
Trustworthy AI in the Agentic Lakehouse: from Concurrency to Governance

Jacopo Tagliabue*1, Federico Bianchi2, Ciro Greco1,
1Bauplan Labs
2Together AI

jacopo.tagliabue@bauplanbs.com, federico@together.ai, ciro.greco@bauplanbs.com

Abstract

Even as AI capabilities improve, most enterprises do not con-
sider agents trustworthy enough to work on production data.
In this paper, we argue that the path to trustworthy agen-
tic workflows begins with solving the infrastructure prob-
lem first: traditional lakehouses are not suited for agent ac-
cess patterns, but if we design one around transactions, gov-
ernance follows. In particular, we draw an operational anal-
ogy to MVCC in databases and show why a direct transplant
fails in a decoupled, multi-language setting. We then propose
an agent-first design, Bauplan, that reimplements data and
compute isolation in the lakehouse. We conclude by sharing
a reference implementation of a self-healing pipeline, which
couples agent reasoning with all the desired guarantees for
correctness and trust.

1 Introduction
The lakehouse is the enterprise standard for data and AI
workloads in the cloud (Zaharia et al. 2021). Notwithstand-
ing the steady progress in coding and tool usage by Large
Language Models (LLMs) (Shen 2024), production deploy-
ments of AI agents have rarely, if ever, targeted lakehouse
use cases: even before considering the specificity of data vs.
software engineering, the primary obstacles in industry are
trust and governance: it is unclear how a human-centered
lakehouse can provide the necessary guarantees for an agent-
first world. To make a vivid example, imagine empowering
a code assistant with access to your lakehouse: what if the
agent drops a table? Or if it pollutes the lake with halluci-
nated data?

On the research side, the data management community
is raising similar concerns: it is unlikely that data systems
designed for small, expensive human teams can successfully
adapt to the access patterns of a swarm of cheap AI agents
(Tagliabue and Greco 2025). In particular, managing agents
that run queries and build data pipelines means managing
concurrency on a different scale than what traditional OLAP
systems are designed for (Liu et al. 2025).

In this position paper, we argue that the industry and the
research concerns above are best thought of as two sides
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of the same coin. In a nutshell, correct concurrent work-
loads require us to solve the isolation of data and compute
through a unified API, reducing the governance challenge
to the well-known pattern of API-based access control. If
we focus our engineering effort on making sure multiple
agents can work on the lakehouse without catastrophic con-
sequences, we will get an easy and principled path to gover-
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nance as well.
We know that this path is not impossible because – at the

very least – it has already happened once; in particular, we
first establish a connection with the theory of multi-version
concurrency control (MVCC) (Bernstein, Hadzilacos, and
Goodman 1987) in databases. Monolithic, SQL-only trans-
actional databases (e.g., Postgres) have evolved as a sophis-
ticated answer to concurrency issues – declarative abstrac-
tions, isolated processes, data snapshots allow correctness in
the face of multiple users, with RBAC access control layered
on top for governance (Ferraiolo et al. 2001). The lessons
from the data management field are precious, but a direct
mapping of the existing techniques will not work in a dis-
tributed, heterogeneous system such as a lakehouse. Alas,
not all hope is lost. We describe novel abstractions and iso-
lation primitives for an agent-first lakehouse Bauplan. We
show how to accommodate the usage patterns of swarms of
agents, and easily derive the required governance: a concise,
narrow API surface is much easier to protect as opposed to
the plethora of tools in traditional lakehouses.

This position paper is organized as follows: Section 2 uses
MVCC to provide a concrete, successful mental model to
guide our search for lakehouse primitives. In Section 3, we
show that naively mapping MVCC concepts won’t work, be-
fore describing our proposal in Section 4. We conclude with
an open-source implementation of a complex data engineer-
ing task: as the landscape is evolving quickly, we do believe
that a working system is a valuable reference for practition-
ers; our principles, however, are indeed tool-agnostic.

2 The MVCC mental model
Borrowing the metaphor from Arpaci-Dusseau and Arpaci-
Dusseau (2018), the job of a database is to give each user
the “illusion” of being the only user in play, while jug-
gling safely and transparently the workloads of many such
users. Correctness in the presence of concurrency is handled
through transactions (Bernstein, Hadzilacos, and Goodman



Figure 1: The MVCC mental model: U1 starts his transac-
tion, which at the end returns the value of B – effectively,
his code works as if U2’s transaction had never happened.

1987): readers only see a consistent view of the data, and
writers atomically publish all the changes or, in case of error,
none of them. For the current purposes, we carry along the
entire paper a three-way partition of the conceptual space:
data isolation, compute isolation and programming abstrac-
tions.

2.1 Data Isolation
While the exact details are complex (Cerone, Bernardi, and
Gotsman 2015), the basic model of data isolation is straight-
forward. Inside of transaction boundaries, processes read
data always as if the database was frozen at the start; in or-
der to do so, the system needs to maintain a reference to the
state of the data at any point in time (a snapshot). In Fig. 1,
U1’s read of U2’s value will return 500 as if U2’s update
never started. On the write path, transactions are used to pre-
vent incorrect updates and race conditions: two transactions
won’t both commit conflicting writes to the same key based
on stale reads. Importantly, none of these storage-level im-
plementations is exposed to the final user – a crucial design
point to which we will return to below.

2.2 Compute Isolation
Each transaction gets processed in isolation, with no data
sharing in between – from the point of view of the single
transaction, it is as if that is the only process active at that
time. In a SQL database there is no equivalent of package
management, resulting in a small toolchain as opposed to a
more heterogeneous compute environment where isolation
is not as obvious.

2.3 Programming Abstractions
Traditional databases leverage a declarative language such
as SQL which simplifies the relationship between the system
and its users. Users express what data they wish to read or
write, the query engine and the storage engine figure out how
that should happen. This is a crucial design choice for at
least two independent reasons:

• correctness: the complexity of coupling data and com-
pute isolation within transactions is offloaded entirely
to the platform, avoiding the common pitfalls of ad
hoc transactions that plague even popular open source
projects (Wang et al. 2024);

• performance: while each user is given the illusion of be-
ing alone, the platform may re-use transparently work
done for one user for another one (e.g., caching).

A final consequence deserves a special mention: trust.
Since the only way to interact with the system is at the logi-
cal layer, protecting the physical representation of the data is
now as easy as implementing RBAC over users – unautho-
rized code does not even go beyond the planning module,
ensuring no contamination at the physical layer.

As we shall see in the ensuing section, the properties that
make MVCC workable in a monolithic database – uniform
runtime, co-located control over data and execution – do not
hold in lakehouses with heterogeneous runtimes and decou-
pled storage, so a direct transplant is insufficient.

3 From MVCC to the lakehouse
A transactional database is a vertically integrated system,
which controls storage, compute and APIs. A lakehouse is a
distributed, multi-language system built on the principle of
storage-compute decoupling. The most typical workload is
a data pipeline (van Renen et al. 2024), a DAG of transfor-
mations going from raw data in source tables to intermediate
and final assets for downstream consumption (e.g., a dash-
board, a RAG system): DAGs often happen on a schedule,
and more generally, the overwhelming majority of OLAP
use cases are not latency sensitive, but throughput oriented,
as millions of rows are moved in a pipeline. While DAGs
are often mentioned in the agentic literature (Zhang et al.
2025; Zheng et al. 2025), it is important to remark that our
focus is on providing safe-by-design infrastructure for arbi-
trary OLAP workflows, rather than building directly agentic
abstractions, such as symbolic workflow synthesis. As we
shall see, adapting MVCC principles to this architecture is
not straightforward.

3.1 Data Isolation
The storage layer of a lakehouse is typically built on Apache
Iceberg tables, which guarantee transaction-like behavior on
a per-table basis. However, single table guarantees are not
enough when most writes are pipelines: if an agent writes
wrong code at node 3 of a pipeline, nodes 1 and 2 are in-
dividually sound transactions, but the lake is in an inconsis-
tent state: downstream readers have no protection, they may
JOIN a new version of 2 with an old version of 3. We will
come back to this distinction when discussing Fig. 2 below.

3.2 Compute Isolation
A data pipeline with three nodes may require SQL for
the first one, Python 3.10 with pandas for the second,
and Python 3.11 with polars for the third one. In other
words, a lakehouse must support truly heterogeneous com-
pute: on the one hand, building and running general-purpose
Python code requires a novel platform-level toolchain; on
the other, Python code introduces new vulnerabilities, such
as installing malicious packages or accessing the internet.
Traditional lakehouses have historically dealt with hetero-
geneous use cases by adding runtime options and execution
workflows (Tapan Srivastava 2025): today, it is common to



move between different GUIs, APIs and interfaces to master
the full lifecycle of a single pipeline. Unlike in the MVCC
case, compute isolation is anything but obvious.

3.3 Programming Abstractions
Heterogeneous compute makes it harder to tie execution
back to a consistency model (e.g., how do I reconcile a
warehouse INSERT with a Spark job?). We highlight the
issue with scattered abstractions by discussing mainstream
reference implementations. Let’s consider the AWS example
for a data pipeline using Airflow (Thallam and Dominguez
2024)1:

Listing 1: A pre-processing node in an Airflow DAG
def preprocess(s3_in_url, s3_out_bucket,

s3_out_prefix):

# Do pre-processing and save the result in

# "s3_out_bucket / s3_out_prefix"

return "SUCCESS"

preprocess_task = PythonOperator(

task_id="preprocessing",

dag=dag,

python_callable=preprocess.preprocess

)

In this paradigm, we lose two properties we care about:

• correctness: there are no transactional guarantees any-
more as the user is in charge both of the storage layer
and the DAG process. It is therefore impossible to handle
simple failures in a principled way: e.g., what is the state
of the system if the process fails just before return?

• performance: the function writes its output as a side ef-
fect, preventing further optimizations on the outer loop
(e.g., the DAG process cannot easily cache results).

The independence between compute (the DAG process)
and data (the physical files in S3) has immediate implica-
tions for trust and governance: to be able to iterate over
this DAG, an agent should be given access to i) the phys-
ical layer for the files, ii) Python-specific infrastructure to
invoke the runtime, and iii) a SQL engine to perform ex-
ploratory queries when debugging. As the surface expands,
governance becomes exponentially more difficult.

4 The Agentic Lakehouse
Naive application of the MVCC model to a distributed
system will fail to achieve the goal of correctness-under-
concurrency that we are pursuing for the agentic lakehouse,
because physical decoupling and heterogeneous runtimes
change the isolation contract. Not all is lost, though: we now
describe Bauplan as a concrete implementation of those
concepts, designed from first principles for the lakehouse.

4.1 Data Isolation
If every write in the lakehouse is immutably recorded, a se-
ries of snapshots tracks the history of tables through time.

1Note that an equivalent example in the data engineering
world can be found in the Databricks Best Practices with Scala
(Databricks 2025).

From this simple primitive, it is trivial to quickly model
concurrent changes to tables in the same way Git models
concurrent changes to code (Swierstra and Löh 2014) – a
snapshot is identified by a commit with a parent, the HEAD
is a symbolic reference to the current branch and resolv-
ing possible conflicts between branches happens within a
merge. Bauplan adopts an efficient, copy-on-write branch-
ing mechanism, so that branching and merging can be done
efficiently (less than a second) even on hundreds of tables
and billions of rows. The crucial insight is once again re-
lated to the nature of data workloads: as pipelines are multi-
table, they would span multiple commits. These abstrac-
tions can now model transaction boundaries across arbitrar-
ily long DAGs by decoupling single table writes (commits)
and multi-table atomic changes (merges) (Section 4.3).

4.2 Compute Isolation
As any lakehouse workload can be built out of functions
with different latency constraints (Tapan Srivastava 2025),
Bauplan adopts a Function-as-a-Service (FaaS) model as
the underlying unified compute (Tagliabue, Caraza-Harter,
and Greco 2024). The FaaS model (Hendrickson et al. 2016)
perfectly aligns with our compute isolation needs – each
function runs its own (containerized) Python / SQL runtime,
independent of any other function and completely isolated
from the public internet, with hardware, OS and runtime
managed by the platform.

4.3 Programming Abstractions
A FaaS model maps immediately to DAG abstractions that
are functional. Agents can code a DAG by chaining func-
tions together:

Listing 2: Declarative I/O and infra-as-code
@bauplan.model(materialization=’REPLACE’, name=’A’)

@bauplan.python(’3.10’, pip={’pandas’: ’2.0’})

def parent(

trips = bauplan.Model("taxi_trips"),

zones = bauplan.Model("taxi_zones")

):

# business logic only;

# I/O is platform-mediated

return trips.join(zones).do_something()

@bauplan.model(materialization=’REPLACE’, name=’B’)

@bauplan.python(’3.11’, pip={’polars’: ’0.88’})

def child(df = bauplan.Model("A")):

return df.do_something()

The proposed abstractions take the typical infrastructure-
as-code approach of industry FaaS and simplify it further by
expressing declarative environments through a Python dec-
orator (Tagliabue et al. 2023) that LLMs easily recognize.
When compared with the code from Section 3.3, the second
major difference is declarative I/O – functions accept tables
(not files) as input, and output tables directly.

As compute and storage are decoupled, we need one
more API to bind together declarative pipelines, FaaS
execution and data branches. This is easily accom-
plished with a unified API to launch all workloads, i.e.
bauplan.run(my pipeline). During a run on the



Figure 2: Transactional pipelines. Top: without coupling
temporary branches with runs, run 2 leaves main with a
new version of A but an old version of B. Bottom: Bauplan
run API guarantees atomic write of A′ and B′ on success,
and isolation in case of failure.

main data branch, Bauplan will: 1) automatically open a
temporary branch; 2) fetch from S3 the rows correspond-
ing to the DAG source tables; 3) run user code on the FaaS
runtime and perform the required writes to S3; 4) on suc-
cess, merge the temporary branch to main; on failure, leave
the temporary branch open, and main untouched. Extend-
ing declarative abstractions to Python, and achieving data-
compute logical unification (even with a physical decou-
pling) gets us back the desired properties:

• correctness: the platform supports transactional pipelines
across languages and an arbitrary number of tables. Fig-
ure 2 illustrates the importance of conceiving transac-
tions as an abstraction that embraces data and compute.
Without enforcing temporary branches (Figure 2, top), a
two-node pipeline failing after one node leaves main in
an inconsistent state even if the single-table transaction
was successful;

• performance: declarative abstractions leave the platform
free to optimize execution across agents leveraging its
privileged, centralized position.

4.4 From concurrency control to governance
As highlighted in Section 3, heterogeneous compute opens
the door for agents to run untrusted logic. We are now in
a position to tie back together our abstractions to trust and
governance:

• data governance: on the read path, declarative I/O pro-
vides a unique SQL-like layer to check for authorization;
on the write path, the merge primitive allows a fail-safe
mechanism that safeguards production data;

• compute governance: as functions are fully isolated and
do not require internet access, packages remain the only
major vector of attack. Once again, the declarative APIs
make it trivial to enforce rules at the platform level by
checking a decorator against a whitelist: no agent is able
to install dangerous packages;

• API governance: as all workloads are invoked through a
simple set of unified APIs, securing access boils down

Figure 3: Self-healing pipelines: a ReAct loop is triggered
on the agentic lakehouse – at the end, a verifier acts as a first
sanity check on the agent’s work, leaving to a human the
final confirmation thanks to the branch-then-merge flow.

to tried-and-tested patterns, such as RBAC with fine-
grained permissions over data operations and executable
units.

Solving concurrency and correctness is the key to un-
locking an easy path to governance and trust: the agentic
lakehouse is indeed a re-implementation of the successful
MVCC patterns in the distributed lakehouse world.

4.5 A worked-out example: self-healing pipelines
As an example of a complex and very important use case that
can be solved safely in the agentic lakehouse, we propose
the implementation of a self-repairing pipeline.2 Fig. 3 illus-
trates the high-level flow: a run failed, triggering an agen-
tic resolution. A human engineer will prompt the agent for
a resolution and produce a verifier, i.e. computational “ac-
ceptance criteria” registered within the platform itself. A
ReAct loop (Yao et al. 2023) of reasoning over Bauplan
APIs comprises the bulk of the agentic work, leveraging the
abstractions above: code execution is sandboxed and every
write happens on a data branch, leaving production safe and
untouched – similarly to what happens with code reviews,
the agent’s output is a (data) branch. The Git-like primitives
provide a natural hook for human-in-the-loop verification:
first, the platform runs the verifier to independently establish
that minimal criteria are met; second, the review-then-merge
flow happens with the supervision of an engineer — on suc-
cess, copy-on-write merge will ensure efficient publication
of the agent’s work into main.

5 Conclusion and future work
We advocate correctness by construction in an agent-first
lakehouse: declarative I/O, temporary branches with atomic
merge, and network-isolated functions bound to a single
run API. As a concrete implementation, we described
Bauplan and argued that pursuing safe concurrency in a
lakehouse creates a clear path for principled governance.
The major bottleneck to scaling trustworthy data engineer-
ing output is not intelligence anymore, but infrastructure.

2https://github.com/BauplanLabs/the-agentic-lakehouse
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