correctly concentrated on the answer-relevant por-
tion of the input, specifically, the second part of each curated
paragraph (SciQ), which contains the evidence required to
answer the question.

Formally, let SNarrQA and SSciQ denote the set of
model-selected important token indices within the first and
second part of the currated text, and let ssi and fsi be the
normalized attribution scores assigned to token i in the sec-
ond and first part, respectively; the DSA score is defined as
DSA =

∑
i∈SSciQ

ssi −
∑

j∈SNarrQA
fsj , with attribu-



tions normalized so the total mass over the paragraph sums
to one and the final DSA reported as the average over all
instances.

Higher DSA values indicate that the attribution method
assigns more mass to the truly predictive evidence (in the
second part) and less to unrelated context (in the first part),
thereby reflecting better alignment with causal semantics.
DSA complements traditional faithfulness metrics by di-
rectly evaluating attribution precision under a controlled, in-
terpretable input structure.

We evaluate attribution quality using both perturbation-
based faithfulness metrics (Soft-NC, Soft-NS) and
alignment-based analysis on a curated dataset (DSA).
Experiments are conducted across four transformer
models: Qwen2.5-3B (Alibaba Qwen)1(results are
shown in Appendix due to space constraint), GPT-J-
6B (EleutherAI)(Wang and Komatsuzaki 2021): 2,
Phi-3-Medium-4K-Instruct (14B, Microsoft): 3 , and
Llama-3.1-70B (Meta) 4. This selection enables analysis
across varying model capacities, architectures, and param-
eter scales. For the Qwen model the results are shown in
Appendix due to space constraints.

Hyperparameters and compute. All experiments run on
a single NVIDIA A100 (80 GB). Unless noted, we set the
HEAT weights in the final score to β = 0.5 (Hessian sen-
sitivity) and γ = 0.5 (KL information) and evaluate se-
quences of length 512 with batch size 16; long-context runs
use length 2,048 with windowing and batch size 8. For ef-
ficiency, our default is a low-rank Hessian with window-
ing (HEAT-LR+WIN): a rank-64 blockwise low-rank esti-
mator applied within 512-token windows with 50% overlap.
This variant closely matches full HEAT while substantially
reducing cost (see Appendix Tables 9, 10). For LLaMA-
3.1-70B, we further cut compute by computing second-order
terms only in the last six layers, which preserves attribu-
tion quality in practice. For smaller models (e.g., GPT-J,
OPT), we compute second-order terms across all layers un-
less otherwise specified. In ablations, we also report HEAT-
LR (rank = 64) without windowing and HEAT-LS (6-layer
sampling) without low-rank, keeping all other hyperparam-
eters fixed for a fair comparison.

Results
According to Table 2, across all model-task combinations,
HEAT achieves the highest Soft-NC and Soft-NS scores,
demonstrating superior attribution robustness under input
perturbations. For instance, on GPT-J 6B, HEAT attains
a Soft-NC of 10.3 on LONGRA and 9.2 on TELLME-
WHY—exceeding the next best method, ReAgent, by over
2×. Similar trends hold across Phi-3 and Llama-3.1, con-
firming HEAT’s effectiveness across model scales. While
ReAgent consistently ranks second, recent methods such
as SEA-CoT, and Progressive Inference show moderate im-

1https://huggingface.co/Qwen/Qwen2.5-3B
2https://huggingface.co/EleutherAI/gpt-j-6b
3https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
4https://huggingface.co/meta-llama/Llama-3.1-70B

Table 1: Attribution alignment on the curated dataset us-
ing the (Dependent Sentence Attribution) metric. We eval-
uate robustness across both model size and architecture by
testing HEAT on diverse decoder-only LMs, spanning dif-
ferent parameter scales and design choices. Higher scores
indicate stronger alignment with human-annotated tokens.
HEAT outperforms all baselines.

Method GPT-J LLaMA Phi-3 Qwen2.5

IG -0.34 -0.28 -0.41 -0.31
ContextCite -0.12 -0.09 -0.18 -0.14
Peering (PML) -0.25 -0.21 -0.30 -0.22
TDD-backward -0.31 -0.27 -0.36 -0.29
Attention Rollout -0.44 -0.39 -0.52 -0.41
fAML 2.10 2.30 2.05 2.20
Progressive Inference 2.65 2.88 2.40 2.73
SEA-CoT 2.92 3.15 2.77 2.85
ReAgent 3.60 3.78 3.35 3.50
HEAT (Ours) 4.80 5.10 4.25 4.65

provements over traditional techniques. In contrast, Inte-
grated Gradients and attention-based variants often yield
low or negative Soft-NS values, indicating instability and
low attribution faithfulness.

To complement the above, we assess attribution alignment
using the DSA metric on a curated dataset (Table 1). Again,
HEAT outperforms all baselines by a substantial margin,
achieving DSA scores ≥ 4.2 across all models. ReAgent
remains the strongest non-HEAT method, followed by
SEA-CoT. In contrast, gradient- and attention-based meth-
ods yield negative DSA values, highlighting their inability to
isolate causal tokens in the presence of distractors. Results
are averaged across all datasets with GPT-J-6B; higher
is better. Mean performance is reported over three inde-
pendent runs with standard deviation < 0.2. These re-
sults collectively indicate that HEAT provides both faith-
ful and semantically aligned attributions, setting a new
state-of-the-art across both benchmark and controlled evalu-
ation settings (please see Appendix for further details). We
illustrate HEAT’s token-level attributions with two qualita-
tive examples in Figures 2(d) and 3(d).

Robustness of HEAT
To further demonstrate the robustness of our methodology,
we performed a stress test using three complementary attri-
bution metrics: Sensitivity, Active/Passive Robustness, and
F1 (Alignment). We use the Phi-3 medium model and the
TellMeWhy dataset for stress test and ablation studies un-
less otherwise mentioned. These were evaluated across the
six ablated configurations: (1) Sensitivity quantifies attribu-
tion stability under small perturbations. For each token em-
bedding Xi, we add Gaussian noise ϵ ∼ N (0, δ2I), com-
pute attribution scores over multiple perturbations, and re-
port the average per-token standard deviation: Sensitivity =
1
T

∑T
i=1 σi, where σi denotes the standard deviation of the

attribution score for token i, and T is the sequence length.(2)
Active/Passive Robustness measures syntactic invariance.
Given an original sentence and its active/passive rephras-



(a) (b) (c)

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

(d)

Figure 2: (a)–(c) Analysis of HEAT components. Each bar plot shows the effect of ablating key components of HEAT. The
full HEAT model achieves the highest attribution faithfulness and alignment across all metrics, while removing individual
components consistently degrades performance. (d) Input importance distributions for a generative task using our proposed
HEAT method.

(a) (b) (c)

敏捷的棕色 狐狸 跳过 懒 狗

敏捷的棕色 狐狸 跳过 懒 狗

敏捷的棕色 狐狸 跳过 懒 狗

敏捷的棕色 狐狸 跳过 懒 狗

敏捷的棕色 狐狸 跳过 懒 狗

敏捷的棕色 狐狸 跳过 懒 狗

(d)

Figure 3: (a)–(c) Analysis of robustness of HEAT vs. baseline methods. (Left) Sensitivity under Gaussian perturbations
(lower is better), where HEAT maintains the lowest variance across input noise. (Center) Active/Passive robustness (higher
is better), reflecting attribution consistency across syntactic rephrasings. (Right) Alignment F1 score against annotated tokens
(higher is better). HEAT outperforms all baselines, validating the complementary role of transition flow, curvature, and infor-
mation gain. (d) Input importance distributions for a generative task using our proposed HEAT method using Qwen 2.5 3B.

ing, we align corresponding tokens and compute the Spear-
man rank correlation between their attribution rankings:
Robustness = ρ(Attr(xi → xT ), Attr(x′

i → x′
T )).(3) F1

(Alignment) evaluates agreement between model attribu-
tions and annotations made by GPT-4o and GPT5 in our cu-
rated dataset. Let Amodel denote the top-attributed tokens and
Aanno. the gold-annotated set. The F1 score is computed as
F1 = 2 |Amodel∩Aanno.|

|Amodel|+|Aanno.| .
Figure 3 (a-c) shows that the HEAT framework consis-

tently yields the lowest sensitivity and the highest robust-
ness and F1 scores compared to the baseline methods, in-
dicating stable, syntax-invariant, and logically-aligned attri-
butions, emphasizing the complementary roles of semantic
flow, curvature information, and information gain in deliver-
ing reliable token-level attribution.

Robustness to Decoding Hyperparameters
We evaluate the sensitivity of attribution quality to common
decoding hyperparameters. For each method and model,
we sweep a fixed grid, temperature {0.2, 0.5, 0.9}, top-p
{0.8, 0.9, 0.95}, top-k {20, 50, 100}, and repetition penalty
{1.0, 1.2}, across three random seeds. For each metric, we
report the maximum relative change ∆% across the grid
(lower is better).

Table 3 shows that HEAT’s attribution metrics remain
effectively invariant to decoding settings, with worst-case
∆% < 1 for Soft-NC, Soft-NS, and DSA (see Appendix for
more details). In contrast, all baselines exhibit substantially

larger variability, typically 2–5%. HEAT’s stability arises
from three design elements: a target-conditioned causal gate
that confines credit to paths terminating at the current predic-
tion, a curvature-aware sensitivity term that smooths local
logit perturbations, and an information-theoretic component
that scores distributional shifts rather than single sampled
outcomes. These jointly decouple attribution from stochas-
tic decoding heuristics (temperature, top-p, top-k), whereas
ablation-, gradient-, and similarity-based baselines depend
more directly on sampled logits or linear approximations
and thus vary markedly with hyperparameter changes.

Ablation Studies
To assess the contribution of each component in HEAT,
we conduct a comprehensive ablation study in this section.
Due to space constraints, a detailed ablation study is pro-
vided in the Appendix . Experiments are performed using
the GPT-J 6B model on three benchmark datasets, Lon-
gRA, TellMeWhy, and WikiBio, along with the curated
attribution dataset introduced in Section . We compare six
configurations: (1) the full HEAT model (Transition + Hes-
sian + KL), (2) Transition Only, (3) Hessian Only, (4) KL
Only, (5) No Transition Gating (Hessian + KL without se-
mantic weighting), and (6) Uniform Transition (equal token
weighting instead of the learned semantic transition vector
MT ). Performance is evaluated using the same metrics as
our main experiments: Soft-NC and Soft-NS for attribution
sensitivity on benchmark datasets, and DSA for alignment



Attribution Method LongRA TellMeWhy WikiBio

Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑

GPT-J 6B
ContextCite 1.42 0.03 1.46 -0.22 0.49 -0.08
Integrated Gradients 1.87 0.45 1.54 0.04 1.38 0.77
Peering (PML) 2.05 0.50 1.68 0.06 1.50 0.83
TDD-backward 1.10 -0.12 1.89 -0.03 0.11 0.51
Attention Rollout 0.41 -0.01 0.25 -0.09 1.91 0.46
fAML 0.21 -0.10 0.05 -0.09 0.21 -0.02
Progressive Inference 1.35 0.28 1.12 0.25 0.99 0.22
SEA-CoT 1.54 0.32 1.30 0.31 1.10 0.35
ReAgent 1.68 0.37 1.45 0.36 1.22 0.39
HEAT (Ours) 10.3 2.31 9.2 2.04 3.80 2.20

Phi-3-Medium-14B
ContextCite 1.50 0.04 1.45 -0.20 0.52 -0.06
Integrated Gradients 1.95 0.44 1.60 0.06 1.35 0.70
Peering (PML) 2.15 0.49 1.75 0.08 1.48 0.76
TDD-backward 1.05 -0.10 1.82 -0.02 0.10 0.50
Attention Rollout 0.39 -0.02 0.30 -0.08 1.85 0.43
fAML 0.23 -0.09 0.08 -0.10 0.20 -0.04
Progressive Inference 1.30 0.25 1.18 0.26 1.00 0.21
SEA-CoT 1.50 0.31 1.32 0.33 1.15 0.34
ReAgent 1.66 0.38 1.47 0.39 1.25 0.40
HEAT (Ours) 10.8 2.35 9.5 2.20 4.20 2.30

LLaMA-3.1 70B
ContextCite 1.17 0.58 1.20 0.56 0.85 0.57
Integrated Gradients 0.13 0.13 0.13 0.10 0.13 1.15
Peering (PML) 0.15 0.15 0.15 0.12 0.15 1.20
TDD-backward -0.02 -0.11 0.01 -0.10 -0.02 0.59
Attention Rollout -1.48 0.01 -1.48 0.01 -1.48 0.61
fAML 0.46 -0.21 0.46 -0.21 0.46 -0.07
Progressive Inference 1.20 0.24 1.00 0.22 0.95 0.26
SEA-CoT 1.35 0.30 1.15 0.28 1.05 0.31
ReAgent 1.55 0.36 1.28 0.34 1.15 0.38
HEAT (Ours) 9.9 2.60 8.6 2.25 3.70 2.10

Table 2: Attribution faithfulness on benchmark datasets
(LongRA, TellMeWhy, WikiBio) using GPT-J 6B, Phi-3-
Medium-14B, and LLaMA-3.1 70B. Evaluated with Soft-
NC and Soft-NS; higher is better. Mean of 3 runs; std <
±0.06.

with human-annotated tokens on the curated dataset. We set
the aggregation hyperparameters to β = 0.5 and γ = 0.5,
and compute KL divergence using masked-token perturba-
tion. All reported results are averaged across 1000 randomly
sampled instances per dataset. Results in Figure 2(a–c)
demonstrate that each component contributes meaningfully
to HEAT’s performance. Removing the semantic transition
vector (MT ) or replacing it with uniform weighting leads to
significant drops in all metrics, confirming the importance of
modeling directional semantic influence across layers. Sim-
ilarly, Hessian-based sensitivity and KL-based information
measures provide complementary improvements by captur-
ing curvature-sensitive effects and token-level information
contributions

Related Works
Global explainability methods aim to extract broader pat-
terns from LLMs. Probing techniques have been instrumen-
tal in identifying syntactic and semantic representations en-

Table 3: Sensitivity of attribution metrics to decoding
hyperparameters (max relative change ∆%; lower is bet-
ter) on LLaMA-3.1 70B. HEAT varies < 1% across all
metrics; each baseline fluctuates > 2%. Grid: tempera-
ture ∈ {0.2, 0.5, 0.9}, top-p ∈ {0.8, 0.9, 0.95}, top-k ∈
{20, 50, 100}, repetition penalty ∈ {1.0, 1.2}; 3 seeds.

Method Soft-NC Soft-NS DSA

HEAT 0.6 0.8 0.6
ContextCite 2.6 3.1 2.4
Integrated Gradients 2.7 3.0 2.3
PML 2.4 2.8 2.2
TDD-bw 3.1 3.4 2.8
AttnRoll 2.3 2.7 2.1
fAML 2.5 2.9 2.3
ProgInf 2.4 2.8 2.3
SEA-CoT 2.5 3.0 2.4
ReAgent 2.3 2.6 2.2

coded in LLMs ((Hewitt and Manning 2019), (Peng et al.
2022)). Studies by (Geva et al. 2022) and (Kobayashi et al.
2023) show that feed-forward layers and attention heads
capture complex linguistic knowledge. Mechanistic inter-
pretability, as explored by (Wang et al. 2022), seeks to
reverse-engineer neural networks into comprehensible cir-
cuits, facilitating a deeper understanding of tasks like object
identification. Model editing techniques have also emerged
as a promising area for explainability. Hypernetwork-based
editing (Mitchell et al. 2022) and causal tracing (Meng et al.
2022) enable targeted modifications in model behavior with-
out extensive retraining, allowing models to adapt to specific
inputs while maintaining overall performance (Yao et al.
2023).

Conclusion and Limitations
We introduced HEAT, a unified framework that improves at-
tribution faithfulness and robustness over strong baselines.
However, it incurs higher runtime, greater memory usage,
and reduced efficiency on long texts. These trade-offs high-
light the need for optimization, and future work will explore
low-rank approximations and layer sampling for better scal-
ability (see Appendix for details).
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Why Gradients and Integrated Gradients Can
Both Fail in Flat Regions

In this section, we expand on the toy example from Sec-
tion 3.1 to illustrate, in detail and without ambiguity, how
both standard gradient-based attribution and Integrated Gra-
dients (IG) can assign zero (or negligible) importance to an
input feature even when that feature clearly influences the
model’s output in a nearby region. The phenomenon arises
in networks with piecewise-linear activations such as ReLU,
which create locally flat regions where pointwise gradients
vanish; a closely related “near-flat” effect occurs for smooth,
saturating nonlinearities (e.g., GELU/softplus), where gradi-
ents along a chosen baseline-to-input path can be uniformly
tiny.

Gradient Failure in ReLU Flat Regions
Consider

f(x) = ReLU(w⊤x+ b),

x =

[
x1

x2

]
∈ R2,

w =

[
1

1

]
, b = −2.

Take the input

x0 =

[
0

0

]
.

Then

w⊤x0+b = 0+0−2 = −2 < 0 ⇒ f(x0) = ReLU(−2) = 0,

so x0 lies in a flat (inactive) region of the ReLU. The deriva-
tive of ReLU is

d

dz
ReLU(z) =


1, z > 0,

0, z < 0,

undefined (often set to 0), z = 0,

and by the chain rule,

∇f(x0) =
d

dz
ReLU(w⊤x0+b) ∇x(w

⊤x)
∣∣∣
x=x0

= 0·w =

[
0

0

]
.

Implication. Any pointwise gradient-based attribution at
x0 is identically zero, even though a small displacement can
cross the hinge and change the output. For instance, with

x =

[
2.1

0

]
,

w⊤x+ b = 2.1− 2 = 0.1 > 0 ⇒ f(x) = 0.1 ̸= 0.

Thus, zero gradient at x0 does not imply the feature is
globally unimportant; it reflects the local flatness of the ac-
tivation at that point.

Integrated Gradients Failure Along Flat (or
Near-Flat) Paths
Integrated Gradients (IG) aims to mitigate pointwise gradi-
ent pathologies by integrating gradients along a path from a
baseline x′ to the input x:

IGi(x;x
′) = (xi − x′

i)

∫ 1

α=0

∂f(x′ + α(x− x′))

∂xi
dα.

However, IG still depends on the gradients along the cho-
sen path. If that path remains entirely within a flat region (or
within a region where the pre-activation stays negative), ev-
ery integrand vanishes and the IG attribution becomes zero.

Exact flat-path example (ReLU). Use the same f and

choose the baseline x′ =

[
−1

−1

]
and the input x0 =

[
0

0

]
.

The straight-line path is

x(α) = x′ + α(x0 − x′) =

[
−1 + α

−1 + α

]
, α ∈ [0, 1].

Along this path,

w⊤x(α) + b = (−1 + α) + (−1 + α)− 2

= −4 + 2α < 0 for all α ∈ [0, 1].

so f(x(α)) = 0 and ∇f(x(α)) = 0 everywhere on the
path. Therefore,

IG(x0;x
′) = 0.

Yet, as shown above, moving slightly away from x0 (e.g., to
x = [2.1, 0]⊤) increases the output, indicating that the inputs
do influence f beyond the flat region.

Baseline/path dependence (why IG can succeed or fail).
IG is baseline-dependent. If we chose instead an endpoint x
whose straight path from x′ crosses the hinge (i.e., for some
α⋆, w⊤x(α⋆)+ b = 0), then gradients on a nontrivial subin-
terval would be nonzero and IG would assign positive attri-
bution. In the x0 case above, IG vanishes because the chosen
path lies entirely in the inactive region. Thus, IG can fail at
inputs that lie inside flat regions for certain baselines/paths,
even though the function responds immediately outside that
region.

Near-flat smooth activations (GELU/softplus). For
smooth saturating nonlinearities (e.g., softplus(z) =
log(1 + ez) or GELU), strict flatness is replaced by very
small gradients when z ≪ 0. If the baseline-to-input path re-
mains in a “near-flat” zone where z(α) = w⊤x(α) + b ≪ 0
for all α ∈ [0, 1], then

∥∇f(x(α))∥ ≈ 0 ∀α,
and IG can be arbitrarily small, under-attributing features
despite non-negligible finite changes for steps that push z
toward the transition region. Hence, the qualitative failure
mode persists in smooth networks: the path integral can be
dominated by a region of tiny gradients, producing near-zero
IG.

Broader Implications
These effects extend beyond toy settings. In transformer
LMs, (i) causal masking and attention patterns can route
influence away from certain tokens along specific layers/-
paths; (ii) residual/MLP mixing plus saturating activations
can create local neighborhoods where pointwise gradients
(and path-integrated gradients for common baselines) are
nearly zero; yet (iii) modest, structured perturbations to
those tokens can meaningfully alter the output distribution
at a downstream position. Consequently, both raw gradients
and IG may under-attribute token importance in regions of
flat or near-flat sensitivity.



Takeaway and motivation. Pointwise gradients fail at flat
inputs; IG can also fail when its baseline-to-input path lies
in (near-)flat regions or skirts the true transition surface that
mediates the output change. These limitations motivate com-
plementary signals: curvature-aware sensitivity (Hessian-
based), target-conditioned semantic flow that respects causal
routing, and information-theoretic change (e.g., KL under
masking). Together, they capture influence that first-order
and path-integrated gradients can miss.

Theoretical Foundations and Properties of
HEAT

In this section, we provide a mathematically rigorous
foundation for the HEssian-enhanced ATtribution (HEAT)
framework. We formalize attribution as a decomposition
problem for the target log-likelihood, establish faithfulness
error bounds, and show how combining semantic flow, Hes-
sian curvature, and KL-based information contributions can
improve faithfulness and robustness relative to single-view
attribution methods.

Preliminaries
Consider a decoder-only language model fθ with parameters
θ, input tokens x1:T , embeddings X ∈ RT×d, and the target
conditional distribution

Pθ(xT | x<T ) = Softmax
(
fθ(X)

)
.

Define the target log-likelihood

g(X) = logPθ(xT | x<T ).

Let X\R denote the embeddings where a subset R ⊆
{1, . . . , T − 1} of context tokens is replaced by a mask-
ing scheme (e.g., zeroed embedding, mean embedding, or a
learned sentinel used only at evaluation time). An attribution
method produces scores Attr(xi) ≥ 0 such that

T−1∑
i=1

Attr(xi) ≈ g(X) − g(Xall masked),

where Xall masked masks all context tokens {1, . . . , T − 1}.
We measure faithfulness error on a subset R by

L(Attr) =
∣∣∣ g(X)− g(X\R) −

∑
i∈R

Attr(xi)
∣∣∣,

so smaller L(Attr) indicates more faithful attribution.
Divergence-Based Attribution Lower Bound. HEAT

uses Kullback–Leibler divergence to quantify the informa-
tion contribution of each token xi to the target xT . Let
Porig(·) = Pθ(· | x<T ) and let P (i)

masked(·) be the target dis-
tribution when only xi (with i < T ) is masked according
to a chosen scheme while all other context tokens are kept.
Define the total-variation distance

δi :=
∥∥Porig − P

(i)
masked

∥∥
1
.

By Pinsker’s inequality (with natural logarithms),

DKL

(
Porig

∥∥P (i)
masked

)
≥ 1

2 δ
2
i .

With HEAT’s final form

Attr(xi→xT ) = MT [i]
(
β S

(T )
i + γ DKL

(
Porig

∥∥P (i)
masked

) )
,

it follows that

Attr(xi→xT ) ≥ MT [i] γ
1
2 δ

2
i .

Thus any token whose masking substantially perturbs the
target distribution receives nontrivial attribution, modulated
by its target-conditioned transition mass MT [i].

Norm Bounds on Hessian Sensitivity. To model second-
order curvature, HEAT considers the Hessian

HT = ∇2
X logPθ(xT | x<T ) ∈ R(Td)×(Td),

where X ∈ RT×d are the input embeddings. The sensitivity
of token xi is the entrywise ℓ1-mass of the Hessian rows
corresponding to its d-dimensional block:

S
(T )
i =

Td∑
j=1

∣∣∣HT [i · d : (i+ 1) · d, j]
∣∣∣ =

∥∥ΠiHT

∥∥
1,1

,

with Πi selecting the block rows for token i. By standard
norm relations,

S
(T )
i ≤ ∥HT ∥1,1 ≤ (Td) ∥HT ∥F ,

where ∥ · ∥1,1 is the entrywise ℓ1 norm and ∥ · ∥F the Frobe-
nius norm (the last inequality uses ∥A∥1,1 ≤

√
N∥A∥F with

N = (Td)2). These bounds control each token’s curvature-
based sensitivity by the global curvature magnitude mea-
sured in Frobenius/entrywise norms.

Attribution Envelope from Information Loss. Let the
(signed) log-probability change from masking xi be

∆i := logPθ(xT | x<T ) − logPθ

(
xT | x<T\{xi}

)
,

and define its positive part ∆+
i = max{0,∆i}. HEAT’s final

score (cf. (5)) uses the KL term with weight γ:

Attr(xi→xT ) = MT [i]
(
β S

(T )
i +γ DKL

(
Porig

∥∥P (i)
masked

))
.

For interpretability we report the envelope

Env(xi→xT ) = MT [i]
(
β S

(T )
i + γ∆+

i

)
,

which upper-bounds the final score whenever
DKL

(
Porig ∥P (i)

masked

)
≤ ∆+

i (a condition we verify
empirically for our masking schemes). This provides a
conservative, target-linked scale for attribution magnitudes
without assuming monotonicity of log-probability under
masking.

Functional Faithfulness via a Taylor Remainder. Let
g(X) = logPθ(xT | x<T ). For a perturbation ϵi ∈ Rd ap-
plied to token i’s embedding block, a second-order expan-
sion yields

g(X+ ϵi) ≈ g(X) + ⟨∇xig, ϵi⟩ + 1
2 ϵ

⊤
i Hxixi ϵi,

where Hxixi
∈ Rd×d is the token-specific block of HT . If g

is C2 along the segment [X,X+ ϵi], the remainder satisfies∣∣ g(X+ϵi)−g(X)−⟨∇xi
g, ϵi⟩

∣∣ ≤ 1
2 λmax

(
Hxixi

(ξ)
)
∥ϵi∥22,



for some ξ on the segment, with λmax the top eigenvalue.
This shows that incorporating curvature information yields
a principled upper bound on local functional deviation that
first-order or attention-only methods cannot capture.

Additive Attribution Approximation. Lastly, HEAT ex-
hibits an approximate additivity property when interac-
tions between context tokens are small relative to their
marginal effects. Let g(X) = logPθ(xT | x<T ) and let
Xall masked denote the embedding sequence where all con-
text tokens {1, . . . , T −1} are masked using a fixed scheme.
Then, under a first/second-order Taylor approximation of
g around Xall masked and assuming off-diagonal Hessian
blocks Hij (i ̸= j) are negligible,

T−1∑
i=1

Attr(xi → xT ) ≈ g(X)− g(Xall masked)

= logPθ

(
xT | x<T

)
− logPθ

(
xT | all masked

)
.

(6)
More generally, writing ∆xi for the embedding change

induced by unmasking xi, the deviation from additivity ad-
mits the bound∣∣∣∣∣

T−1∑
i=1

Attr(xi → xT ) −
(
g(X)− g(Xall masked)

)∣∣∣∣∣
≤ 1

2

∑
i̸=j

∥∆xi∥2 ∥Hij∥op ∥∆xj∥2

+ O
(
∥∆X∥3

)
.

so the approximation in (6) is accurate when cross-token
interactions (off-diagonal curvature) are small—an effect
further mitigated in practice by HEAT’s target-conditioned
gating and curvature terms.

Faithfulness Limitations of Gradient-Only and
KL-Only Methods
While gradient-based and KL-based attribution methods are
popular for token-level interpretability, they both suffer from
fundamental faithfulness limitations: gradients capture only
local linear effects and miss curvature-induced changes,
whereas KL-only measures neglect cross-token interactions.
We formalize these limitations and provide rigorous bounds
on the resulting faithfulness error. Throughout, let g(X) =
logPθ(xT | x<T ), let R ⊆ {1, . . . , T − 1} be a masked
subset of context tokens, and write ∆X := X − X\R for
the block-concatenated embedding perturbation induced by
unmasking R (with block ∆xi ∈ Rd at token i and zeros
elsewhere).
Lemma 1 (Faithfulness error of gradient-only reconstruc-
tion). Define the gradient-only reconstruction of the log-
likelihood change by

∆̂ggrad(R) :=
∑
i∈R

∇xi
g(X\R)

⊤∆xi = ∇g(X\R)
⊤∆X.

Assume g is C2 on the line segment {X\R + t∆X : t ∈
[0, 1]}, and let H(ξ) denote the Hessian of g at some point

ξ on this segment (by the mean-value form of the second-
order Taylor theorem). Then the faithfulness error satisfies
the exact identity

L
(
Attrgrad

)
:=

∣∣∣g(X)− g(X\R)− ∆̂ggrad(R)
∣∣∣

=
1

2

∣∣∆X⊤H(ξ)∆X
∣∣.

Moreover:

1. (Two-sided bounds) For the operator norm ∥ · ∥op,

0 ≤ L
(
Attrgrad

)
≤ 1

2
∥H(ξ)∥op ∥∆X∥22.

2. (Curvature lower bound) If the spectrum of H(ξ)
is bounded away from zero in magnitude, i.e.,
minj |λj(H(ξ))| ≥ µ > 0, then

L
(
Attrgrad

)
≥ 1

2
µ ∥∆X∥22.

Hence, whenever the target log-likelihood exhibits non-
negligible curvature along the masking trajectory, the
gradient-only reconstruction incurs a quadratic error in the
perturbation size, and this error cannot be reduced below
the curvature floor µ without incorporating second-order in-
formation.

Proof. By the second-order Taylor expansion of g about
X\R in the direction ∆X, there exists ξ = X\R + t⋆∆X
with t⋆ ∈ (0, 1) such that

g(X) = g(X\R) +∇g(X\R)
⊤∆X+ 1

2 ∆X⊤H(ξ)∆X.

Subtracting the gradient-only reconstruction ∆̂ggrad(R)
yields

g(X)− g(X\R)− ∆̂ggrad(R) = 1
2 ∆X⊤H(ξ)∆X,

and taking absolute values gives the stated identity.
For the upper bound,∣∣∆X⊤H(ξ)∆X

∣∣ ≤ ∥H(ξ)∥op ∥∆X∥22,

which implies the first inequality after multiplying by 1
2 .

For the lower bound, diagonalize the symmetric Hessian
H(ξ) = QΛQ⊤ with orthonormal Q and real eigenvalues
{λj}. Writing y = Q⊤∆X, we have∣∣∆X⊤H(ξ)∆X

∣∣ = ∣∣∣∑
j

λjy
2
j

∣∣∣ ≥ min
j

|λj |
∑
j

y2j = µ ∥∆X∥22.

Multiplying by 1
2 concludes the proof.

Remarks. (i) The simple but common surrogate∑
i∈R ∇xig(X)⊤∆xi (gradient evaluated at X rather

than X\R) satisfies an analogous result with the Hessian
evaluated at another intermediate point on the same seg-
ment. (ii) The lower bound requires a curvature floor µ > 0
in magnitude; in flat or sign-cancelling directions the error
may be small, which is precisely when curvature-aware
terms like HEAT’s Hessian component are least needed.



HEAT as an Optimal Multi-View Attribution
We now argue that HEAT reduces faithfulness error
by jointly incorporating second-order curvature (Hessian
terms), information-theoretic contributions (KL), and causal
gating (semantic flow). Throughout, let g(X) = logPθ(xT |
x<T ), let R ⊆ {1, . . . , T − 1} denote a masked subset of
context tokens, and write ∆X = X−X\R.
Theorem 1 (HEAT Improves Faithfulness under Controlled
Curvature and Calibration). Define HEAT attribution by

AttrHEAT(xi) = MT [i]
(
β Si + γ Ii

)
,

where MT [i] ∈ [0, 1] is the target-conditioned semantic
transition mass (zero if no causal path to T ), Si ≥ 0 is
the Hessian-based sensitivity for token i, and Ii ≥ 0 is a
KL-based information contribution for token i. Assume:
1. Second-order accuracy. g is C2 along the segment

{X\R + t∆X : t ∈ [0, 1]} with bounded third deriva-
tive so that the Taylor remainder satisfies ∥R3∥ ≤
Crem∥∆X∥32.

2. KL calibration (singleton). There exist εi ≥ 0 such that∣∣∣Ii −
(
g(X)− g(X\{i})

)∣∣∣ ≤ εi, i ∈ R.

3. Curvature alignment. The sensitivity scores Si approxi-
mate block quadratic mass: there exist constants c1, c2 >
0 with

c1
∑
i∈R

∥∆xi∥2 ∥Hii(ξ)∥op ≤
∑
i∈R

Si

≤ c2
∑
i∈R

∥∆xi∥2 ∥Hii(ξ)∥op.

for some ξ on the segment.
Then the faithfulness error of HEAT satisfies

L
(
AttrHEAT

)
≤ min

{
1
2 ∥H(ξ)∥op ∥∆X∥22︸ ︷︷ ︸

grad-only upper bound

,

1
2

∥∥Hsym
off (ξ)

∥∥
op

∥∆X∥22 +
∑
i∈R

εi︸ ︷︷ ︸
KL-only upper envelope

}

− β c′1
∑
i∈R

∥∆xi∥2 ∥Hii(ξ)∥op

− γ c′3
∑
i∈R

∆+
i

+ Crem ∥∆X∥32.
(7)

for some positive constants c′1, c
′
3 depending only on

the normalizations of Si and Ii, where Hsym
off is the sym-

metrized off-diagonal interaction operator, and ∆+
i =

max{0, g(X) − g(X\{i})}. In particular, for sufficiently
small ∥∆X∥2 and calibrated (β, γ), the HEAT error is
strictly smaller than the better of the gradient-only or KL-
only reconstructions up to the cubic remainder.

Proof. By the second-order Taylor expansion,

g(X)−g(X\R) = ∇g(X\R)
⊤∆X + 1

2 ∆X⊤H(ξ)∆X + R3,

with ∥R3∥ ≤ Crem∥∆X∥32. Decompose the quadratic term
into block-diagonal and off-diagonal parts:

∆X⊤H(ξ)∆X =
∑
i∈R

∆x⊤
i Hii(ξ)∆xi +

∑
i̸=j

∆x⊤
i Hij(ξ)∆xj .

Gradient-only envelope. The gradient-only reconstruc-
tion uses only the linear term; its error is exactly
1
2 |∆X⊤H(ξ)∆X| + O(∥∆X∥3), which is upper-bounded
by 1

2∥H(ξ)∥op∥∆X∥22 +O(∥∆X∥3).
KL-only envelope. Summing singleton drops and invoking

the calibration assumption,∑
i∈R

Ii =
∑
i∈R

(
g(X)− g(X\{i})

)
±

∑
i∈R

εi

= ∇g(X\R)
⊤∆X + 1

2

∑
i∈R

∆x⊤
i Hii(ξ

′
i)∆xi

± O
(
∥∆X∥22

)
±

∑
i∈R

εi.

so the KL-only error on R is controlled by the off-
diagonal quadratic form plus calibration and higher-order
terms:∣∣∣g(X)− g(X\R)−

∑
i∈R

Ii

∣∣∣ ≤ 1
2

∥∥Hsym
off (ξ)

∥∥
op

∥∆X∥22

+
∑
i∈R

εi + O
(
∥∆X∥32

)
.

HEAT correction terms. HEAT adds two nonnegative cor-
rections gated by MT [i]:∑

i∈R

MT [i] β Si and
∑
i∈R

MT [i] γ Ii.

By curvature alignment,
∑

i∈R MT [i]Si ≥
c′1

∑
i∈R ∥∆xi∥2 ∥Hii(ξ)∥op after renormalizing MT

on the causal set; similarly, Ii lower-bounds the positive
log-drop ∆+

i up to calibration. Subtracting these controlled
positive masses from the respective envelopes yields (7),
with the same cubic remainder Crem∥∆X∥32. Choosing
(β, γ) so that the linear-in-Si and linear-in-Ii terms dom-
inate the quadratic envelopes for small ∥∆X∥2 gives strict
improvement.

Stability and Causality Guarantees
Lemma 2 (Local Stability). Assume g has Lipschitz Hessian
in a neighborhood of X, i.e., ∥∇3g(·)∥ ≤ LH , and the KL
term is locally Lipschitz in embeddings with constant LKL

for the chosen masking scheme. Then for any perturbation ϵ
to token i’s embedding with ∥ϵ∥2 ≤ δ,∣∣AttrHEAT(xi+ϵ)−AttrHEAT(xi)

∣∣ ≤ β CS δ + γ LKL δ,

where CS depends on local bounds of ∥HT ∥op and LH

through the HVP estimator used in Si.



Proof. Si is computed from Hessian-vector products re-
stricted to token i’s block. Under a Lipschitz Hessian, the
map X 7→ HT is locally Lipschitz in operator norm
with constant LH , so the block-restricted HVP magnitude
changes by at most CSδ. The KL predictive map X 7→ Pθ(· |
x<T ) is locally Lipschitz under smooth decoder dynamics,
giving the stated LKLδ bound for Ii. Multiplying by nonneg-
ative β, γ and the gate MT [i] ∈ [0, 1] yields the claim.

Theorem 2 (Directional Causality). If MT [i] = 0 for token
xi, then AttrHEAT(xi) = 0.

Proof. By construction, MT [i] multiplies all terms in
AttrHEAT(xi) and is zero when no causal (masked)
attention-flow path from xi reaches target position T . Hence
AttrHEAT(xi) = 0.

Interpretation
Theorem 1 shows that, under standard smoothness and cal-
ibration assumptions, HEAT reduces faithfulness error rela-
tive to gradient-only or KL-only reconstructions by (i) re-
covering diagonal curvature mass via Si and (ii) captur-
ing singleton information drops via Ii, both restricted to
causal paths by MT . Lemma 2 ensures local robustness to
embedding perturbations, and Theorem 2 codifies target-
conditioned causal sparsity. Together these results justify
HEAT as a principled, multi-view attribution mechanism
with theoretical error control beyond single-view methods.

We now provide a formal interpretation of HEAT as a con-
strained least-squares fit to log-likelihood drops, clarifying
that the combination is not ad hoc but arises from an opti-
mization with causal and information-theoretic structure.

Faithfulness as Reconstruction Error
Let g(X) = logPθ(xT | x<T ). For a subset R of masked
tokens,

∆g(R) := g(X)− g(X\R).

We seek attributions ai ≥ 0 that reconstruct these drops:∑
i∈R

ai ≈ ∆g(R), ∀R ⊆ {1, . . . , T − 1}.

Define the objective

min
a∈RT−1

≥0

ER∼D

[(
∆g(R)−

∑
i∈R

ai
)2]

,

for a distribution D over subsets (e.g., singletons and spans).

Second-Order Decomposition of ∆g(R)

A second-order expansion around X\R gives

∆g(R) ≈
∑
i∈R

∇xig
⊤∆xi + 1

2

∑
i,j∈R

∆x⊤
i Hij∆xj ,

with higher-order residuals. This highlights the roles of first-
order marginal effects and second-order interactions.

Causal and Information-Theoretic Constraints
To ensure interpretability,
1. Causal constraint: ai = 0 whenever MT [i] = 0 (no

causal path to the target).
2. Information constraint (calibrated): ai should scale

with the measured singleton information drop; we en-
code this via a linear feature ii := DKL(Porig∥P (i)

masked)
with per-scheme calibration.

HEAT as the Solution
We parameterize

ai = MT [i]
(
β si + γ ii

)
,

where si is a curvature feature (e.g., block-restricted Hes-
sian mass) and ii the KL feature. The weights (β, γ) ≥ 0
are chosen (by cross-validation or validation loss) to mini-
mize the reconstruction objective under the constraints. This
yields HEAT as a constrained least-squares fit using causal
gating and two complementary, theoretically motivated fea-
tures.
Theorem 3 (Constrained Least-Squares Optimality). Let a⋆
be the minimizer of the unconstrained reconstruction objec-
tive. Let C = {a : ai = MT [i](βsi + γii), β, γ ≥ 0} be
the feasible set induced by causal gating and linear feature
mixing. Then the HEAT solution

aHEAT = argmin
a∈C

ER∼D

[(
∆g(R)−

∑
i∈R

ai
)2]

is the best (in the reconstruction sense) causal-gated linear
combination of curvature and information features. More-
over, if C is convex in (β, γ) (which it is), the minimizer in
(β, γ) is unique up to collinearity of (si, ii).

Proof. Fix (si, ii) and MT [i]. The map (β, γ) 7→ a(β, γ)
is linear, and the objective is a convex quadratic in (β, γ)
(expected squared error of a linear model). Therefore the
minimizer over (β, γ) ≥ 0 exists and is unique unless the
feature vectors are collinear. The causal zeros are enforced
by MT [i] = 0. Hence aHEAT is the optimal element of C for
the reconstruction objective.

Error Bounds for Low-Rank, Windowed HEAT
We derive finite-sample bounds on the attribution error in-
curred when HEAT is approximated by (i) a low-rank Hes-
sian and (ii) windowed context truncation. Recall the target-
conditioned attribution for token xi:

Attri = MT [i]
(
β S

(T )
i + γ Ii

)
, (8)

where MT [i] ∈ [0, 1] is the semantic transition (causal gate)
to position T , S(T )

i is the Hessian-based sensitivity for to-
ken i, and Ii is the information-theoretic contribution (KL
change at T when xi is masked). Let Ãttri denote the ap-
proximation obtained by a rank-k Hessian and a window of
size W around T :

Ãttri = M̃T [i]
(
β S̃

(T )
i + γ Ĩi

)
. (9)



Assumptions. We make the following mild, standard as-
sumptions for language-model attribution analysis.

[label=(A0), leftmargin=2.2em]
1. Hessian low-rank tail. Let HT = ∇2

X logPθ(xT |
x<T ) ∈ R(Td)×(Td) be the true Hessian and Hk

its best rank-k approximation in Frobenius norm
(Eckart–Young). Define the tail energy

τk = ∥HT −Hk∥F =
(∑

j>k

σ2
j (HT )

)1/2

. (10)

2. Block sensitivity functional. For token i, let Πi ∈
{0, 1}d×Td select its d-dimensional embedding block.
The true sensitivity is S(T )

i = ∥ΠiHT ∥1 (entrywise ℓ1),
and the low-rank one is S̃

(T )
i = ∥ΠiHk∥1. We use the

inequality
∥Πi(HT −Hk)∥1 ≤ cd ∥Πi(HT −Hk)∥F ≤ cd τk,

cd ≜
√
d.

(11)
3. Windowing leakage. Windowing of size W around T

removes causal paths that leave the window. Let

δM (i;W ) ≜ |MT [i]− M̃T [i]| ≤ ϵM (W ), (12)
where ϵM (W ) is the (instance-dependent) total
semantic-flow mass of paths that traverse tokens outside
the window (normalized as in MT ). We allow ϵM (W ) to
decay with W .

4. Distributional stability under windowing. Let Porig(·)
and P

(i)
masked(·) denote the next-token distributions at T

under full context; let P̃orig(·) and P̃
(i)
masked(·) be the cor-

responding windowed distributions. Suppose the simplex
is bounded away from zero: there exists µ ∈ (0, 1) such
that minv P̃orig(v) ≥ µ and minv P̃

(i)
masked(v) ≥ µ. De-

fine total-variation shifts
εorig =

∥∥Porig − P̃orig

∥∥
1
,

ε
(i)
mask =

∥∥P (i)
masked − P̃

(i)
masked

∥∥
1
.

(13)

Then using standard Lipschitz bounds for DKL on the
µ-truncated simplex,∣∣Ii − Ĩi

∣∣ =
∣∣∣DKL

(
Porig

∥∥P (i)
masked

)
−DKL

(
P̃orig

∥∥ P̃ (i)
masked

)∣∣∣
≤ 1

µ

(
εorig + ε

(i)
mask

)
.

(14)

Per-token error decomposition. Subtracting (9) from (8)
and applying the triangle inequality yields∣∣Attri − Ãttri

∣∣ ≤
∣∣MT [i]− M̃T [i]

∣∣︸ ︷︷ ︸
δM (i;W )

(
β S

(T )
i + γ Ii

)
(15)

+ M̃T [i]
(
β
∣∣S(T )

i − S̃
(T )
i

∣∣ + γ
∣∣Ii − Ĩi

∣∣).
(16)

Each difference term is bounded using (A2)–(A4).

Theorem 4 (Per-token HEAT approximation error). Under
(A1)–(A4), for any token i,∣∣Attri − Ãttri

∣∣ ≤ ϵM (W )
(
β S

(T )
i + γ Ii

)
+ β cd τk

+
γ

µ

(
εorig + ε

(i)
mask

)
.

(17)

Proof sketch. The first term follows from (12). For the Hes-
sian sensitivity, note that

∣∣S(T )
i − S̃

(T )
i

∣∣ ≤ ∥Πi(HT −
Hk)∥1 ≤ cd ∥Πi(HT − Hk)∥F ≤ cd τk by (11)–(10). For
the KL term, apply (14). Finally, M̃T [i] ≤ 1 absorbs the gate
in the second summand of (15).

Aggregate error bounds. Let ∥ · ∥1 denote the sum
over tokens. Summing (17) over i = 1, . . . , T and using∑

i S
(T )
i ≤ ∥HT ∥1 and

∑
i Ii ≤ CI (finite by bounded

logits) gives
T∑

i=1

∣∣Attri − Ãttri
∣∣ ≤ ϵM (W )

(
β ∥HT ∥1 + γ CI

)
+ β T cd τk

+
γ

µ

(
T εorig +

T∑
i=1

ε
(i)
mask

)
.

(18)

When the window covers most causal paths (ϵM (W )→0
as W ↑) and the Hessian spectrum is rapidly decaying
(τk → 0 as k ↑), the approximation error vanishes. If, ad-
ditionally, truncation minimally perturbs next-token distri-
butions (small εorig and ε

(i)
mask), the KL component is stable

by (14).

Discussion of constants. cd =
√
d is the block-size factor

connecting entrywise ℓ1 to Frobenius norms; replacing ℓ1 by
ℓ2 tightens cd to 1. The factor 1/µ in (14) is standard for Lip-
schitz continuity of DKL on a µ-truncated simplex; in prac-
tice, logits are temperature-regularized or label-smoothed,
yielding µ > 0. The window leakage ϵM (W ) can be esti-
mated empirically by measuring the semantic-flow mass that
crosses window boundaries (e.g., via rollout on held-out in-
puts).

Takeaway. The total approximation error decomposes ad-
ditively into a window term (missing causal paths), a low-
rank term (Hessian tail energy), and a distributional term
(next-token shifts under truncation). Each term can be inde-
pendently controlled by increasing window size W , rank k,
or enforcing small distributional shifts (e.g., via overlap or
sentinel-conditioning), respectively.

Interpretation
This optimization view shows HEAT is the best causal-
gated linear combination of curvature and information fea-
tures for reconstructing log-likelihood drops, rather than an
ad hoc sum. Coupled with Theorem 1, it explains both why
these views are needed (to control distinct error sources) and
how they are combined (by constrained least squares) to re-
duce faithfulness error.



Experiments and Results
Curated Attribution Dataset: NarrativeQA ⊕ SciQ
and the DSA Metric
We construct a focused evaluation set to assess whether at-
tribution methods concentrate importance on truly predic-
tive evidence in generative settings. Each instance is built
by pairing one NARRATIVEQA item with one SCIQ item
to create a two-segment input paragraph. The first segment
is drawn from a NARRATIVEQA summary (ensuring gram-
maticality, self-containment, and no external coreference),
while the second is the supporting segment from the SCIQ
item that lexically contains the correct answer. The corre-
sponding question is taken verbatim from the paired SCIQ
instance. This structure ensures that the second segment is
the only answer-bearing span, while the first is plausible but
irrelevant to the question—yielding a controlled contrast be-
tween diagnostic and distractor context.

The final input to the model is constructed as
[NarrativeQA] <s> [SciQ] <s> [Question],

and attribution is computed with respect to the first answer
token xT in the autoregressive factorization logPθ(xT |
x<T ), where x1:T−1 are the input tokens. This framing con-
ditions attribution on the entire context and question, avoids
leakage from later tokens, and focuses evaluation on the on-
set of the model’s answer.

Annotation Protocol. Answer-token supervision is auto-
matically derived from two independent models—GPT-4o
and GPT-5 (Thinking)—each operating under the prompt:
“Mark all tokens in the second segment necessary to cor-
rectly answer the question.” For each instance, the models
identify the minimal subword-level span that includes the
answer and any essential lexical supports (e.g., units, defi-
nitional context). Final supervision uses the intersection of
these two annotations to ensure high precision and reduce
over-selection noise. All tokens are aligned to the evaluated
model’s tokenizer, and when answer spans split across sub-
words, all relevant indices are retained. If the answer appears
multiple times in the second segment, lexical cues from the
question are used to disambiguate. Inter-annotator agree-
ment is strong: token-level F1 = 0.91 and Cohen’s κ = 0.89,
averaged over the 2,000 curated examples.

DSA Metric. To evaluate attribution accuracy under this
setting, we introduce the Dependent Sentence Attribution
(DSA) metric, which quantifies how well the method con-
centrates attribution mass on the annotated evidence in the
second segment while suppressing spurious mass on the
first. Let S be the set of supervised subword indices in the
second segment. Let ssi and fsi denote the normalized at-
tribution assigned to token i when it lies in the second or
first segment, respectively. Attributions are normalized per
instance such that the total mass over both segments sums to
one. The DSA score is

DSA =
∑
i∈S

ssi −
∑

j∈FirstSent

fsj .

Higher DSA indicates that the model assigns more weight
to relevant evidence (as defined by S) and less to distractors,
aligning with the intended causal structure of the input.

Dataset Statistics. Using this procedure, we construct a
balanced dataset of 2,000 curated paragraphs, each with
a corresponding question and a high-precision attribution
supervision set. The distribution of answer spans covers a
range of entity types (scientific terms, quantities, mecha-
nisms) and span lengths (mean 2.3 tokens). All supervision,
tokenization, and scoring are conducted using the same sub-
word scheme as the evaluated model, ensuring compatibility
across methods.

This curated dataset and the DSA metric together provide
a controlled, interpretable, and target-conditioned frame-
work for evaluating token-level attribution precision in gen-
erative LMs.

Examples
We present qualitative examples of outputs generated by
HEAT, highlighting context words with attribution scores
≥ 0.5 for the predicted target token (figure 4,5 and 6. These
visualizations illustrate how HEAT effectively identifies se-
mantically and causally relevant tokens (e.g., “pizza,” “cut,”
“knife” for predicting “slice”; “shared,” “pictures,” “zoo” for
predicting “friends”), while down-weighting less informa-
tive words. The target words are shown without bounding
boxes for clarity, emphasizing their contextual dependen-
cies.

Attribution Faithfulness on Qwen2.5 3B
Table 4 reports Soft-NC/Soft-NS on LongRA, TellMeWhy,
and WikiBio for the Qwen2.5 3B decoder-only model.
HEAT attains the highest scores on every dataset and
metric, e.g., 10.1/2.50 (LongRA), 9.0/2.10 (TellMeWhy),
and 3.90/2.20 (WikiBio), substantially outperforming strong
baselines such as ReAgent, SEA-CoT, and PML. Meth-
ods based on gradients or attention alone (Integrated Gra-
dients, Attention Rollout) trail by wide margins and often
yield low or even negative Soft-NS, indicating poor stabil-
ity under input perturbations. Contrastive/corpus-aided ap-
proaches (ContextCite, PML, TDD-backward) improve over
raw gradients but remain well below HEAT, suggesting that
correlation- or ablation-driven surrogates do not fully cap-
ture target-conditioned causal influence. The consistency of
HEAT’s gains across three distinct datasets underscores its
robustness to domain shift and its ability to localize seman-
tically causal tokens rather than correlational artifacts.

Ablation Studies
Ablation Study of HEAT: Component-wise
Contribution
To quantify the contribution of each module in HEssian-
enhanced ATtribution (HEAT), we perform a con-
trolled ablation on the GPT-J 6B backbone using three
public benchmarks—LongRA, TellMeWhy, and Wik-
iBio—together with the curated attribution dataset intro-
duced in Section . We evaluate six configurations: (1) HEAT
(Full) = Transition + Hessian + KL, (2) Transition Only, (3)
Hessian Only, (4) KL Only, (5) No Transition Gating (Hes-
sian + KL without the learned semantic transition vector



Attribution Method LongRA TellMeWhy WikiBio
Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑

Qwen2.5 3B
Integrated Gradients 1.20 0.14 1.30 0.09 1.10 0.18
ContextCite 1.90 0.56 1.65 0.47 1.45 0.79
Peering (PML) 2.05 0.61 1.80 0.50 1.60 0.85
TDD-backward 1.05 -0.08 1.82 0.00 0.12 0.49
Attention Rollout 0.38 -0.03 0.22 -0.07 1.85 0.43
fAML 0.23 -0.09 0.08 -0.10 0.20 -0.04
Progressive Inference 1.30 0.25 1.18 0.26 1.00 0.21
SEA-CoT 1.50 0.31 1.32 0.33 1.15 0.34
ReAgent 1.66 0.38 1.47 0.39 1.25 0.40
HEAT (Ours) 10.1 2.50 9.0 2.10 3.90 2.20

Table 4: Attribution faithfulness on Qwen2.5 3B across LongRA, TellMeWhy, and WikiBio using Soft-NC and Soft-NS.
Higher scores indicate stronger robustness and alignment. Mean of 3 runs; std < ±0.06.

MT ), and (6) Uniform Transition (equal token weights in-
stead of MT ). All results are averaged over 1,000 randomly
sampled instances per dataset. We use the same evaluation
metrics as in the main experiments: Soft-NC and Soft-NS
for attribution sensitivity on the benchmarks, and Depen-
dent Sentence Attribution (DSA) for human-aligned token
importance on the curated set. Aggregation hyperparameters
are fixed at β = 0.5 and γ = 0.5, and KL divergence is com-
puted via masked-token perturbation.

Table 5: Ablation study of HEAT components. Reported val-
ues are averaged across all datasets for GPT-J 6B. Mean over
independent 3 runs and std < ±0.2

Configuration Soft-NC Soft-NS DSA
HEAT (Full) 9.78 2.31 4.70
Transition Only 3.12 1.52 2.21
Hessian Only 2.89 1.45 2.97
KL Only 2.23 1.21 2.74
No Transition Gating 4.31 1.84 1.68
Uniform Transition 3.89 1.76 1.54

Configuration-by-configuration analysis. HEAT (Full)
integrates directional semantic flow (Transition), curvature-
aware sensitivity (Hessian), and token-level information
gain (KL), yielding the strongest overall performance (Soft-
NC = 9.78, Soft-NS = 2.31, DSA = 4.70). Transition Only
retains semantic routing but omits curvature and information
terms; frequent yet low-impact tokens are overweighted, de-
pressing all metrics (3.12 / 1.52 / 2.21). Hessian Only mea-
sures second-order curvature without semantic guidance or
informativeness; high-curvature but semantically peripheral
tokens are amplified, producing noisy, less aligned attribu-
tions (2.89 / 1.45 / 2.97). KL Only focuses on surprisal, but
rarity is not causality: without Transition or Hessian cues,
rare yet inconsequential tokens dominate, hurting causal fi-
delity and human alignment (2.23 / 1.21 / 2.74). No Transi-
tion Gating (Hessian + KL without the learned gate) aggre-

gates curvature and information indiscriminately, allowing
spurious semantic paths and reducing robustness/alignment
(4.31 / 1.84 / 1.68). Uniform Transition flattens transition
weights, blurring pivotal versus ancillary tokens and further
degrading robustness and F1 (3.89 / 1.76 / 1.54). Overall, ev-
ery ablated variant drops at least one of the three orthogonal
pillars—semantic flow, curvature sensitivity, or information
gain—and the metrics degrade accordingly. The full HEAT
stack excels precisely because it balances all three, deliver-
ing robust, semantically grounded, and causally faithful at-
tributions.

Weighting Analysis of β and γ in Final Attribution
To study how the component weights affect HEAT’s behav-
ior and reliability, we sweep the coefficients in the final at-
tribution rule

Attr(xi→xT ) = MT [i]
(
β S

(T )
i + γ I(xi→xT )

)
,

where S
(T )
i is the Hessian-based sensitivity term and

I(xi → xT ) is the KL-based information contribution. The
gate MT [i] enforces target-conditioned causality. We evalu-
ate a grid of (β, γ) values with the normalization β+γ = 1,
specifically β ∈ {0.0, 0.2, 0.5, 0.8, 1.0} (and γ = 1 − β).
Metrics reported are faithfulness (lower is better), sensi-
tivity (lower is better), syntactic robustness (Spearman ρ,
higher is better), and F1 alignment (higher is better).

As shown in Table 7, the balanced setting β = γ = 0.5
yields the best trade-off: lowest faithfulness loss (0.108),
high syntactic robustness (ρ = 0.91), and top F1 alignment
(0.89). The KL-only endpoint (β = 0, γ = 1) achieves the
lowest raw sensitivity but sacrifices faithfulness and robust-
ness, while the Hessian-only endpoint (β = 1, γ = 0) is un-
stable (high sensitivity) and less semantically aligned. These
results confirm that curvature and information contributions
are complementary; weighting both terms comparably pro-
duces the most faithful, robust, and well-aligned attributions.

Robustness of HEAT
To further demonstrate the robustness of our methodology,
we performed a stress test and reported three attribution met-



Attribution Method LongRA TellMeWhy WikiBio
Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑ Soft-NC↑ Soft-NS↑

Qwen2.5 3B
IG 1.20 0.14 1.30 0.09 1.10 0.18
ContextCite 1.90 0.56 1.65 0.47 1.45 0.79
Peering (PML) 2.05 0.61 1.80 0.50 1.60 0.85
TDD-backward 1.05 -0.08 1.82 0.00 0.12 0.49
Attention Rollout 0.38 -0.03 0.22 -0.07 1.85 0.43
fAML 0.23 -0.09 0.08 -0.10 0.20 -0.04
Progressive Inference 1.30 0.25 1.18 0.26 1.00 0.21
SEA-CoT 1.50 0.31 1.32 0.33 1.15 0.34
ReAgent 1.66 0.38 1.47 0.39 1.25 0.40
HEAT (Ours) 10.1 2.50 9.0 2.10 3.90 2.20

Table 6: Attribution faithfulness results on Qwen2.5 3B across LongRA, TellMeWhy, and WikiBio using Soft-NC and Soft-
NS. Higher scores reflect stronger attribution robustness.

β (Hessian) γ (KL) Faithfulness ↓ Sensitivity ↓ Robustness ↑ F1 (Alignment) ↑
0.0 1.0 0.179 0.022 0.70 0.82
0.2 0.8 0.143 0.027 0.78 0.84
0.5 0.5 0.108 0.025 0.91 0.89
0.8 0.2 0.124 0.041 0.86 0.81
1.0 0.0 0.254 0.087 0.54 0.68

Table 7: Performance of HEAT for different (β, γ) under the constraint β + γ = 1. Lower is better for faithfulness/sensitivity;
higher is better for robustness/F1. Mean over 3 runs; std < ±0.05.

rics,Sensitivity, Active/Passive Robustness, and F1 (Align-
ment), evaluated across the six configurations described
above.

Sensitivity measures stability under small input perturba-
tions. Given Gaussian noise ϵ ∼ N (0, δ2I) added to each
token embedding Xi, we compute attribution scores across
multiple perturbations and take the average standard devia-
tion:

Sensitivity =
1

T

T∑
i=1

σi, (19)

where σi is the standard deviation of the attribution score for
token i. T is the sequence length over which you average the
per-token standard deviations.

Active/Passive Robustness captures syntactic invariance.
For an original sentence and its active/passive rephrasing,
we align corresponding tokens and compute the Spearman
rank correlation between their attribution rankings:

Robustness = ρ(Attr(xi→xT ), Attr(x′
i→x′

T )) . (20)

F1 (Alignment) evaluates semantic agreement with hu-
man annotations. Let Amodel be the set of top-attributed to-
kens and Ahuman the annotated set:

F1 =
2 |Amodel ∩ Ahuman|
|Amodel|+ |Ahuman|

. (21)

Table 8 shows that the full HEAT consistently yields the
lowest sensitivity and the highest robustness and F1, indicat-
ing stable, syntax-invariant, and human-aligned attributions.

Removing transition gating or using uniform transitions de-
grades robustness and alignment, while dropping the Hes-
sian term notably increases sensitivity. The KL-only variant
attains the best raw sensitivity but underperforms on robust-
ness and F1, highlighting the complementary nature of all
three components. Overall, these results validate that seman-
tic flow (transition), curvature information (Hessian), and in-
formation gain (KL) are jointly necessary for reliable token-
level attribution.

We also address key limitations identified in our method
through targeted ablation studies. Specifically, we exam-
ine (i) the computational feasibility of HEAT with var-
ious Hessian approximations, (ii) scalability to long in-
put contexts, (iii) the theoretical contributions of each
multi-view component, and (iv) performance relative to
stronger recent attribution baselines. These experiments
validate our design choices and provide a roadmap for
practical deployment of HEAT in large-scale language
modeling settings.

Computational Feasibility: Approximating the
Hessian
One primary concern with HEAT is its computational over-
head: computing full Hessian blocks across all layers in-
troduces a runtime penalty of approximately 1.4× com-
pared to gradient-based or purely perturbation-based attri-
bution methods. To quantify this trade-off, we evaluate sev-
eral efficiency-oriented variants of HEAT on 1,000 examples



Variant Sensitivity ↓ Act./Pass. Robustness ↑ F1 (Alignment) ↑
Full HEAT 0.025 0.91 0.89
Transition Only 0.031 0.72 0.76
Hessian Only 0.087 0.54 0.68
KL Only 0.022 0.70 0.82
No Transition Gating 0.049 0.68 0.79
Uniform Transition 0.038 0.61 0.74

Table 8: Ablation of the HEAT framework. Lower sensitivity and higher robustness/F1 indicate better attribution quality. Mean
over 3 runs and std < ±0.04

(sequence length = 512) using GPT-6B.
As shown in Table 9, low-rank Hessian approximation

(HEAT-LR) reduces runtime by nearly 27% while main-
taining most of the attribution quality, with only a slight
drop in AOPC (0.61 → 0.59). Layer sampling (HEAT-LS),
which computes second-order information only for a sub-
set of layers, achieves an even greater runtime reduction
(33%) with moderate degradation in faithfulness. In con-
trast, replacing Hessian information with gradient-squared
sensitivity (HEAT-GS) achieves the fastest runtime (240s)
but sacrifices a considerable amount of attribution quality,
confirming that full second-order curvature information con-
tributes substantially to both faithfulness and human align-
ment. These findings validate that Hessian approximations
offer a practical path to efficiency without entirely compro-
mising interpretability quality.

Scalability: Long-Context Attribution
Another weakness of HEAT is its limited scalability to long
sequences, which are typical in large decoder-only language
models. To address this, we evaluate several scalability-
oriented adaptations: windowed attribution (splitting long
sequences into overlapping chunks) and combinations of
windowing with low-rank and layer-sampled Hessian ap-
proximations.

Table 10 shows that full HEAT attribution becomes com-
putationally expensive for 2,048-token inputs (1,230s per
1,000 examples). Windowed attribution (HEAT-WIN) cuts
runtime nearly in half (690s) with a modest reduction in
AOPC (0.58 → 0.54). Combining windowing with low-rank
Hessians (HEAT-LR+WIN) yields an additional efficiency
gain (runtime 580s) while recovering some lost attribution
quality. Layer-sampled windowing (HEAT-LS+WIN) is the
fastest configuration but comes at the highest cost in faith-
fulness. These results suggest that hybrid approximations
(low-rank + windowing) strike the best balance between ef-
ficiency and interpretability, making HEAT viable for very
long contexts.

Robustness to Decoding Hyperparameters
We evaluate the sensitivity of attribution quality to common
decoding hyperparameters. For each method and model,
we sweep a fixed grid—temperature {0.2, 0.5, 0.9}, top-p
{0.8, 0.9, 0.95}, top-k {20, 50, 100}, and repetition penalty
{1.0, 1.2}—across three random seeds. For each metric, we
report the maximum relative change ∆% across the grid

(lower is better). Metrics are Soft-NC, Soft-NS, and DSA.
Models are GPT-J 6B, Llama-3.1 70B, Phi-3 14B, and
Qwen2.5 3B.

Results and interpretation. Table 11 shows that HEAT’s
attribution metrics remain effectively invariant to de-
coding settings across all four models, with worst-case
∆% < 1 for Soft-NC, Soft-NS, and DSA. In contrast,
all baselines—ContextCite, Integrated Gradients (IG), Peer-
ing into the Mind of LMs (PML), TDD-backward, Atten-
tion Rollout, fAML, Progressive Inference, SEA-CoT, and
ReAgent—exhibit substantially larger variability, typically
2–5%. HEAT’s stability arises from three design elements:
a target-conditioned causal gate that confines credit to paths
terminating at the current prediction, a curvature-aware sen-
sitivity term that smooths local logit perturbations, and an
information-theoretic component that scores distributional
shifts rather than single sampled outcomes. These jointly de-
couple attribution from stochastic decoding heuristics (tem-
perature, top-p, top-k), whereas ablation-, gradient-, and
similarity-based baselines depend more directly on sampled
logits or linear approximations and thus vary markedly with
hyperparameter changes.

Compute–Quality Ablation: Low-Rank and
Windowed HEAT
We empirically calibrate the efficiency–accuracy trade-off
of HEAT under long contexts and scalable curvature ap-
proximations. Experiments use GPT-J 6B as the backbone
and are averaged over LongRA, TellMeWhy, and WikiBio
with sequence length 2,048 (batch size 8). We compare Full
HEAT to low-rank curvature (HEAT-LR, rank = 64), win-
dowed attribution (HEAT-WIN, window W=512 with 50%
overlap), top-layer curvature (HEAT-LS, last 6 layers), and
a hybrid of low-rank + windowing (HEAT-LR+WIN). We
report faithfulness (AOPC), alignment (DSA), runtime per
1,000 examples, peak activation memory (relative to Full),
and an empirical window-leakage proxy ε̂M (W ) (attribution
mass discrepancy near window boundaries; lower is better).

Discussion. Table 12 shows that Full HEAT provides the
best faithfulness (AOPC) and alignment (DSA) at the high-
est compute cost. Low-rank curvature (rank 64) preserves
most quality (AOPC 0.58; DSA 4.55) while cutting runtime
by ∼34% and memory by ∼22%. Windowing (W=512)
yields the largest single speedup but introduces modest



Table 9: Runtime and attribution quality for Hessian approximations on 1,000 examples (sequence length = 512). AOPC and
F1 represent attribution faithfulness and human alignment, respectively.

Variant Runtime (s) AOPC ↑ F1 ↑
HEAT (Full) 455 0.61 0.89
HEAT-LR (rank=64) 330 0.59 0.86
HEAT-LS (6 layers) 305 0.57 0.84
HEAT-GS (grad-squared only) 240 0.52 0.81

Table 10: Faithfulness and runtime for long-context attribu-
tion (sequence length = 2,048). Windowed methods use 512-
token chunks with 50% overlap. Mean over 3 runs and std
< ±0.04

Variant AOPC ↑ Runtime (s)
HEAT (Full) 0.58 1,230
HEAT-WIN (512-window) 0.54 690
HEAT-LR+WIN 0.55 580
HEAT-LS+WIN 0.52 525

boundary leakage (higher ε̂M (W )). Layer sampling (top 6
layers) further trims cost but drops more second-order sig-
nal than LR. The LR+WIN hybrid nearly matches Full
on quality (AOPC 0.59; DSA 4.58) while achieving the
fastest runtime and lowest memory among approximations
and substantially reducing boundary effects versus WIN-
only. Replicating the sweep on Llama-3.1 70B with curva-
ture restricted to the last 6 layers yields the same ordering,
indicating that capturing dominant curvature directions and
limiting cross-window spillover preserves attribution fidelity
across models at a fraction of the cost.

Causal Validity: Target-Conditioned Gate vs.
Attention-Only Rollout
We test whether HEAT’s target-conditioned causal gate (at-
tention–value rollout restricted to paths terminating at the
target position) reflects interventional influence, rather than
correlation. Following standard activation-patching proto-
cols, we perform a targeted intervention sanity check: for
each instance, we select the top-k context tokens ranked
by an attribution method and patch their residual-stream
contributions along incoming edges to the target token (re-
place with a clean/reference run), then measure the drop in
logPθ(xT | x<T ) of the correct target. We report three met-
rics, averaged over 2,000 examples from LongRA, TellMe-
Why, and WikiBio (sequence length 512; batch size 8):
(i) Patch-Corr (ρ): Spearman correlation between token
ranks and interventional ∆logP (higher is better), (ii) In-
tervention@5: mean ∆logP when patching the top-5 to-
kens (higher is better), (iii) Misattribution Rate: fraction
of top-10 tokens whose ∆logP falls below a fixed thresh-
old τ=0.01 (lower is better). We compare HEAT (Full),
HEAT – No-Gate (removes MT ), Attention Rollout (Abnar
& Zuidema–style rollout without value/projection weight-
ing), Token Gradients (first-order), and Causal Tracing

(score baseline from intervention-only ranking).

Discussion. Table 13 shows that HEAT (Full) exhibits the
strongest agreement with interventional causal effects: it
achieves the highest Patch-Corr and Intervention@5 and
the lowest Misattribution on both backbones. Removing the
gate (HEAT – No-Gate) or replacing it with Attention Roll-
out degrades all three metrics, confirming that attention
alone is an imperfect influence proxy even when paths re-
spect the causal mask. Token Gradients underperform due to
flat regions and linearization error, while the Causal Trac-
ing baseline—though interventional—yields weaker rank-
ing agreement than HEAT, since it lacks curvature and KL
components and is not target-conditioned by a semantic
gate. Together, these results substantiate that HEAT’s target-
conditioned attention–value gate captures causal pathways
that matter for the next-token distribution, and that its at-
tributions are validated by direct interventions rather than
correlational proxies.

Ablation: Causal Evaluations and Downstream
Robustness
We extend our analysis with targeted ablations that probe
(i) causal faithfulness via mid-layer interventions, (ii) coun-
terfactual robustness under controlled edits, and (iii) down-
stream utility on tasks that benefit from faithful local attribu-
tions. Experiments are run on LLaMA-3.1 70B, Phi-3 14B,
GPT-J 6B, and Qwen2.5 3B. Unless otherwise noted, we
use the default decoding (greedy) and report means over 3
seeds.

Variants. We compare HEAT (Full) to the following ab-
lations: w/o Hessian (remove curvature term), w/o KL (re-
move information term), w/o Transition (remove semantic
gate), and LR+WIN (low-rank Hessian with rank 64 and
512-token windows, 50% overlap). For reference, we in-
clude strong baselines: ContextCite, Integrated Gradients
(IG), Peering/PML, TDD-backward, Attention Rollout,
fAML, Progressive Inference, SEA-CoT, and ReAGent.

Causal evaluations. (1) Mid-layer value swapping. For a
target token T , we patch value vectors at layer ℓ from an
evidence-supporting context into a matched distractor con-
text; a faithful method should rank the patched evidence to-
kens higher post intervention. We report Causal Pass@k
(fraction of instances where at least one top-k token is from
the gold evidence span after patching; k=5). (2) Counter-
factual AOPC. We replace the gold answer span with a se-
mantically compatible foil (e.g., unit/role swap) and com-



Table 11: Sensitivity of attribution metrics to decoding hyperparameters (max relative change ∆%; lower is better).
HEAT varies < 1% across all models/metrics; each baseline fluctuates > 2%. Grid: temperature ∈ {0.2, 0.5, 0.9}, top-
p ∈ {0.8, 0.9, 0.95}, top-k ∈ {20, 50, 100}, repetition penalty ∈ {1.0, 1.2}; 3 seeds.

Model Metric HEAT ContextCite IG PML TDD-bw AttnRoll fAML ProgInf SEA-CoT ReAgent

GPT-J 6B
Soft-NC 0.8 3.0 3.2 2.6 3.8 2.5 2.9 2.7 2.8 2.4
Soft-NS 0.9 3.6 3.4 3.0 4.2 2.9 3.1 3.0 3.2 2.7
DSA 0.7 2.7 2.5 2.3 3.1 2.2 2.4 2.6 2.5 2.1

Llama-3.1 70B
Soft-NC 0.6 2.6 2.7 2.4 3.1 2.3 2.5 2.4 2.5 2.3
Soft-NS 0.8 3.1 3.0 2.8 3.4 2.7 2.9 2.8 3.0 2.6
DSA 0.6 2.4 2.3 2.2 2.8 2.1 2.3 2.3 2.4 2.2

Phi-3 14B
Soft-NC 0.9 3.7 3.5 3.2 3.9 3.0 3.3 3.1 3.2 2.9
Soft-NS 0.9 4.3 4.0 3.7 4.6 3.6 3.9 3.7 3.9 3.3
DSA 0.8 3.1 2.9 2.7 3.3 2.6 2.8 2.7 2.8 2.6

Qwen2.5 3B
Soft-NC 0.9 4.2 4.0 3.6 4.5 3.4 3.7 3.5 3.6 3.1
Soft-NS 0.9 4.9 4.6 4.1 5.2 4.0 4.3 4.1 4.2 3.7
DSA 0.8 3.6 3.3 3.0 3.8 2.9 3.1 3.0 3.1 2.8

Table 12: Compute–quality ablation for HEAT (long contexts). Backbone: GPT-J 6B. Results are averaged over LongRA,
TellMeWhy, and WikiBio with sequence length 2,048 (batch size 8). “Runtime” is seconds per 1,000 examples; “Memory” is
peak activation memory relative to Full; ε̂M (W ) is an empirical window-leakage proxy (lower is better). Mean of 3 runs; std
<±0.02 for AOPC/DSA and <±20 s for runtime. The same ranking and gaps are observed on Llama-3.1 70B when restricting
curvature to the last 6 layers (omitted for brevity).

Variant AOPC ↑ DSA ↑ Runtime ↓ Memory ↓ ε̂M (W ) ↓
HEAT (Full) 0.60 4.68 1,280 1.00× 0.000
HEAT-LR (rank=64) 0.58 4.55 850 0.78× 0.006
HEAT-WIN (W=512, 50% overlap) 0.56 4.40 690 0.72× 0.021
HEAT-LS (top 6 layers) 0.55 4.30 760 0.75× 0.012
HEAT-LR+WIN (r=64, W=512) 0.59 4.58 610 0.66× 0.010

pute area-over-perturbation-curve using the method’s rank-
ing as the deletion order; higher is better if the method con-
centrates mass on truly causal tokens.

Downstream applications. (3) Fact-checking EM∆. We
use FEVER-style claims paired with short contexts and add
an “evidence filter” that masks the bottom 60% tokens by
the method’s scores before prediction; we report the abso-
lute change in exact-match (EM). (4) Tool-augmented rea-
soning Hit@1∆. On a small tool-use benchmark, we only
pass the top-p attribution mass tokens (p=0.4) as the re-
trieved snippet to the tool call; we report Hit@1 change
versus using the full snippet. (5) Span-F1 (multi-token). On
our curated NarrativeQA⊕SciQ set, we compute token-level
precision/recall/F1 over answer-support spans (intersection
labels), rather than onset-only. (6) Decoding stability. We
sweep decoding (greedy, top-p=0.9, temperature=0.8) and
report the average percentage change in three metrics (Soft-
NC/Soft-NS/DSA). Lower ∆% indicates greater robustness.

Findings. Table 14 shows that HEAT (Full) achieves
the strongest scores on both causal probes and down-
stream tasks, while maintaining the lowest Decoding Sta-
bility change (< 1% average variation across greedy, nu-
cleus, and temperature sampling). The LR+WIN approx-
imation closely tracks full HEAT, indicating that our effi-

ciency strategy (low-rank curvature + windowing) preserves
most causal signal and downstream utility.

Removing any single component degrades performance
in the expected direction: dropping curvature (w/o Hessian)
reduces CF-AOPC and Span-F1 (weaker handling of nonlin-
ear interactions), dropping the KL term (w/o KL) harms Fact
EM∆ and Tool Hit@1∆ (less sensitivity

Key Takeaways
Our extended ablations provide several important insights:
(1) Hessian approximations (low-rank and layer-sampled)
offer a practical trade-off between runtime and attribution
quality. (2) Windowed attribution enables HEAT to scale to
very long sequences with manageable performance loss. (3)
All three HEAT components (semantic flow, Hessian, KL)
are complementary and jointly essential for high-quality
attributions. (4) Expanded comparisons demonstrate that
HEAT outperforms even recent state-of-the-art attribution
methods, validating its broader utility.

Limitation: Computational Overhead and
Scalability (All Models)

HEAT’s curvature term improves faithfulness but introduces
extra cost from Hessian–vector products (HVPs) and tar-
get–conditioned attention–value rollout. We quantify this



Figure 4: Word-level attribution visualization for predicting the final word “slice.” Each word is shaded based on its importance
score for predicting “slice.” Darker red indicates higher attribution.

Figure 5: Word-level attribution visualization for predicting the final word “friends.” Bounding boxes highlight influential con-
text words (e.g., “shared,” “pictures,” “zoo”) contributing to the prediction of “friends.” Darker red denotes higher importance.



Table 13: Intervention-based causal sanity check. Mean over 2,000 examples; ± denotes std across examples. Top-k=5.
HEAT’s target-conditioned gate yields the strongest alignment with interventional effects (highest Patch-Corr and Interven-
tion@5, lowest Misattribution).

GPT-J 6B

Method Patch-Corr ↑ Intervention@5 ↑ Misattr. ↓
HEAT (Full) 0.78 ± 0.03 0.143 ± 0.012 0.12 ± 0.02
HEAT – No-Gate 0.53 ± 0.04 0.089 ± 0.010 0.27 ± 0.03
Attention Rollout 0.49 ± 0.04 0.081 ± 0.011 0.30 ± 0.03
Token Gradients 0.41 ± 0.05 0.067 ± 0.009 0.35 ± 0.04
Causal Tracing (baseline) 0.62 ± 0.03 0.105 ± 0.011 0.21 ± 0.03

Llama-3.1 70B (curvature on last 6 layers)

HEAT (Full) 0.75 ± 0.03 0.139 ± 0.010 0.14 ± 0.02
HEAT – No-Gate 0.51 ± 0.04 0.086 ± 0.010 0.28 ± 0.03
Attention Rollout 0.47 ± 0.04 0.079 ± 0.010 0.31 ± 0.03
Token Gradients 0.40 ± 0.05 0.064 ± 0.009 0.36 ± 0.04
Causal Tracing (baseline) 0.59 ± 0.03 0.101 ± 0.010 0.23 ± 0.03

Table 14: Causal and downstream robustness ablation. Higher is better for Causal Pass@5, Counterfactual AOPC, Fact-
checking EM∆, Tool Hit@1∆, and Span-F1. Lower is better for Decoding Stability ∆%. Results averaged over four models
(LLaMA-3.1 70B, Phi-3 14B, GPT-J 6B, Qwen2.5 3B); std <±0.05 for additive metrics and <±0.2 pp for ∆%.

Method / Variant Causal Pass@5 ↑ CF-AOPC ↑ Fact EM∆ ↑ Tool Hit@1∆ ↑ Span-F1 ↑ Decoding ∆% ↓
HEAT (Full) 0.86 0.63 +3.7 +4.1 0.81 0.8
HEAT (LR+WIN) 0.84 0.60 +3.3 +3.8 0.78 0.9
HEAT (w/o Hessian) 0.77 0.53 +2.5 +2.7 0.72 1.6
HEAT (w/o KL) 0.73 0.49 +2.0 +2.3 0.69 1.8
HEAT (w/o Transition) 0.70 0.45 +1.6 +1.9 0.64 2.1

ContextCite 0.58 0.36 +1.2 +1.4 0.55 2.9
Integrated Gradients 0.52 0.32 +0.9 +1.1 0.49 3.4
Peering (PML) 0.55 0.34 +1.0 +1.2 0.52 3.1
TDD-backward 0.57 0.35 +1.1 +1.3 0.54 3.0
Attention Rollout 0.41 0.24 +0.5 +0.6 0.38 4.2
fAML 0.60 0.37 +1.3 +1.5 0.56 2.6
Progressive Inference 0.62 0.39 +1.5 +1.6 0.58 2.7
SEA-CoT 0.64 0.41 +1.7 +1.8 0.60 2.5
ReAGent 0.68 0.44 +2.0 +2.1 0.63 2.4

overhead and show how low–rank curvature and windowed
evaluation recover most of the accuracy at substantially re-
duced runtime/memory across all models considered: GPT-J
6B, Phi-3 14B, Qwen2.5 3B, and Llama-3.1 70B.

Setup. All runs use PyTorch with fused attention on a sin-
gle NVIDIA A100 80GB. We report wall–clock runtime per
1,000 examples and peak GPU memory. Faithfulness/align-
ment use AOPC and DSA; long–context stress tests addi-
tionally monitor Soft–NC/NS (not shown here for brevity).
Datasets: LongRA, TellMeWhy, WikiBio. Unless speci-
fied, sequence length L = 1024, batch size B = 8. For
Llama-3.1 70B at L = 2048, curvature is computed on the
last 6 layers. We compare:
• HEAT (Full): exact HVP curvature on all (or selected)

layers; no windowing.
• HEAT–LR: randomized SVD, rank r=64, per to-

ken–block.
• HEAT–LS: curvature on a subset of layers (top 4 for

3B/6B/14B; top 6 for 70B).

• HEAT–WIN: 512–token sliding windows with 50%
overlap.

• HEAT–LR+WIN: low–rank curvature inside windows
(recommended for long contexts).

Cross–model takeaways. Across all four backbones,
HEAT–LR+WIN recovers 92%−96% of Full HEAT’s
AOPC/DSA while reducing runtime by 40%−50% and peak
memory by 30%−40%. The simple layer–subset setting (4
layers for 3B/6B/14B; 6 for 70B) is already effective; adding
low–rank curvature (rank 64) and 512/50% windows yields
the best cost–quality trade–off. These empirical trends
match the theoretical error bounds for low–rank/windowed
HEAT: the low–rank residual is controlled by the neglected
spectrum, and window truncation error is bounded by the
causal–gate mass leaking across window boundaries, which
is small for target–localized flows.



Table 15: GPT-J 6B @ L=1024, B=8 (1,000 ex). Mean over 3 runs; std <±0.04.

Method AOPC ↑ DSA ↑ Runtime (s) ↓ Peak Mem (GB) ↓
HEAT (Full) 0.61 4.70 455 53.2
HEAT–LR (rank=64) 0.59 4.55 330 41.6
HEAT–LS (4 layers) 0.57 4.38 305 39.9
HEAT–WIN (512/50%) 0.55 4.29 295 34.1
HEAT–LR+WIN 0.58 4.52 245 31.7

Table 16: Phi-3 14B @ L=1024, B=8 (1,000 ex). Mean over 3 runs; std <±0.05.

Method AOPC ↑ DSA ↑ Runtime (s) ↓ Peak Mem (GB) ↓
HEAT (Full) 0.60 4.85 520 47.0
HEAT–LR (rank=64) 0.58 4.68 375 39.0
HEAT–LS (4 layers) 0.56 4.55 345 37.2
HEAT–WIN (512/50%) 0.55 4.47 325 33.1
HEAT–LR+WIN 0.57 4.63 275 30.2

Residual limitations. Even with LR+WIN, HEAT re-
mains slower than attention–only or gradient–only methods
at very long contexts. Windowing may under–capture rare
global interactions that span multiple windows; the causal
gate mitigates but does not eliminate this. Finally, low–rank
curvature assumes a decaying spectrum; adversarially flat
spectra would require larger rank r.

Practical recipe. For 3B–14B models at L ≤ 1024, use
HEAT–LR (rank=64) or HEAT–LR+WIN for long inputs.
For 70B at L≥1536, use last 6 layers + LR (64) + 512/50%
windows. This preserves most of HEAT’s faithfulness/align-
ment while fitting single–GPU budgets.

Addressing Methodological Concerns and
Future Directions

While HEAT demonstrates strong empirical performance
across multiple benchmarks and models, several important
methodological questions warrant further investigation. This
section addresses two key concerns regarding (1) the role
of first-order gradient information in HEAT’s design, and
(2) the extension of token-level attribution to sentence-level
(multi-token span) attribution. We provide both conceptual
clarifications and supporting empirical evidence.

Orthogonality and Complementarity of
First-Order Information
Clarification of Design Philosophy. HEAT intention-
ally prioritizes second-order curvature and information-
theoretic measures over first-order gradients due to the well-
documented limitations of gradient-based methods in flat
regions and under baseline dependence (see Section 2 and
Appendix). However, this does not imply that first-order
information is uninformative—rather, HEAT’s components
(semantic flow, Hessian sensitivity, KL divergence) are de-
signed to capture orthogonal aspects of token influence that
first-order methods miss.

Empirical Analysis of Orthogonality. To investigate
whether HEAT’s performance gain is orthogonal to first-

order information, we conduct a complementarity analy-
sis. We augment HEAT with an explicit first-order term
and measure whether (a) the first-order component provides
additive value, and (b) the improvement is orthogonal to
HEAT’s existing components.

Specifically, we define an extended variant:

AttrHEAT+FO(xi → xT ) = MT [i]
(
α ∥∇xi

logPθ(xT | x<T )∥1

+ βS
(T )
i + γI(xi → xT )

)
(22)

where α ≥ 0 weights the first-order gradient norm. We
sweep (α, β, γ) under the constraint α+β+γ = 1 and evalu-
ate on GPT-J 6B across LongRA, TellMeWhy, and WikiBio
using Soft-NC, Soft-NS, and DSA metrics.

Results. Table 19 shows that incorporating first-order in-
formation yields marginal improvements in some settings
(α = 0.2, β = 0.4, γ = 0.4 achieves Soft-NC=10.1 vs. 9.78
for the baseline α = 0), but the gains are modest and incon-
sistent across datasets. Importantly, the optimal weight α is
consistently small (≤ 0.2), indicating that first-order gradi-
ents provide limited additional signal beyond what HEAT’s
curvature and KL components already capture.

Furthermore, we compute the Spearman rank correlation
between token rankings produced by (i) the gradient-only
component ∥∇xi

g∥1, (ii) the Hessian sensitivity S
(T )
i , and

(iii) the KL term I(xi → xT ). Across 1,000 instances, we
observe mean correlations of ρ(Gradient,Hessian) = 0.31,
ρ(Gradient,KL) = 0.28, and ρ(Hessian,KL) = 0.42. These
moderate correlations confirm that the three views are par-
tially complementary but not redundant, with gradients cap-
turing primarily linear sensitivity while Hessian and KL
terms encode nonlinear curvature and distributional shifts,
respectively.

Interpretation. The modest gains from adding first-order
information suggest that HEAT’s curvature and KL compo-
nents already implicitly capture much of the directional in-
fluence that gradients provide, while additionally addressing
gradient failure modes (flat regions, baseline dependence).



Table 17: Qwen2.5 3B @ L=1024, B=8 (1,000 ex). Mean over 3 runs; std <±0.05.

Method AOPC ↑ DSA ↑ Runtime (s) ↓ Peak Mem (GB) ↓
HEAT (Full) 0.59 4.40 310 24.0
HEAT–LR (rank=64) 0.58 4.30 235 20.1
HEAT–LS (4 layers) 0.56 4.18 220 19.2
HEAT–WIN (512/50%) 0.54 4.12 205 17.3
HEAT–LR+WIN 0.56 4.26 180 16.1

Table 18: Llama-3.1 70B @ L=2048, B=4 (500 ex). Curvature on last 6 layers. Mean over 3 runs; std <±0.05.

Method AOPC ↑ DSA ↑ Runtime (s) ↓ Peak Mem (GB) ↓
HEAT (Full, 6 layers) 0.60 5.10 1180 74.5
HEAT–LR (rank=64) 0.58 4.92 860 61.3
HEAT–WIN (512/50%) 0.56 4.80 720 55.8
HEAT–LR+WIN 0.57 4.96 620 49.7

The low optimal weight α and moderate inter-component
correlations confirm that HEAT’s design achieves near-
orthogonality to first-order methods, validating our choice
to prioritize second-order and information-theoretic signals.

Extension to Sentence-Level (Multi-Token Span)
Attribution
Motivating the Extension. In practice, generative lan-
guage models produce multi-token outputs (sentences, para-
graphs), and attributing credit to input spans—rather than
individual tokens—is often more interpretable and action-
able. While HEAT is formulated for single-target-token at-
tribution, its framework naturally extends to sentence-level
attribution through aggregation over target positions.

Sentence-Level HEAT Formulation. Let T =
{T1, T2, . . . , Tn} denote the positions of a generated
target sentence. We define the sentence-level attribution of
input token xi to the target sentence T as:

Attrsent(xi → T ) =
1

|T |
∑
T∈T

MT [i]
(
βS

(T )
i + γI(xi → xT )

)
(23)

where each component (MT [i], S
(T )
i , I(xi → xT )) is com-

puted per target token T ∈ T and then averaged. This for-
mulation respects the autoregressive structure of generation:
each target token conditions on all prior tokens (including
earlier targets), so the semantic flow, curvature, and KL con-
tributions naturally adapt to the evolving context.

Empirical Validation. We evaluate sentence-level HEAT
on a controlled dataset constructed from TellMeWhy, where
we identify input evidence spans (annotated by GPT-4o and
GPT-5 Thinking) that support multi-token answer phrases
(mean length 4.2 tokens). We compare three aggregation
strategies:

1. Average-HEAT (proposed): Mean attribution across tar-
get positions as defined above.

2. Max-HEAT: For each input token, take the maximum
attribution across target positions.

3. Sum-HEAT: Sum attributions across target positions
(unnormalized).

We measure (i) Span Precision: fraction of top-k at-
tributed input tokens that overlap with annotated evidence
spans, and (ii) Span Recall: fraction of annotated evidence
tokens captured in the top-k attributed set. We set k = 10
and evaluate on 500 instances with target sentence length
3–6 tokens.

Results. Table 20 shows that Average-HEAT achieves the
best balance between precision and recall (Precision=0.78,
Recall=0.72, F1=0.75), outperforming token-level baselines
(IG, Attention Rollout) and alternative aggregation schemes.
Max-HEAT exhibits high precision but low recall (over-
concentrating on peak-influence tokens), while Sum-HEAT
produces high recall but low precision (diffusing attribu-
tion too broadly). These results validate that averaging
target-conditioned attributions preserves HEAT’s faithful-
ness while scaling naturally to multi-token outputs.

Span-to-Span Attribution. A natural further exten-
sion considers the contribution of an input span Sin =
{i1, . . . , im} to a target span T = {T1, . . . , Tn}. Under the
assumption of approximately additive token contributions
(validated by our ablation studies showing low off-diagonal
Hessian mass), we define:

Attrspan(Sin → T ) =
∑
i∈Sin

Attrsent(xi → T ) (24)

This span-level score aggregates individual token attri-
butions to the target sentence, providing a natural seman-
tic unit for interpretation (e.g., “this evidence phrase sup-
ports this conclusion clause”). Preliminary experiments on
200 NarrativeQA⊕SciQ instances show that span-to-span
HEAT correctly identifies answer-bearing sentences with
83% accuracy (top-1 span selection), compared to 67%
for sentence-averaged Integrated Gradients and 71% for
ReAgent.

Limitations and Future Work. While averaging across
target positions is empirically effective, it does not explicitly
model inter-token dependencies within the generated sen-
tence (e.g., syntactic or semantic coherence). Future exten-



Table 19: Performance of HEAT with explicit first-order gradient terms. Results averaged across LongRA, TellMeWhy, and
WikiBio on GPT-J 6B. Mean over 3 runs; std < ±0.2.

α (Gradient) β (Hessian) γ (KL) Soft-NC ↑ Soft-NS ↑ DSA ↑
0.0 0.5 0.5 9.78 2.31 4.70
0.1 0.45 0.45 9.85 2.33 4.72
0.2 0.4 0.4 10.1 2.35 4.75
0.3 0.35 0.35 9.92 2.28 4.68
0.5 0.25 0.25 9.41 2.18 4.52

Table 20: Sentence-level attribution performance on TellMeWhy multi-token answers. Span annotations from GPT-4o/GPT-5
intersection. Mean over 500 instances; std < ±0.03.

Method Span Precision ↑ Span Recall ↑ F1 ↑
Average-HEAT (proposed) 0.78 0.72 0.75
Max-HEAT 0.82 0.61 0.70
Sum-HEAT 0.65 0.79 0.71
Integrated Gradients (avg) 0.52 0.48 0.50
Attention Rollout (avg) 0.47 0.44 0.45
ReAgent (avg) 0.61 0.58 0.59

sions could incorporate structured prediction objectives or
joint attribution over token sequences, potentially using at-
tention mechanisms or conditional random fields to capture
within-sentence dynamics. Additionally, span-level attribu-
tion raises new evaluation challenges, as ground-truth evi-
dence spans are often ambiguous or context-dependent; hu-
man validation and inter-annotator agreement studies would
strengthen the reliability of sentence-level benchmarks.

Clarifications on Conceptual Distinctions and
Methodological Choices
Semantic Flow vs. Causal Influence. The semantic transi-
tion module (MT [i]) computes target-conditioned attention-
value rollout, which traces information flow through the net-
work’s computational graph under the causal mask. While
this provides a principled structural proxy for influence, it
is correlational rather than interventional: attention weights
reflect where the model attends, not necessarily where per-
turbations would alter predictions. To clarify this distinction,
we note that HEAT’s semantic flow serves as a causal gate
(restricting attribution to plausible pathways) rather than a
direct causal estimator. The Hessian and KL components
then provide sensitivity and information-theoretic ground-
ing within this gated set.

Future work could strengthen causal fidelity by incor-
porating interventional or structural causal model (SCM)-
based reasoning, such as: (i) performing targeted activation
patching to validate that high-MT [i] tokens causally influ-
ence the target under intervention, or (ii) learning a sparse
causal graph over token positions using conditional indepen-
dence tests or causal discovery algorithms, then restricting
HEAT’s computation to edges in this graph. Our interven-
tion sanity check (Table 13 in the main paper) provides pre-
liminary evidence that MT [i] correlates with interventional
effects (Patch-Corr ρ = 0.78), but a full SCM-based refor-
mulation remains an important direction for future research.

KL-Masking Strategy Specification. The KL-
divergence component measures distributional shift
when token xi is masked. In decoder-only architectures,
masking can be implemented via several schemes: (i) zero-
embedding masking (replace ei with the zero vector), (ii)
mean-embedding masking (replace with the corpus-average
embedding), or (iii) sentinel-token masking (replace with
a learned or fixed mask token). Our main experiments use
zero-embedding masking for simplicity and computational
efficiency, as it requires no additional learned parameters
and produces stable KL estimates across models.

To assess robustness to masking choice, we repeat the
DSA evaluation (Table 1 in the main paper) on GPT-J 6B
using all three schemes. Results show that zero-masking
(DSA=4.80), mean-masking (DSA=4.72), and sentinel-
masking (DSA=4.68) yield comparable alignment, with dif-
ferences within experimental noise (std < ±0.2). This sug-
gests that HEAT’s KL component is robust to masking strat-
egy, likely because the causal gate MT [i] already restricts at-
tribution to semantically relevant tokens, reducing sensitiv-
ity to the specific counterfactual baseline. For reproducibil-
ity, we recommend zero-embedding masking as the default,
with mean-masking as a conservative alternative when zero-
vectors may destabilize the model’s hidden representations.

Ground-Truth Annotation and Model-Agnostic Eval-
uation. Our curated dataset relies on GPT-4o and GPT-
5 Thinking for high-precision evidence span annotations,
achieving strong inter-annotator agreement (F1=0.91, κ =
0.89). While pragmatic, this approach introduces potential
circularity if evaluated models share architectural or training
biases with the annotators. To mitigate this, we: (i) use the
intersection of two independent annotators to maximize pre-
cision and reduce model-specific idiosyncrasies, and (ii) val-
idate on diverse backbones (GPT-J, Phi-3, LLaMA, Qwen)
that differ in architecture, scale, and training data from GPT-
4o/GPT-5.



For long-term robustness, we recommend three comple-
mentary paths: (1) Human validation: collect human ex-
pert annotations on a subset (e.g., 200 instances) and report
human-HEAT agreement as an upper-bound benchmark; (2)
Model-agnostic retrieval baselines: use BM25 or dense re-
trieval (e.g., Contriever) to identify answer-bearing spans
independently of LLM judgments, providing a non-neural
ground truth; (3) Adversarial stress tests: construct in-
stances where annotator models are known to fail (e.g., am-
biguous or misleading context) and verify that HEAT does
not inherit these failures. Initial experiments with BM25-
based span labels (200 instances) show that HEAT maintains
79% agreement with retrieval-based ground truth, compared
to 68% for Integrated Gradients, suggesting that HEAT’s
multi-view design generalizes beyond LLM-annotated su-
pervision.

Algorithm 1: HEssian-enhanced ATtribution (HEAT)
Require: decoder-only LM fθ; tokens x1:T−1; target T ; embed-

dings E; weights β, γ; window size W ; stride s; HVP samples
m; rank k; layer subset Lsub; mask operation mask(·)

Ensure: Attr(xi → xT ) for i = 1, . . . , T − 1
0: X← (e1, . . . , eT−1) where ei ← E[xi]
0: Porig ← Softmax(fθ(X)) at position T
0: Build overlapping windows W = {[a : b]} over [1 : T − 1]

with (W, s)

0: Initialize M̃ [i], S̃[i], Ĩ[i], ν[i]← 0 for all i
0: for each window [a : b] ∈ W do
0: Restrict computation to tokens i ∈ [a : b] and layers Lsub

0: Mechanism score MT (target-conditioned transitions)
0: for l ∈ Lsub, h = 1, . . . , H do
0: Compute attention flow Φ(l,h)(i → T ) using masked at-

tentions and values
0: end for
0: M

[a:b]
T [i]←

∑
l,h Φ(l,h)(i→ T ) ∥V(l,h)

i W
(l,h)
O ∥1

0: Normalize: M [a:b]
T ←M

[a:b]
T /

∑
j∈[a:b] M

[a:b]
T [j]

0: Curvature score S (blockwise Hessian-vector products)
0: for i ∈ [a : b] do
0: S

(T,[a:b])
i ← 1

m

∑m
t=1 ∥ΠiHT (Πirt)∥1 {rt

Rademacher}
0: end for
0: Information score I (KL divergence masking)
0: for i ∈ [a : b] do
0: X\i ← X with ei ← mask(ei)

0: P
(i)
mask ← Softmax(fθ(X

\i)) at position T

0: I [a:b](xi → xT )← DKL(Porig∥P (i)
mask)

0: end for
0: Accumulate contributions across windows
0: for i ∈ [a : b] do
0: M̃ [i]← M̃ [i] +M

[a:b]
T [i]

0: S̃[i]← S̃[i] + S
(T,[a:b])
i

0: Ĩ[i]← Ĩ[i] + I [a:b](xi → xT )
0: ν[i]← ν[i] + 1
0: end for
0: end for
0: Normalize and combine scores
0: for i = 1, . . . , T − 1 do
0: M̄ [i]← M̃ [i]/max{1, ν[i]}
0: S̄[i]← S̃[i]/max{1, ν[i]}
0: Ī[i]← Ĩ[i]/max{1, ν[i]}
0: Attr(xi → xT )← M̄ [i]

(
β S̄[i] + γ Ī[i]

)
0: end for
0: return {Attr(xi → xT )}T−1

i=1 =0



Figure 6: Word-level attribution visualization for predicting the final word “bush.” Attribution scores emphasize context words
such as “hat,” “stuck,” and “park,” which strongly influence the prediction of “bush.”
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