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Abstract

Ensuring trust and control in autonomous systems requires
that they remain robust and reliable when facing the unpre-
dictable complexity of the real world. In the context of agen-
tic AI for autonomous driving, accurate trajectory prediction
is foundational to safety-critical decision-making. However,
due to discrepancies between training data and real-world
conditions encountered during inference, even well-trained
machine learning models may produce unreliable predictions.
Such sim-to-real gaps (also known as imperfect training data)
may be unavoidable due to the overwhelming complexity of
data annotation and environment uncertainties. To support
verifiable and trustworthy autonomy, we present a principled
and computationally efficient framework for detecting when
a model’s predictions deviate from expected, in-distribution
behavior. Leveraging the intuition that in-distribution (ID)
scenes exhibit error patterns similar to training data, while
out-of-distribution (OOD) scenes do not, we formulate OOD
detection as a quickest change-point detection problem, en-
abling timely recognition of subtle or deceptive shifts in driv-
ing scenes that may compromise reliability. We address the
challenging settings where the OOD scenes are deceptive,
meaning that they are not easily detectable by human intu-
itions. Our solutions can handle the occurrence of OOD at
any time during trajectory prediction inference. Experimental
results on multiple real-world datasets demonstrate the effec-
tiveness of our methods.

1 Introduction
AI technologies are the backbone of modern autonomous
vehicles (AVs), and are reshaping transportation systems.
Accurate trajectory prediction is essential for the safe op-
eration of autonomous vehicles in real-world environments.
However, even well-trained machine learning (ML) mod-
els may produce unreliable predictions due to discrepan-
cies between training data and real-world conditions en-
countered during inference (Bahari et al. 2022). Specifically,
many public datasets overrepresent certain driving scenes
(e.g. straight lanes and high-ways) while significantly un-
derrepresenting others (e.g. complex traffic circles or inter-
sections), as illustrated in Figure 2. Moreover, real-world en-
vironments suffer a wide range of uncertainties such as sud-
den braking by nearby vehicles, large objects falling from
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Figure 1: Illustration of the performance comparison of
a given ML trajectory prediction model on ID and OOD
scenes. In an ID scenario (left figure), the ego vehicle (gray
car), on which the ML model is implemented, can accurately
predict the trajectories of neighboring vehicles. In an OOD
scenario (right figure), the target vehicle slightly deviates
from its usual driving path due to unexpected debris from
the vehicle ahead. As a result, the ego vehicle may mispre-
dict the target vehicle’s trajectory, mistakenly assuming it
will move into the same lane. In response, the ego vehicle
may suddenly brake, potentially causing a rear-end collision.

other vehicles, or other deceptive yet life-threatening dis-
tribution shifts (Filos et al. 2020; Tang et al. 2020; Zhang
et al. 2022). As a consequence, an autonomous vehicle may
unexpectedly run into driving scenarios that are poorly rep-
resented by the training data, which we refer to as out-of-
distribution (OOD) data. To ensure safety, it is critical to
detect in real-time when a ML model’s trajectory predictions
become unreliable, allowing control to be seamlessly trans-
ferred back to human drivers.

Prior works enhance trajectory prediction reliability
through uncertainty quantification (UQ) (Neumeier et al.
2024; Pustynnikov and Eremeev 2021), including both
parametric strategies (with specific probabilistic assump-
tions) and non-parametric ones (e.g., entropy-based mea-
sures). While these methods improve predictive confidence,



Figure 2: Illustration of overrepresent and underrepresent
scenes for the deployed ML models. Images from PTV Vis-
sim simulation.

they suffer from restrictive priors, computational ineffi-
ciency, and the assumption that training data fully rep-
resent real-world scenarios, limiting generalization to un-
seen cases. Beyond UQ-based reliability estimation, an-
other related line of work focuses on identifying OOD in-
puts. Existing OOD detection for AVs largely targets vi-
sion tasks (e.g., object detection, segmentation) using scor-
ing functions (MSP (Hendrycks and Gimpel 2016), energy
scores (Liu et al. 2020)) or latent-space density estima-
tion (Lee et al. 2018; Sun et al. 2022a). However, such ap-
proaches overlook temporal dependencies in sequential tra-
jectory data, reducing their ability to capture gradual devi-
ations, and often prioritize recognition accuracy over effi-
ciency and scalability (Cui and Wang 2022).

Observing these limitations, we adopt a sequential, error-
driven perspective. We hypothesize that in-distribution (ID)
driving scenes yield prediction error distributions consis-
tent with training data, while OOD scenes deviate from
them. Hence, we monitor the sequence of prediction errors
and formulate trajectory-level OOD awareness as a quickest
change-point detection (QCD) problem. Leveraging sequen-
tial analysis, we design lightweight and principled OOD de-
tectors with formal guarantees on the trade-off between de-
tection delay and false alarms.

Contributions We are the first to apply QCD methods for
OOD detection in trajectory prediction across multiple real-
world datasets. Our approach monitors only a scalar error
variable, handles OOD occurrence at any inference step, and
remains computationally efficient.

• We observe that pre- and post-change trajectory predic-
tion errors are well-modeled as Gaussian Mixture Mod-
els, forming the basis of our OOD detection framework.

• We adapt the CUSUM algorithm for OOD detection,
achieving faster and more reliable detection with min-
imal false alarms compared to classical sequential and
leading OOD methods.

• We test robustness across varying levels of distribution
knowledge (complete, partial, unknown), showing our
method remains the most effective in challenging scenar-
ios.

2 Related Work
Trajectory Prediction Safe autonomous driving requires
forecasting the future motion of nearby agents. Trajectory
prediction methods are commonly grouped into physics-
based, classical learning, deep learning, and reinforcement
learning (RL) approaches. Physics-based models (Ander-
son, Vasudevan, and Johnson-Roberson 2021) are efficient
but oversimplify interactions. Classical approaches, includ-
ing Gaussian Processes and Hidden Markov Models (Deo,
Rangesh, and Trivedi 2018), extend prediction horizons yet
rely on predefined maneuvers. Deep models (Kuefler et al.
2017) fuse map and interaction cues for high accuracy but
depend on large datasets and face real-time trade-offs. RL-
based imitation (Kuefler et al. 2017) enhances human-like
decisions but remains computationally demanding. Since
models often assume complete training coverage (Fang et al.
2022), their reliability degrades under distributional shifts,
motivating robustness-aware prediction.

Uncertainty Quantification for Trajectory Prediction
Prediction uncertainty arises from the stochastic nature
of traffic dynamics. Uncertainty quantification (UQ) en-
ables models to assess confidence via probabilistic or
sampling-based estimation (Neumeier et al. 2024). Para-
metric methods assume specific distributions (e.g., Gaus-
sian), whereas non-parametric ones rely on entropy or la-
tent variance metrics (Pustynnikov and Eremeev 2021). Re-
cent studies employ latent-space modeling or entropy-based
metrics (Wiederer et al. 2023), improving calibration but
still lacking generalization. Moreover, few efforts explore
trajectory-level OOD detection, which we address through
a principled, QCD-based formulation offering theoretical
guarantees.

OOD Detection in Autonomous Vehicles OOD detec-
tion ensures model reliability when encountering unseen
driving scenarios (Li et al. 2022). While prior work
mainly targets visual perception via confidence or density
scores (Hendrycks and Gimpel 2016; Lee et al. 2018),
such frame-wise techniques neglect temporal dependen-
cies crucial for trajectories. Combined UQ–OOD frame-
works (Wiederer et al. 2023) improve robustness but are
computationally costly. To overcome this, we adopt a tem-
poral, model-agnostic framework that aggregates prediction
errors over time for efficient online detection.

Change-point Detection Change-point detection identi-
fies distributional shifts in time series (Tartakovsky, Pol-
unchenko, and Sokolov 2012). The Quickest Change De-
tection (QCD) paradigm seeks minimal-delay detection un-
der false-alarm constraints (Veeravalli and Banerjee 2014).



Among its formulations, the CUSUM algorithm (Page 1954;
Moustakides 1986) offers asymptotic optimality by accu-
mulating deviations from a baseline until a threshold is ex-
ceeded. Due to its efficiency and sequential nature, CUSUM
aligns naturally with real-time OOD detection in trajectory
prediction.

3 Problem Formulation
3.1 Trajectory Prediction
The training dataset D = {Sj}Nj=1 is a collection of driving
scenes. Each Sj described by a triple Sj = (Xj ,Yj ,M),
whereXj is the collections of observed trajectories, Yj is the
collection of future trajectories that we aim to predict based
onXj , 1 andM is the map information. When a dataset does
not have map information, we setM = ∅. In a driving scene,
an agent represents a moving object such as a vehicle, a mo-
torcycle, or a pedestrian. For a given driving scene Sj , let
mj denote the number of agents in the scene. Hence, Xj and
Yj can be explicitly written out as Xj = {x1

j , · · · , x
mj

j } and
Yj = {y1j , · · · , y

mj

j }, where xi
j ∈ R2×LO and yij ∈ R2×LP

for each agent i in the scene. Here, LO and LP are the num-
bers of time frames in the observed trajectory xi

j and in the
future trajectory yij , respectively. It is worth noting that:
(1) Different from traditional supervised learning problem,
in the trajectory prediction problem, the trajectory of an
agent is a sequence of positions, resulting in possibly of-
ten overlapping Xj and Yj . (2) Different driving scenes may
contain different numbers of agents as can be seen in Fig-
ure 2.

A machine-learning model f for the trajectory prediction
task can be trained by minimizing the objective function that
may take the form

min
f

1

N

N∑
j=1

ℓ (f(Xj),Yj) + λ× regularization,

where ℓ is a loss function such as the negative log-likelihood
(NLL) of the Laplace/Gaussian distributions (Peng et al.
2023; Tang et al. 2024), and λ ≥ 0 is the regularization coef-
ficient. One popular choice of regularization in the objective
is cross entropy loss.

The specific training methods are out of the scope of this
paper. Readers can find concrete instances of the objective
functions in (Peng et al. 2023; Tang et al. 2024) and oth-
ers. Notably, different from traditional ML tasks, where the
model trained has fixed input and output dimensions, the tra-
jectory prediction model f may have varying input and out-
put dimensions.

Metrics of Prediction Errors Let f̂ be a given trajectory
prediction model. We follow existing literature on trajectory
prediction model training to evaluate the generalization per-
formance of f̂ (Wang et al. 2019; Dendorfer, Elflein, and
Leal-Taixé 2021). Let Dtest = {Sj}Ntest

j=1 be the test dataset.
Instead of evaluating the trajectory prediction errors of all

1Since trajectories are sequential data, Xj and Yj may have
overlaps.

neighboring agents, the prediction errors of an arbitrarily
chosen agent are evaluated. Such chosen agent is referred
to as target agent of scene Sj , denoted as aj . We use three
common metrics in trajectory prediction: Average Displace-
ment Error (ADE) and Final Displacement Error (FDE)
and Root Mean Squared Error (RMSE). These metrics are
widely adopted in prior works (Kim et al. 2020; Deo and
Trivedi 2018; Ivanovic and Pavone 2022; Liu et al. 2024).
The mathematical formulations are as follows:

• ADE := 1
Ntest

∑Ntest
j=1

1
LP
∥f̂(xtj

j )− y
tj
j ∥2,

• FDE := 1
Ntest

∑Ntest
j=1 ∥[f̂(x

tj
j )]LP

− [y
tj
j ]LP

∥2, where

[f̂(x
tj
j )]LP

and [y
tj
j ]LP

represent the last positions in the
predicted and ground-truth trajectories, respectively.

• RMSE := 1
Ntest

∑Ntest
j=1

√
1

LP
∥f̂(xtj

j )− y
tj
j ∥22.

3.2 Casting OOD Awareness as a QCD Problem
In the context of trajectory prediction, we define OOD
awareness as the ability to detect deviations in prediction
performance over time. Specifically, we consider a sequence
of prediction errors ϵt arising from a trajectory prediction
model f̂ . The sequence of errors is defined as

ϵt = d(f̂(Xt),Yt),

where d(·, ·) is a distance function measuring the discrep-
ancy between the predicted future trajectory and the ground
truth. As mentioned in 3.1, we consider three distance func-
tions, i.e., ADE, FDE, and RMSE.

The AV observes the sequence {ϵt} = {ϵ1, ϵ2, . . . , ϵt} of
the target agent (a) for every scene. Let the data distribution
change at an unknown time γ. We denote the pre-change
distribution of ϵt by fϕ(ϵt) for t < γ and the post-change
distribution by gθ(ϵt) for t ≥ γ, i.e.,

ϵt ∼
{
fϕ(ϵt), t < γ (ID Scene),
gθ(ϵt), t ≥ γ (OOD Scene).

Let A be any algorithm. Let τA be the time that a change
is declared under algorithm A. When the adopted A is clear
from the context, we drop the subscript A in τ . We evalu-
ate OOD detection algorithms using two metrics: (1) Detec-
tion Delay—time to detect an OOD event, reflecting respon-
siveness; and (2) False Alarm Rate—frequency of incorrect
OOD flags, ensuring reliability. These metrics are widely
used in (Lai, Fan, and Poor 2008; Lau, Tay, and Veeravalli
2018; Liang and Veeravalli 2024) due to their ability to cap-
ture the trade-off between sensitivity and robustness.

To ensure robust safety guarantees, we follow Lorden’s
minimax formulation (Lorden 1971), which quantifies the
detection delay using the Worst-Case Average Detection De-
lay (WADD). The WADD is defined as

WADD(τ) = sup
t≥1

ess sup Et[(τ − γ + 1)+ | ϵ1, . . . , ϵt−1],

where (·)+ = max{0, ·}, Et[·] denotes the expectation when
the change occurs at time t, and ess sup(·) refers to the es-
sential supremum of a scalar random variable.



Algorithm 1: CUSUM with Parameterized Models
Input: Threshold b > 0
Parameter: Learned parameters ϕ and θ
Output: Change point τ if detected

1: Initialize W0 ← 0
2: Compute pre-change distribution fϕ(ϵt)
3: Compute post-change distribution gθ(ϵt)
4: while true do
5: Get a new observation of the prediction error ϵt
6: Compute log-likelihood ratio: LLR(ϵt) = log gθ(ϵt)

fϕ(ϵt)

7: Update: Wt+1 ← max(Wt + LLR(ϵt), 0)
8: if Wt+1 ≥ b then
9: Declare a change point τ

10: break
11: end if
12: end while
13: return τ if detected

The false alarm rate follows the literature (Veeravalli and
Banerjee 2014)

FAR(τ) =
1

E∞(τ)
,

where E∞ denotes the expectation when the change never
occurs.

4 Methods
In this section, we present the key methods used for detect-
ing OOD scenes, focusing on CUSUM as the primary algo-
rithm, with Z-Score and Chi-Square tests serving as bench-
mark comparisons. CUSUM is a mature method known for
its robust theoretical foundation and ability to quickly and
reliably detect distributional shifts (Alippi and Roveri 2006;
Manogaran and Lopez 2018; Sun et al. 2022b). In particu-
lar, CUSUM is designed to minimize detection delay while
keeping the false alarm rate within acceptable bounds, pro-
viding formal performance guarantees in dynamic environ-
ments. As benchmarks, the Z-Score and Chi-Square meth-
ods are commonly used in literature for comparison (Chea-
dle et al. 2003; Mare, Moreira, and Rossi 2017; Wallis and
Moore 1941; Chiang et al. 2024).

4.1 Background of CUSUM
Recall from Section 3.2 we use γ to denote this unknown
change time and t0 is the variable that indicates the cur-
rent system time; its value increases by 1 as each time goes
by. The problem of detecting OOD can be formulated as
detecting a change in the distributions of the sequence of
random prediction errors ϵt. As shown in Figure 3, we ob-
serve that on some popular datasets of trajectory prediction,
the pre- and post-change distributions are Gaussian mixtures
with two components. We consider three most popular sce-
narios when applying the CUSUM algorithm (Section 4.1,
Section 4.1, and Section 4.1).

The CUSUM algorithm detects distributional shifts by
monitoring cumulative deviations in the log-likelihood ratio

(a) GRIP++ (b) FQA

Figure 3: Illustration of the mixture Gaussian distributions for pre-
change (red) and post-change (blue) error distributions in trajec-
tory prediction, assessed using the ADE metric on the ApolloScape
dataset. (a) Left: Results from the GRIP++ model. (b) Right: Re-
sults from the FQA model. Both examples highlight the observed
shift in error distributions.

between pre-change (fϕ) and post-change (gθ) distributions.
The decision statistic Wt is computed iteratively

Wt =

{
0, if t = 0,

max{Wt−1 + logL(ϵt), 0}, if t ≥ 1,
(1)

where L(ϵt) = gθ(ϵt)
fϕ(ϵt)

is the likelihood ratio. A change is
declared when Wt exceeds a threshold b

τ = inf{t ≥ 1 : Wt ≥ b}.

This method optimally balances the trade-off between
false alarm rate FAR(τ < γ) and detection delay E[τ − γ |
τ ≥ γ]. This method enables awareness of sequential de-
cision reliability by continuously monitoring prediction er-
rors. For implementation details, see Algorithm 1.

Theorem 4.1 ((Veeravalli and Banerjee 2014)). For any α ∈
(0, 1), setting the threshold b = | logα| ensures

FAR(τ) ≤ α and WADD(τ) = O

(
| logα|

DKL(gθ, fϕ)

)
,

where DKL(gθ, fϕ) is the Kullback-Leibler divergence be-
tween pre-change and post-change distributions.

Intuition After a change-point γ, the observations ϵt
are distributed according to gθ, and the expected log-
likelihood ratio Et≥γ [log(

gθ(ϵt)
fϕ(ϵt)

)] equals the Kullback-
Leibler divergence DKL(gθ ∥ fϕ), which is positive. Con-
versely, before γ, the observations are governed by f , and
Et<γ [log(

gθ(ϵt)
fϕ(ϵt)

)] = −DKL(fϕ ∥ gθ), which is negative.
Consequently, with an increasing number of observations,
the cumulative sum

∑
t:t≥γ log(

gθ(ϵt)
fϕ(ϵt)

) is expected to ex-
ceed the threshold b. The max{·, 0} function in the statistic
Wt reduces the impact of random fluctuations in the log-
likelihood ratio and helps identify the change-point γ. The
threshold b controls the sensitivity of the detection; increas-
ing b makes the algorithm less prone to false alarms but also
delays the detection of actual changes.



CUSUM with Complete Knowledge We assume that
both the pre-change (fϕ) and post-change (gθ) distributions
follow Gaussian Mixture Models (GMMs). The probabil-
ity density function for GMM can be defined as p(ϵt) =∑K

i=1 wi · N (ϵt | µi, σ
2
i ), where K is the number of Gaus-

sian components in the mixture, and wi, µi, and σ2
i , respec-

tively, are the mixture weight, the mean, and the variance of
component i. In our experimental results in Figure 3, K = 2.

CUSUM with Partial Knowledge In real-world, the ex-
act parameters of the post-change distribution are often un-
known. Instead, we leverage partial knowledge or side infor-
mation to approximate the post-change distributions. In par-
ticular, we consider the case when the overall mean µg and
variance σ2

g of the post-change distribution are known. We
use N (ϵt |µg, σ

2
g) – a single Gaussian distribution with the

given mean and variance – to replace the true post-change
distribution gθ in computing the likelihood ratio in Equa-
tion (1), i.e.,

L(ϵt) =
ĝθ(ϵt)

fϕ(ϵt)
, where ĝθ(ϵt) = N (ϵt |µg, σ

2
g).

CUSUM with Unknown Knowledge Occasionally, the
pre-change distribution may not be known, which may re-
sult from a lack of sufficient data to reconstruct the true dis-
tribution. We consider the case when the overall means (µf

and µg) and variances (σ2
f and σ2

g) of pre- and post- change
distributions are known. We use single Gaussians to approx-
imate the pre- and post-change distributions in computing
the likelihood ratio in Equation (1), i.e.,

L(ϵt) =
ĝθ(ϵt)

f̂ϕ(ϵt)
,

where f̂θ(ϵt) = N (ϵt |µf , σ
2
f ) and ĝθ(ϵt) = N (ϵt |µg, σ

2
g).

4.2 Benchmarks
Z-Score Time-series Detection The Z-Score method de-
tects change points by measuring how much a data point
deviates from a moving average. For each time point t, the
Z-Score method calculates the moving average ϵ̄t over a de-
fined window size w, as: ϵ̄t = 1

w

∑t
r=t−w+1 ϵr, where ϵi

represents the time points. Next, the moving standard devi-

ation σt is computed as: σt =
√

1
w

∑t
r=t−w+1(ϵr − ϵ̄t)2.

Using these, the Z score zt for each data point ϵt at time t is
then calculated as zt = ϵt−ϵ̄t

σt
.

A threshold is set for the Z-Score, often based on how
sensitive the detection should be. When the absolute value
of the Z-Score |zt| exceeds the threshold, it indicates that
the data point ϵt is significantly deviating from the moving
average. This declares a potential change point

τ = min{t : |zt| > b}.

In summary, the Z-Score method detects change points by
identifying data points whose deviations (e.g. variation, and
standard deviation) exceed a pre-set threshold, indicating a
shift in the underlying distribution.

Chi-Square Time-series Detection Chi-Square test com-
monly used to evaluate the independence of categorical vari-
ables and the fit between observed and expected frequencies.
Specifically, we use Pearson’s chi-square test to compare
observed frequencies in the time-series with expected fre-
quencies under normal behavior (Franke, Ho, and Christie
2012). Significant deviations from the expected values sug-
gest potential anomalies. The test statistic is computed as
follows: χ2

t =
∑t

r=t−w+1
(gθ(ϵt)−fϕ(ϵt))

2

fϕ(ϵt)
, where w repre-

sents the number of time steps over which the test statistic is
computed (i.e. window size). The null hypothesis assumes
no significant difference between the frequencies. A large
χ2 value indicates an anomaly, and a change is declared
when χ2 exceeds a predefined threshold. For any given b,
the change time τ is defined as

τ = min{t : χ2
t > b}.

The Chi-Square test detects anomalies by comparing ob-
served and expected frequencies in time-series data, declar-
ing a change when the test statistic χ2 exceeds a predefined
threshold, signaling a shift in the underlying distribution.

5 Experiments and Results

Datasets Table 1 summarizes the characteristics of three
datasets used. The ApolloScape (Huang et al. 2018),
NGSIM (Federal Highway Administration 2020), and
NuScenes (Caesar et al. 2020) datasets are widely used
in trajectory prediction and autonomous vehicle research
due to their diverse and complex real-world driving scenes.
ApolloScape provides a rich multimodal dataset, including
camera images, LiDAR point clouds, and approximately 50
minutes of manually annotated vehicle trajectories. NGSIM
focuses on freeway traffic behavior, offering detailed ve-
hicle trajectories recorded over 45 minutes on highways
US-101 and I-80. NuScenes captures 1000 diverse driving
scenes in Boston and Singapore, two cities known for their
challenging traffic conditions. For trajectory prediction, we
choose the history trajectory length (LI ) and future trajec-
tory length (LO) based on the recommendations provided by
the dataset’s authors. For each dataset, we randomly select
2500 scenes to serve as test cases.

Name Scenario Map LI LO

ApolloScape Urban × 6 6
NGSIM Highway × 15 25

NuScenes Urban ✓ 4 12

Table 1: Summary of datasets.

Name Input features Output format Network
GRIP++ location + heading single-prediction Conv + GRU

FQA location single-prediction LSTM

Table 2: Summary of models.



Trajectory Prediction Models Table 2 summarizes two
benchmark models used for trajectory prediction. We select
GRIP++ (Li, Ying, and Chuah 2019) and FQA(Kamra et al.
2020) as our trajectory prediction models due to their proven
effectiveness on widely used datasets like ApolloScape and
NGSIM from prior research. GRIP++ employs a graph-
based structure with a two-layer GRU network, offering fast
and accurate short- and long-term predictions, ranking #1 in
the 2019 ApolloScape competition, making it an ideal fit for
our experiments by minimizing model noise and enhancing
algorithm performance evaluation. FQA introduces a fuzzy
attention mechanism to model dynamic agent interactions,
showing strong performance across diverse domains, includ-
ing traffic and human motion which is well-suited for evalu-
ating prediction performance in nuScenes dataset.

Model Dataset ADE (m) FDE (m) RMSE (m)
ApolloScape 1.68 / 4.15 2.11 / 8.73 6.16 / 6.26

GRIP++ NGSIM 4.35 / 7.89 7.50 / 14.82 1.23 / 3.36
NuScenes 5.82 / 8.16 5.03 / 8.78 5.74 / 5.33

ApolloScape 1.87 / 4.95 2.91 / 9.53 6.96 / 6.53
FQA NGSIM 4.63 / 8.69 7.88 / 15.62 1.63 / 4.16

NuScenes 6.62 / 8.96 5.83 / 9.58 6.54 / 6.13

Table 3: Average prediction error before and after the perturbation.

(a) OOD Scene (b) ID Scene

Figure 4: Statistical evolution of CUSUM detection given the pre-
diction errors from both ID and OOD scenes. A perturbation is
introduced at time step γ = 490 (i.e., the change point occurs at
step 490). At time step 507, the statistic Wt surpasses the threshold
(b = 7), signaling an OOD detection. This results in a detection de-
lay of 17 samples. The experiment is conducted using the GRIP++
model on the ApolloScape dataset, with prediction errors evaluated
using the ADE metric.

Deceptive OOD Scene Generation We generate decep-
tive OOD scenes by introducing subtle, physically con-
strained changes in driving behaviors. These changes, of-
ten imperceptible to human observers, are designed to sig-
nificantly degrade the prediction performance of machine
learning models. Inspired by adversarial perturbation tech-
niques (Zhang et al. 2022), we apply these perturbations in a
single-frame prediction setting for each dataset-model com-
bination. The results, presented in Table 3, demonstrate that
such perturbations consistently worsen trajectory prediction
accuracy. On average, ADE increases by 148.8%, FDE by

176.2%, and RMSE by 50.1%. Notably, FDE experiences
the highest increase (176.2%), highlighting greater vulner-
ability in long-term predictions compared to short-term or
overall error measures. These findings suggest that even mi-
nor trajectory shifts could have real-world consequences if
OOD scenes cannot be detected.

Gaussian Mixture Model Observation Figure 3 presents
the mixture Gaussian distributions of prediction errors for
pre-change (fϕ) and post-change (gθ) error distributions.
We evaluate the ApolloScape dataset using the ADE met-
ric, comparing results from two distinct models: (a) GRIP++
(Figure 3a) and (b) FQA (Figure 3b). Both models consis-
tently exhibit the same trend, underscoring the robustness
of our findings and validating the presence of distributional
shifts in prediction errors.

CUSUM Change-point Detection Figure 4 illustrates
how the CUSUM algorithm detects abnormal shifts in AV
trajectory prediction by tracking changes in prediction er-
rors. It monitors the cumulative statistic Wt, summing log-
likelihood ratios between pre- and post-change distributions,
and declares a change when Wt > b. In the OOD scene
(Figure 4a), a perturbation at step 490 causes Wt to exceed
b = 7 at step 507, triggering detection with a 17-sample
delay. In contrast, in the ID scene (Figure 4b), prediction er-
rors remain stable and Wt stays below b, confirming no false
alarms.

Delay vs. MTFA We evaluate the trade-off between de-
tection delay and mean time to false alarm (MTFA), bal-
ancing responsiveness and reliability (Figure 5a). CUSUM
Mix achieves the lowest delays—under 20 samples across
thresholds—due to GMM-based modeling of both pre- and
post-change distributions. CUSUM Sinmix, using a single
Gaussian for post-change, delays detection to 25 samples at
MTFA = 3, while CUSUM Single reaches 30. Chi-Square
performs worst, nearly four times slower than CUSUM Mix,
and Z-Score, though better, still lags behind all CUSUM
variants. Figure 6 further confirms CUSUM’s advantage in
balancing speed and false-alarm control.

Average Detection Delay To enable a fair comparison of
detection delays across different algorithms, we first en-
sured that all methods operated under the MTFA. This was
achieved by carefully adjusting the detection threshold for
each algorithm so that they can reach equivalent MTFA.
Once aligned, we measured the detection delay—defined as
the number of samples between the true change point and
the algorithm’s detection. As shown in Figure 5b, CUSUM
Mix delivered the fastest response, with an average delay
of just 3 samples, followed by CUSUM Sinmix at 5 sam-
ples and CUSUM Single at 8 samples. In comparison, the
Z-Score method detected changes with a longer delay of 15
samples, and the Chi-Square method, included as a base-
line, had the slowest response at 50 samples. To ensure sta-
tistical robustness, we fixed the change point at time step
1000 and repeated each experiment 5000 times. These re-
sults clearly demonstrate the efficiency of CUSUM-based
methods in minimizing detection delay, making them highly



(a) Delay v.s. MTFA (b) Average Detection Delay

Figure 5: (a) Performance of Delay over Log of Mean Time to False Alarm (MTFA) of ApolloScape dataset, using GRIP++ model and ADE
metric, as the threshold b increases from left to right. (b) Average detection delay of the tested OOD detection algorithms under same control
of time to false alarm across different metrics. The delay is measured using ADE, FDE, and RMSE, providing a comparative analysis of
algorithm performance in identifying anomalies. Lower delay values indicate faster detection.

Figure 6: Performance of Delay over MTFA, comparing GRIP++ (top row) and FQA (bottom row). Each row is grouped in threes: the first
three columns represent ApolloScape datasets, followed by NGSIM, and NuScenes. Within each group, metrics are arranged as ADE, FDE,
and RMSE, validating trends and demonstrating consistent performance across diverse scenarios.

suitable for real-time applications where rapid and reliable
change detection is critical.

6 Conclusions
We propose lightweight Quick Change Detection (QCD)
methods for detecting out-of-distribution (OOD) scenes in
real-world trajectory prediction datasets, introducing a novel
approach in this field. Our method monitors a scalar vari-
able of prediction errors, enabling OOD detection at any
point during inference. Unlike prior studies that rely heav-
ily on simulated environments, we rigorously address this
challenge using three real-world datasets—ApolloScape,
NGSIM, and NuScenes—alongside two state-of-the-art pre-
diction models, GRIP++ and FQA. Our work demonstrates
the feasibility and effectiveness of applying CUSUM-based
algorithms for timely and accurate OOD detection in AV
systems. Experimental results show that CUSUM Mix con-
sistently achieves superior detection performance with min-
imal false alarms, particularly when modeled using GMMs
across all dataset-model combinations. These findings pro-
vide a robust solution for enhancing the safety and reliabil-
ity of AV systems through timely model adjustments in dy-

namic environments. For future work, we suggest exploring
a tiered alarm system with context-aware alerts to prioritize
critical warnings while reducing computational overhead, as
well as leveraging imitation learning to adapt the system to
OOD scenes.
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