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Abstract

Large Language Models (LLMs) have shown remarkable ca-
pabilities in document processing, but their inability to pro-
vide visual grounding without OCR dependencies poses sig-
nificant challenges in business-critical applications. Current
solutions either require model fine-tuning or rely on external
OCR services, introducing additional costs, latency, and lim-
itations in handling derived information. This paper presents
ViG-LLM, a novel framework that enables closed-box LLMs
to generate localization information through a multi-agent
system combining U-Net-based layout deconstruction with
viewport identification tasks. Evaluated on the FATURA and
CORD dataset, our framework achieves perfect accuracy
over spatial reasoning tuned LLM like Amazon Nova Pro,
while demonstrating superior template-specific consistency.
The framework maintains robust performance across LLM
architectures while maintaining comparable operational costs
and latency to enterprise OCR-based solutions with efficient
foundation models. In real-world document processing ap-
plications, the framework helps retain the high reasoning
capabilities of the system in document information extrac-
tion tasks while improving explainability, reliability and hu-
man interaction for information verification. Through human-
in-the-loop learning and closed-box prompt alignment tech-
niques, ViG-LLM provides a robust, adaptable solution for
visual grounding tasks in document processing workflows.

1 Introduction
Large Language Models (LLMs) have demonstrated re-
markable multi-modal capabilities across diverse domains,
including healthcare, autonomous systems, customer expe-
rience, and creative industries. However, in business-critical
applications such as medical imaging analysis, scene un-
derstanding, visual troubleshooting, and visual question an-
swering, it is imperative that the information extracted by
LLMs is visually grounded. This requirement is particularly
crucial in domains like financial, legal, and medical docu-
ment processing, where information accuracy and verifiabil-
ity directly impact decision-making and compliance.

Multi-modal LLMs (MLLMs) have proven especially ef-
fective in handling complex document layouts, interpreting
visual elements like charts and graphs, and processing low-
quality or semi-structured documents. These models enable

sophisticated Document Visual Question Answering (VQA)
by allowing users to query document content while provid-
ing both answers and visual evidence. Such visual grounding
capabilities are essential for critical tasks including human-
in-the-loop validation or Personally Identifiable Information
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(PII) detection, content redaction.
Despite their advanced text generation, analysis, and rea-

soning capabilities, LLMs exhibit significant limitations in
producing grounding information. Current approaches typi-
cally rely on external Optical Character Recognition (OCR)
technologies, introducing additional costs, latency, and lim-
itations in handling derived information. These limitations,
as demonstrated in figure 1, become particularly apparent
in several scenarios: when information must be synthesized
from multiple sources, when processing diagrammatic or
figurative content, when extracting specific objects like QR
codes, and when analyzing long-form text. Alternative meth-
ods involving LLM fine-tuning assume model transparency,
making them unsuitable for proprietary LLMs.

This paper presents a novel ViG-LLM framework that en-
ables Large Language Models (LLM) to generate Visual
Grounding (ViG) information without external dependen-
cies, accommodating their closed-box nature. We provide
a comprehensive evaluation of our framework against ex-
isting techniques, measuring localization accuracy, perfor-
mance consistency, and operational-effectiveness. Further-
more, our framework incorporates black-box prompt align-
ment techniques with human-in-the-loop (HITL) capabili-
ties for bounding box corrections, addressing tail-end accu-
racy challenges.

Our key contributions are as follows:

• We present ViG-LLM, a visual grounding framework
that enables localization capabilities in closed-box LLMs
without external dependencies using multi-agent view-
port identification with U-Net segmentation to achieve
OCR-independent bounding box generation.

• We demonstrate superior accuracy and consistency in
document processing tasks, achieving perfect accuracy
over spatial reasoning tuned MLLMs while maintaining
comparable operational metrics to enterprise OCR-based
solutions and showing robust performance across multi-
ple LLM architectures.

• We present comprehensive ablation studies examining



Figure 1: Illustration of complex document information extraction scenarios challenging OCR-dependent LLM approaches.
Three critical cases demonstrate the need for direct visual grounding: (1) extraction from long-form text where target values
span partial paragraphs, (2) interpretation of diagrammatic content requiring contextual understanding, and (3) synthesis of
information from multiple table rows. Red annotations highlight source regions from which the LLM derives field values,
illustrating the complexity of establishing precise visual references.

individual framework components, systematically vali-
dating their contributions to the overall system perfor-
mance.

2 Related Work
Recent approaches to document information extraction us-
ing Large Language Models (LLMs) can be categorized
into open-box and closed-box techniques, each with dis-
tinct advantages and limitations. Open-box techniques, ex-
emplified by UIPath (Blog), TextMonkey (Liu et al. 2024),
and DocLLM (Wang et al. 2023), require direct access to
model internals and fine-tuning capabilities. While these ap-
proaches offer greater control and customization, they often
demand substantial computational resources and expertise,
making them impractical for applications utilizing propri-
etary LLM APIs. In contrast, closed-box techniques treat
LLMs as closed systems and have demonstrated success
across various domains, including legal contract analysis
(Zhao and Gao 2024) and research paper information extrac-
tion (Polak and Morgan 2024), primarily through semantic
parsing and prompt engineering. The widespread adoption
of closed-box approaches in business-critical applications
can be attributed to their superior performance, rapid de-
ployment capabilities, reduced infrastructure requirements,
and enhanced reliability and security guarantees.

The ability to produce localization information presents
a significant differentiator between these approaches. Open-
box techniques can be specifically trained or fine-tuned to
generate such information, as demonstrated by model fam-
ilies like Google Gemini (goo) and Amazon Nova (ama).
However, prominent reasoning models such as Anthropic
Claude have shown limitations in producing localization in-
formation directly (cla). To address this limitation in closed-
box approaches, researchers have integrated OCR tech-
niques, either by encoding text information during LLM in-
put (Lu et al. 2025) or implementing post-inference match-
ing (Sinha and S 2025). These hybrid approaches, however,
introduce several critical challenges: potential information
loss and OCR noise affecting LLM inference quality, com-

plex matching logic requirements - particularly challeng-
ing for multi-lingual documents, additional computational
overhead, and limited control over localization granularity
(Kanerva et al. 2025),(Boros et al. 2022),(vel),(llm),(Loukil
et al. 2024),(Zhang et al. 2025). This work presents a novel
framework for enabling localization capabilities in closed-
box LLMs without OCR dependencies.

Document segmentation, a well-established preprocess-
ing technique in OCR applications (Ariki and Motegi 1995),
decomposes a document image into discrete elements. Seg-
mentation approaches can be broadly classified into geomet-
ric and layout/semantic-based methods, with configurable
granularity based on specific task requirements (Eskenazi,
Gomez-Krämer, and Ogier 2016). While transformer-based
models like LayoutLM have shown promising results in
layout-based segmentation (Xu et al. 2020), they have been
superseded in document information extraction tasks by
LLMs due to their superior interpretability (Bhattacharyya
et al. 2025). In the domain of geometric segmentation, U-
Net architectures have emerged as the state-of-the-art solu-
tion for high-precision boundary segmentation, outperform-
ing traditional computer vision techniques such as X-Y Cut
and Run-Length Smearing Algorithm (RLSA) (Plaksyvyi,
Skublewska-Paszkowska, and Powroźnik 2023),(Soujanya
et al. 2013). Originally developed for medical image seg-
mentation (Ronneberger, Fischer, and Brox 2015), U-Nets
have been successfully adapted for various document anal-
ysis tasks, including geometric layout segmentation (Mechi
et al. 2019) and logical layout analysis for key-value pair
extraction (Mohammadshirazi et al. 2024). The architec-
ture’s demonstrated flexibility across different segmentation
granularities (Sivasubramanian, Mohan, and Sowmya 2024)
makes it particularly suitable for block segmentation tasks,
as implemented in this work.

Human-in-the-Loop (HITL) methods in LLM systems
encompass techniques for active elicitation (Settles 2010),
feedback-driven adaptation (Christiano et al. 2023), and
post-hoc correction (Ribeiro, Singh, and Guestrin 2018)
to improve model performance and reliability. These tech-



niques are broadly categorized into pre-generation (Zhang
et al. 2024), in-generation (Xiao et al. 2025), and post-
generation (Gutowska 2025) interventions based on the
stage of human involvement in the interaction pipeline. In
closed-box LLM settings, where direct access to model pa-
rameters is restricted, specialized HITL approaches become
necessary as traditional gradient-based fine-tuning and inter-
nal uncertainty metrics are inaccessible. These closed-box
techniques primarily focus on prompt-level and output-level
interventions, including prompt engineering loops (Shah
2024), output ranking schemes (Lee and Shin 2024), and
external reward modeling (Sahoo et al. 2025). Within this,
closed-box prompt alignment techniques like Black-Box
Prompt Optimization (BPO) (Cheng et al. 2024) emerges
as a critical pre-generation approach, offering automated
and scalable methods for leveraging human feedback to
improve model behavior without direct intervention in ev-
ery interaction. BPO techniques span across evolutionary
algorithms (e.g., EvoPrompt (Guo et al. 2025)), language
model feedback-based optimization (e.g., ProTeGi (Pryzant
et al. 2023)), sampling and resampling approaches (e.g.,
APE (Zhou et al. 2023)), and trajectory-informed optimiza-
tion (e.g., OPRO (Yang et al. 2024)). Each approach of-
fers distinct advantages: evolutionary algorithms for explo-
ration, feedback-based methods for human preference align-
ment, sampling approaches for computational efficiency,
and trajectory-informed methods for optimization stability.
In this work, we propose to leverage these techniques for
prompt alignment in business-specific settings, aiming to
optimize prompt effectiveness while maintaining the closed-
box nature of the underlying LLM.

3 Approach
The ViG-LLM framework decomposes localization into sep-
arate horizontal and vertical viewport identification tasks,
employing targeted prompting and visual aids through im-
age processing. Additionally, it incorporates human feed-
back for continuous improvement. Figure 2 provides an
overview of the end-to-end framework, while Algorithm 1
details the control flow.

3.1 Visual Layout Deconstruction
The initial stage employs a U-Net model trained for block
segmentation generation. For detailed U-Net architecture,
refer to Supplmentary Section 6.1. This trainable segmen-
tation component enables controlled granularity in localiza-
tion tasks. The Binary Cross Entropy (BCE) loss function
LBCE used to train the model is defined in Equation below.

Li,j = yi,j log(pi,j) + (1− yi,j) log(1− pi,j)

LBCE = − 1

H ·W

H∑
i=1

W∑
j=1

Li,j

WhereH andW are the height and width of the input im-
age and the corresponding output segmentation mask; yi,j
is the true binary label for the pixel at position (i, j), which
can be either 0 (background) or 1 (foreground); pi,j is the

Algorithm 1: ViG-LLM Framework - Document Value Vi-
sual Grounding Algorithm
Notation:
I: Input document image
r: Reference text string
ψv, ψh: Vertical and horizontal prompts
B: Set of bounding boxes, B = {bi}ni=1
G: Grid structure, G = (X,Y )
δ: Coordinate merge threshold
M: Segmentation mask
C: Set of contours
Ωh,Ωv: Horizontal and vertical viewport spans
V: Viewport region
b∗: Output bounding box

1: function GENERATE GRID(B, δ)
2: (X,Y )← GET UNIQUE COORDINATES(B)
3: (X ′, Y ′)← MERGE CLOSE COORDINATES(X,Y, δ)
4: return G(X ′, Y ′)
5: end function
6: procedure DOCUMENTVALUELOCALIZATION
7: Input: I, r, ψv, ψh

8: Output: b∗
▷ Visual Layout Deconstruction

9: M← SEGMENT IMAGE(I)
10: C ← FIND CONTOURS(M)
11: B ← FIND BOUNDING BOXES(C)

▷ Horizontal Viewport Identification
12: G ← GENERATE GRID(B)
13: Lh ← G.Y
14: Ph ← PROJECT HORIZONTAL LINES(Lh, I)
15: Ωh ← INVOKE HVIA(Ph, r, ψh)
16: repeat
17: V ← CLIP VIEWPORT PROJECTION(Ωh, I)
18: γ ← INVOKE VGVA(V, r)
19: until γ = true

▷ Vertical Viewport Identification
20: B′ ← FILTER BOXES IN BOUNDS(B,Ωh)
21: G′ ← GENERATE GRID(B′)
22: Lv ← G′.X
23: Pv ← PROJECT VERTICAL LINES(Lv, I)
24: Ωv ← INVOKE VVIA(Pv, r, ψv)
25: repeat
26: V ← CLIP VIEWPORT PROJECTION(Ωv,V)
27: γ ← INVOKE VGVA(V, r)
28: until γ = true
29: b∗ ← SELECT BOUNDING BOX IN BOUNDS(B′,Ωv)

▷ Learning
30: if requires validation then
31: bg ← GET HUMAN VALIDATION(I, r, b∗)
32: ψ′

v, ψ
′
h ← ALIGN PROMPTS(I, r, ψv, ψh, bg)

33: end if
34: return b∗
35: end procedure

predicted probability for the pixel at position (i, j) belong-
ing to the foreground class, as output by the final sigmoid



Figure 2: Architecture overview of the ViG-LLM framework. The system comprises three main components: (1) Visual Layout
Deconstruction employing U-Net segmentation for grid formation, (2) Multi-Agent LLM system performing viewport identi-
fication through visual prompting, and (3) Human-in-the-Loop learning for accuracy refinement. Arrows indicate the flow of
information through the system, with dotted lines representing optional feedback paths for continuous improvement.

activation layer of the U-Net.
The trained U-Net generates segmentation masks for in-

put document images. Connected components within these
masks are identified using contour detection algorithm like
border-following algorithm (Suzuki and be 1985), from
which rectangular bounding boxes are derived. The coordi-
nates of these boxes are decomposed into x-axis and y-axis
components to create a grid structure. To reduce complexity,
lines within a specified threshold δ are merged while pre-
serving individual component boundaries.

3.2 Reference Localization using Multi-Agent
LLM

The framework employs a multi-agent approach to de-
compose localization into sequential viewport identification
tasks. For horizontal viewport identification, the system ex-
tracts y-axis coordinates from the grid and generates an over-
lay of labeled horizontal lines on the original image. The
Horizontal Viewport Identification Agent (HVIA) processes
this enhanced image to determine the appropriate row span
for the input reference. The original image is then clipped to
this horizontal viewport.

Vertical viewport identification follows a similar process
but focuses only on x-coordinates from bounding boxes
within the identified row span. The system overlays labeled
vertical lines on the clipped horizontal viewport image. The
Vertical Viewport Identification Agent (VVIA) then deter-
mines the column span, resulting in the final localization

bounding box. Figure 3 illustrates the progressive image
processing techniques applied throughout this process.

The framework incorporates a critic Visual Grounding
Verification Agent (VGVA) to validate reference presence
within identified viewports. When a reference is not found,
the critic agent determines its location relative to the current
viewport, enabling a binary search approach through actor-
critic interaction.

3.3 Human-In-The-Loop Learning
The framework implements a feedback loop incorporating
human validation of output bounding boxes. When correc-
tions are provided, the system adapts through multiple po-
tential mechanisms as per the business need. In repetitive
template document settings, for example, the system can
employ Retrieval Augmented Generation (RAG) to identify
document templates through segmentation mask and lever-
age these examples for In-Context Learning (ICL). Alterna-
tive approaches for Closed-Box Prompt Alignment (Mah-
mud et al. 2025) of the Viewport Identification Agents
(HVIA & VVIA) can be integrated based on specific re-
quirements. These prompt alignment techniques prove par-
ticularly valuable in handling document ambiguities and
adapting to domain-specific variations, thereby enhancing
the framework’s robustness across diverse document types.

This architecture ensures continuous improvement in lo-
calization accuracy while maintaining flexibility for various
document processing scenarios. The combination of visual



Figure 3: Sequential stages of viewport identification in the ViG-LLM framework. The progression demonstrates the system’s
visual grounding process: (1) input document image, (2) segmentation mask generated by the trained U-Net model, (3) hori-
zontal line overlay derived from grid coordinates, (4) horizontal viewport selection with subsequent vertical line overlay in the
clipped region, and (5) final bounding box localization.

layout analysis, multi-agent LLM coordination, and human
feedback creates a robust system for visual grounding tasks.

4 Experiments

Figure 4: Comparative analysis of template-specific con-
sistency across document processing methods. Performance
evaluation depicts Intersection over Union (IoU) scores for
(a) standalone Amazon Nova Pro trained for localization, (b)
ViG-LLM framework integrated with Amazon Nova Pro and
(c) AWS Textract Analyze Expense API. Results demon-
strate consistency across multiple instances of identical tem-
plates, with box plots indicating median performance, quar-
tile distribution, and outliers for each method. Higher IoU
scores and smaller variance indicate superior consistency in
visual grounding capabilities as showcased by the ViG-LLM
framework.

4.1 Dataset
The experimental evaluation utilized two distinct datasets:
the FATURA dataset (Limam, Dhiaf, and Kessentini 2023)
and the CORD dataset (Park et al. 2019). FATURA contains
10,000 synthetic invoice images generated across 50 tem-
plates, with comprehensive bounding box annotations for all

invoice components. CORD comprises 11,000 Indonesian
receipts with annotated bounding boxes, categorized into 8
superclasses and 54 subclasses. The combined dataset was
partitioned using an 80:10:10 split for training, validation,
and testing respectively. Segmentation masks were gener-
ated from the annotated bounding boxes to train the U-Net
segmentation model. For a preview of the datasets, refer to
Supplementary Section. The U-Net architecture, consisting
of encoding & decoding layers, was trained for 300 epochs,
achieving 99% accuracy on the training and validation sets.

4.2 Methodology
The framework’s efficacy was assessed through compre-
hensive comparisons with state-of-the-art visual grounding
techniques, incorporating both OCR-based systems (like
AWS Textract) and various Multimodal Large Language
Model (MLLM) architectures trained for localization out-
put. The evaluation centered on standardized fields common
to both the Textract Analyze Expense response model and
the ground truth dataset. For MLLM-based localization, we
implemented prompting techniques adhering to established
protocols, for example, utilizing scaled coordinates (0-1000)
for output generation for the Amazon Nova models (noa
2025). To isolate the performance of the actor agent, we dis-
abled the critic agent, eliminating its corrective contributions
and allowing only a single pass through the actor agent. Fur-
thermore, to mitigate uncertainties arising from the primary
document information extraction LLM’s interpretation of
semantically similar terms (e.g., ”total,” ”subtotal,” ”amount
due,” ”total in words”), we considered the maximum Inter-
section over Union (IoU) across all such fields. The com-
plete mathematical formulation of accuracy metrics is pro-
vided in Supplementary Section 6.3. All coordinate outputs
were normalized to a standard format to ensure consistent
comparison across methods.

To assess the framework’s robustness across different
model architectures, experiments were conducted using
multiple LLM variants across the Viewport Identifier Agents
(HVIA & VVIA). The evaluation encompassed two model



Table 1: Performance Comparison of Document Processing Methods: ViG-LLM Framework demonstrates superior consistency
across IoU thresholds, achieves over 90% accuracy for FATURA and CORD datasets with Claude models and significantly
outperforms standalone LLM across all architectures.

Approach Method
Accuracy @ IoU Threshold

FATURA CORD
0.25 0.5 0.75 0.25 0.5 0.75

OCR Amazon Textract (AnalyzeExpense) 1 1 0.27 0.96 0.96 0.96
LayoutLMv3 (DocVQA) 0.56 0 0 0.06 0 0

MLLM

Claude Sonnet 4 0.96 0.51 0.33 0.31 0.08 0.05
Claude Opus 4.1 0.97 0.7 0.47 0.38 0.14 0.11
Nova Pro v1 0.8 0.1 0.07 0.27 0.06 0.06
Nova Premium v1 0.78 0.63 0.09 0.09 0 0
Qwen2.5-VL-72B-Instruct 1 0.63 0.11 0.31 0 0

ViG-LLM
(Ours)

Claude Sonnet 4 + ViG-LLM 0.94 0.94 0.94 0.96 0.92 0.92
Claude Opus 4.1 + ViG-LLM 1 1 1 0.9 0.9 0.9
Nova Pro v1 + ViG-LLM 0.91 0.91 0.91 0.72 0.67 0.67
Nova Premier v1 + ViG-LLM 1 1 1 0.88 0.88 0.88

Table 2: Ablation Analysis of ViG-LLM Components: Study
showing the impact of different ViG-LLM components on
accuracy performance at 0.75 IoU threshold. Starting from
the baseline with no ViG-LLM, each row demonstrates the
cumulative effect of adding components: Visual Layout De-
constructor (VLD), Horizontal/Vertical Viewport Identifica-
tion Agent (H/VVIA), Visual Grounding Verification Agent
(VGVA), and Human-in-the-Loop (HITL) refinement. Re-
sults show progressive improvements in accuracy, reaching
perfect performance with all components combined.

ViG-LLM Components 0.75
No ViG-LLM 0.33
VLD + Single VIA 0.82
VLD + HVIA + VVIA 0.94
VLD + HVIA + VVIA + VGVA 0.98
VLD + HVIA + VVIA + VGVA + HITL 1

families - Claude and Amazon Nova - with two differ-
ent model sizes within each family. This analysis aimed
to demonstrate the framework’s independence from specific
LLM capabilities.

Template-specific consistency was evaluated by analyzing
performance across multiple instances of the same template
within the FATURA dataset. The comparison involved the
ViG-LLM Framework, Amazon Nova trained for localiza-
tion, and AWS Textract as the baseline. To minimize vari-
ables, Amazon Nova Pro was utilized within the ViG-LLM
Framework for this analysis.

4.3 Results
The experimental results demonstrate the effectiveness of
the ViG-LLM Framework across multiple performance met-
rics. Table 1 shows that the framework achieves accuracy at
par with AWS Textract while significantly outperforming the
fine-tuned LLM. The framework exhibited consistent per-
formance across different LLM families and model sizes,
as shown in Table 1. Template-specific analysis, presented

in Figure 4, reveals superior consistency in the framework’s
performance compared to standalone implementations.

Operational metrics were evaluated based on per-field lo-
calization in single images. With Amazon Nova Pro, the
framework consumed an average of 4K input tokens and
0.3K output tokens per analysis, resulting in an operational
cost of $4.16 per 1,000 document pages (at $0.0008 per 1K
input token and $0.0032 per 1K output token (noa)). Sim-
ilarly, processing times with Amazon Nova and Qwen2.5-
VL-72B models averaged 3-5 seconds per document. These
metrics demonstrate performance comparable to typical
cloud-based OCR solutions.

However, both cost and latency metrics can substantially
vary with alternative foundation models. For example, the
Claude family of models exhibited increased operational
costs and processing times: Claude Sonnet required $16.50
per 1,000 documents with 7-10 seconds processing time per
document, while Claude Opus incurred $82.50 per 1,000
documents with 16-20 seconds per document. These vari-
ations in operational characteristics are primarily attributed
to the underlying architectural differences among founda-
tion models. Future optimization opportunities exist through
the implementation of specialized Small Language Mod-
els (SLMs), which could potentially improve both cost ef-
ficiency and processing speeds while maintaining perfor-
mance quality.

Further, ablation studies were conducted to evaluate in-
dividual components of the ViG-LLM framework. Compo-
nents were sequentially incorporated, and accuracy metrics
were measured at a 0.75 IoU threshold. Table 2 demon-
strates the systematic contribution of each framework com-
ponent to accuracy improvements, with final performance
gains achieved through human-in-the-loop refinements.

Thus, the segmentation model successfully established
appropriate localization granularity, while the grid forma-
tion and visual prompting techniques effectively simpli-
fied the localization task. The multi-agent system, includ-
ing the critic component, demonstrated robust validation
and correction capabilities. The integration of human-in-



the-loop refinements enabled further tail-end accuracy im-
provements. These components collectively contributed to
the framework’s accuracy, repeatability, and efficiency in vi-
sual grounding tasks.

5 Conclusion
This paper introduces ViG-LLM, a framework enabling vi-
sual grounding capabilities in closed-box LLMs without
OCR dependencies. Through a multi-agent system and U-
Net-based layout deconstruction, our approach effectively
decomposes complex document information localization
into manageable viewport identification tasks. Experimental
results on the FATURA and CORD datasets demonstrate our
framework’s superior performance, showing improved ac-
curacy and consistency across different LLM architectures
while maintaining comparable cost and latency to OCR-
based solutions when leveraging optimized language mod-
els. In a finance document processing pipeline, the frame-
work helped improve the verifiability by human analysts
of the LLM-based document information extraction sys-
tem. The incorporation of human-in-the-loop learning en-
sures continuous improvement while maintaining adaptabil-
ity across various document types. This flexibility, combined
with closed-box compatibility, makes ViG-LLM particularly
valuable for enterprise applications using proprietary LLM
APIs. Future work could explore handling more complex
document structures and cross-lingual visual grounding ca-
pabilities, expanding the framework’s potential applications
beyond document processing.
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6 Supplementary
6.1 U-Net Architecture
The U-Net architecture leverages a convolutional neural
network (CNN) framework, characterized by its encoder-
decoder structure augmented with skip connections. This
architectural design facilitates the simultaneous capture of
fine-grained details and broader contextual information,
making it particularly suitable for precise pixel-level clas-
sification tasks. Figure 5 demonstrates the U-Net architec-
ture’s application to invoice image processing, illustrating
the transformation from input image to segmentation mask
output.

Figure 5: U-Net architecture used for document segmenta-
tion. The diagram shows the encoder-decoder structure with
skip connections, including layer specifications and inter-
mediate feature map dimensions. Input and output exam-
ples demonstrate the transformation from document image
to segmentation mask.

6.2 Training Dataset Characteristics
The FATURA dataset comprises 10,000 synthetic invoice
document images, representing a comprehensive multi-
layout collection. Each image is accompanied by detailed
annotations including bounding box coordinates, textual
content, and object class designations for key data fields.



The dataset encompasses 50 distinct templates and incor-
porates 24 unique object detection classes, corresponding to
standard invoice components such as total amount, vendor
information, and date fields.

The CORD dataset comprises 11,000 real receipts across
various Indonesian shops and restaurants, designed for post-
OCR parsing. It consists of hierarchical class labels di-
vided into 5 superclasses and 42 subclasses. Each image in
the dataset is accompanied by ground truths consisting of
category-wise word-level bounding box coordinates.

The preparation of training data involved generating seg-
mentation masks from annotated bounding boxes for each
documented field. Figure 6, 7 presents representative ex-
amples of source images, their corresponding annotations,
and the derived segmentation masks. These image-mask
pairs constitute the primary training data for the U-Net
model, while the original annotation bounding boxes serve
as ground truth references during performance evaluation.

6.3 Experimentation: Accuracy Formulation
The evaluation methodology employs Intersection over
Union (IoU) as the primary metric for quantifying detection
accuracy. IoU measures the overlap between predicted and
ground truth bounding boxes, calculated as the ratio of inter-
section area to union area (Equation 1). The metric ranges
from 0 to 1, where 1 indicates perfect overlap.

A prediction is classified as correct based on a predeter-
mined IoU threshold (Equation 3). For individual images,
accuracy is computed by determining the total number of
predictions meeting the IoU threshold criterion, with the
constraint that each ground-truth object corresponds to at
most one prediction (Equation 4). The overall dataset accu-
racy is then calculated by aggregating correct detections and
ground-truth objects across all N images (Equation 5).

The presented equations rigorously define the mathemat-
ical framework for accuracy assessment, incorporating pre-
dicted bounding boxes (b∗), ground truth bounding boxes
(bg), IoU threshold (θ), and number of samples (N ). This
formulation ensures a comprehensive and standardized eval-
uation of the model’s performance across varied document
layouts and field types.

Area(b∗ ∪ bg) = Area(b∗)+Area(bg)−Area(b∗ ∩ bg) (1)

IoU(b∗, bg) =
Area(b∗ ∩ bg)
Area(b∗ ∪ bg)

(2)

I(b∗, bg, θ) =

{
1 if IoU(b∗, bg) ≥ θ
0 if IoU(b∗, bg) < θ

(3)

CorrectDetections =
∑
b∗

max
bg

I(b∗, bg, θ) (4)

Accuracyθ =

∑N
i=1 CorrectDetections(i)∑N

i=1N
(i)
g

(5)

Where

– b∗ represents the predicted bounding box

– bg represents the ground truth bounding box
– θ represents the threshold for Intersection over Union

(IoU)
– N represents the total number of images in the dataset
– N

(i)
g represents the number of ground truth objects in im-

age i
– CorrectDetections(i) represents the number of correct de-

tections in image i
– Area(b∗ ∪ bg) represents the union area of predicted and

ground truth boxes
– Area(b∗∩bg) represents the intersection area of predicted

and ground truth boxes
– I(b∗, bg, θ) is an indicator function that returns 1 if IoU

exceeds threshold θ, 0 otherwise



Figure 6: Representative samples from the FATURA dataset showing: (a) original invoice images, (b) corresponding ground
truth annotations with bounding boxes, and (c) generated segmentation masks used for U-Net training.

Figure 7: Representative samples from the CORD dataset showing: (a) original invoice images, (b) corresponding ground truth
annotations with bounding boxes, and (c) generated segmentation masks used for U-Net training.


