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Abstract

Behavior trees provide a transparent and modular structure
for encoding expert-designed policies, enabling interpretable
decision-making in complex tasks. Yet, applying behavior
trees to high-dimensional perceptual inputs such as images
or language is challenging as defining symbolic predicates
over raw perceptual data is non-trivial. While state-of-the-
art large multimodal models (such as vision-language mod-
els) can overcome this issue by utilizing natural language
queries over perceptual inputs, they incur high computational
cost, making them unsuitable for many applications. Imita-
tion learning offers a way to distill these experts into compact
models, though it requires extensive supervision. In contrast,
reinforcement learning reduces the need for costly supervi-
sion but risks misalignment of condition nodes with their
intended semantics as well as poor credit assignment. To
address these challenges, we introduce CERL (Condition-
node Expert-regularized Reinforcement Learning), a frame-
work that leverages expert-regularized reinforcement learn-
ing to preserve semantic faithfulness, while employing a fac-
torized policy that aggregates sequential condition-node deci-
sions into a single decision unit to alleviate credit assignment
challenges. Experiments across seven tasks from the Gym-
Cards, FrozenLake, and BabyAIText suites demonstrate that
our framework outperforms pure imitation learning or rein-
forcement learning baselines, retains strong agreement with
expert decisions, and achieves substantial gains in inference
speed and model size over expert models.

Introduction
Behavior Trees (BTs) (Colledanchise and Ögren 2018;
Iovino et al. 2022) are widely valued for their transparency,
modularity, and reusability, and they are commonly used
to encode expert-designed policies in robotics (Ögren and
Sprague 2022; Ghzouli et al. 2020), game AI (Marcotte and
Hamilton 2017), and autonomous systems (Hu et al. 2021).
Despite these strengths, their applicability to environments
with rich perceptual inputs, such as images or natural lan-
guage, remains limited. Standard BTs are inherently de-
signed to operate on explicit, semantically meaningful fea-
tures, yet extracting such features from high-dimensional
sensory data at each step of a decision sequence is non-
trivial. As a result, most BT applications rely on hand-

crafted symbolic conditions or carefully engineered features,
and only a few recent studies have attempted to extend
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BTs to perceptual inputs, either through feature engineer-
ing (Colledanchise, Parasuraman, and Ögren 2018) or by
leveraging large vision–language models (VLMs) for con-
dition evaluation (Wake et al. 2025).

In particular, VLMs (Ghosh et al. 2024) enable the eval-
uation of natural language condition queries directly on
raw perceptual inputs, avoiding manual feature engineering.
However, relying on a VLM for every decision during se-
quential decision-making is often impractical due to com-
putationally expensive inference and the high cost of expert
queries (e.g., API calls). A potential workaround is to uti-
lize imitation learning (IL) (Zare et al. 2024) to train a com-
pact condition-node policies based on VLM-labeled condi-
tion evaluation data, which can significantly reduce infer-
ence costs. Nonetheless, applying IL in the context of BTs
poses significant challenge: IL methods typically require
large amounts of labeled data, and in BTs this demand is
further amplified because each environment action depends
on multiple condition-node decisions along the traversal. As
a result, IL can still be prohibitively expensive for applica-
tions with limited budgets.

An alternative to IL is to use reinforcement learning
(RL) to train compact condition-node policies directly from
task completion rewards, thereby avoiding expensive VLM-
based labeling. However, this approach faces two key chal-
lenges. First, optimizing solely based on rewards can cause
semantic drift, where condition-node outputs diverge from
their intended semantics and instead prioritize reward-
maximizing behaviors (Skalse et al. 2022). This undermines
the original goal of BTs – transparent and interpretable de-
cision logic through alignment with expert-designed condi-
tions – since the learned nodes may no longer faithfully rep-
resent their intended meaning. Second, in sequential struc-
tures such as BTs, RL faces credit assignment challenges in
sparse-reward settings, because each environment action is
determined by a sequence of condition-node decisions, mak-
ing it especially difficult to assign credit to these individual
decision states.

Our framework addresses the first challenge – semantic
drift – by incorporating expert regularization during RL,
using a limited set of labeled expert decisions to preserve
alignment with the intended conditions and prevent the



learned policy from prioritizing reward at the cost of break-
ing BT semantics. The second challenge – credit assignment
in BTs – is alleviated via a theoretically-justified factorized
policy that aggregates condition-node decisions for an action
as a single decision unit, improving learning signal propa-
gation. Building on these principles, we introduce CERL
(Condition-node Expert-regularized Reinforcement Learn-
ing), a framework that trains condition nodes directly from
perceptual inputs through expert-regularized reinforcement
learning, ensuring semantic faithfulness and robust learning
under sparse rewards.

Our contributions are as follows: (1) we present a novel
Markov Decision Process formulation and policy gradient
derivation for RL-based training of condition nodes in BT;
(2) we propose a unified framework that integrates IL and
RL via expert regularization. Our method uses a limited set
of expert labels (e.g., from a large VLM) both to initialize
and continuously regularize the RL-based training of condi-
tion nodes, reducing expert labeling costs while preserving
faithfulness to expert decisions; (3) we show that our method
substantially improves over IL or RL alone, while maintain-
ing high degree of faithfulness to the expert’s decisions, and
achieving fast inference with models orders of magnitude
smaller and faster than the expert across GymCards, Frozen-
Lake, and BabyAIText suites.

Preliminaries
Behavior Tree (BT) is a hierarchical control structure with a
root node and a set of internal control flow nodes and exe-
cution (leaf) nodes (Colledanchise and Ögren 2018; Iovino
et al. 2022). Control proceeds through a recursive “tick” pro-
cess starting from the root, with each node returning one of
three statuses: SUCCESS, FAILURE, or RUNNING. Control
flow nodes determine traversal: a Sequence succeeds only
if all children succeed, a Fallback (or Selector) succeeds
if any child succeeds, a Parallel ticks all children simulta-
neously and returns SUCCESS or FAILURE once a prede-
fined threshold of children has succeeded or failed, and a
Decorator modifies the return of its single child (e.g., in-
verter, repeater, timeout). Execution nodes interact directly
with the environment: Condition nodes evaluate predicates
and return SUCCESS or FAILURE, while Action nodes per-
form operations that may return RUNNING while ongoing
and eventually return SUCCESS or FAILURE. Unlike con-
trol flow nodes, which are represented by symbolic opera-
tors (e.g.,→ : Sequence, ? : Selector, ⇒ : Parallel), execu-
tion nodes are conventionally denoted by shapes, ellipses for
conditions and rectangles for actions. This modular, compo-
sitional structure makes BTs human readable and reusable,
but standard BTs rely on symbolic or hand-engineered con-
dition nodes, limiting their use in high-dimensional percep-
tual domains such as vision or language.

Imitation learning (IL) seeks to train a policy π that repli-
cates the behavior of an expert π∗, typically from a dataset
of demonstrations D = {(s, a)}. The simplest form, behav-
ioral cloning (Billard et al. 2008; Argall et al. 2009), treats
IL as supervised learning by minimizing prediction loss be-
tween π and π∗. However, such offline training suffers from
distributional shift: when deployed, the learned policy may

visit states not covered in D, compounding errors over time.
Iterative IL methods, such as the DAgger (Ross, Gordon,
and Bagnell 2011) family of algorithms (Kelly et al. 2019;
Hoque et al. 2022; Menda, Driggs-Campbell, and Kochen-
derfer 2019; Ross and Bagnell 2014), address this issue
by collecting expert labels on learner-visited states to miti-
gate compounding errors. While these methods reduce com-
pounding errors, they require extensive expert queries during
training, which can be prohibitively costly in practice.

Reinforcement learning (RL) provides a framework for
learning policies through interaction with an environment,
typically modeled as a Markov Decision Process (MDP)
M = (S,A, P,R, γ). Here, S is the state space, A the ac-
tion space, P (s′|s, a) the transition dynamics, R(s, a) the
reward function, and γ ∈ (0, 1) the discount factor. A
stochastic policy π(a|s) defines a distribution over actions
given a state, with the objective of maximizing the expected
discounted return

J(π) = Eτ∼π

[
T∑

t=0

γtrt

]
,

where τ = (s0, a0, . . . , sT ) denotes a trajectory. The policy
gradient theorem (Sutton et al. 1999) gives

∇θJ(π) = Eτ∼π[R(τ)∇θ log π(τ)] ,

where R(τ) =
∑T

t=0 γ
trt is the trajectory return. In prac-

tice, the trajectory return R(τ) is replaced by variance-
reduced estimators such as advantage functions. For exam-
ple, Generalized Advantage Estimation (GAE) (Schulman
et al. 2015) provides a low-variance surrogate that is em-
ployed in modern policy optimization methods such as Prox-
imal Policy Optimization (PPO) (Schulman et al. 2017).

Problem Setup
We consider a behavior tree that encodes expert-designed
policy for a given task, where condition nodes are expressed
in natural language and operate on visual perceptual inputs.
Our goal is to train compact models to evaluate these con-
dition nodes so that they remain faithful to an expert’s de-
cisions. To achieve that, we assume access to such an ex-
pert (or a high-quality expert model, e.g., a large VLM) that
can reliably evaluate condition nodes, i.e., judge whether
the natural language query associated with each condition
node is satisfied by the perceptual input. However, supervi-
sion queries are expensive and we have a limited budget for
expert supervision. Futhermore, we focus on sparse-reward
environments, where feedback is provided only at the end of
each episode.
Example 1 (Behavior Tree Execution with Textual Condi-
tions). Figure 1 illustrates a simplified BT for the BabyAI-
Text Pickup environment, where condition nodes correspond
to natural language queries like “Is the target object di-
rectly in front of the agent?” or “Is turning left required
to reach the object?”. At each step during execution, the
BT traverses from the root to a leaf and selects a primitive
action (e.g., moving forward or rotating). The accuracy of
condition-node evaluations on the perceptual inputs deter-
mines whether the BT successfully executes the intended
policy.



Figure 1: Example behavior tree (BT) for the BabyAIText Pickup task. Elliptical leaf nodes represent natural-language condition
checks, and rectangular leaf nodes denote primitive actions. Internal control-flow nodes (e.g., Sequence and Selector) determine
traversal. The complete tree can be found in the supplementary material.

Figure 2: Overview of our framework. The compact model is
trained with reinforcement learning under expert regulariza-
tion, after being initialized with expert labels from a VLM.

Finally, to ensure compatibility with standard MDP for-
mulation, we assume that at each environment step, the BT
executes a complete root-to-leaf traversal and produces ex-
actly one primitive action, with no dead ends.

Methodology
We propose a framework that enables lightweight and faith-
ful visual condition checking in BTs via expert-regularized
RL (Figure 2). Our approach unifies IL and RL by simulta-
neously optimizing condition nodes to align with limited ex-
pert supervision and to maximize task reward. Expert labels
are used for parameter initialization as well as for regular-
ization throughout training, to preserve semantic alignment
with expert decisions. At each environment step, the se-
quence of condition-node decisions is aggregated into a sin-
gle decision unit corresponding to the chosen action, allevi-
ating the credit assignment challenges described above. This

unified process reduces the need for costly expert queries
while maintaining faithfulness to expert decisions.

MDP Formulation and Policy Gradient
We formulate the decision-making process under a BT as
an MDP M = (S,A, P,R, γ), where S is the state space
consisting of high-dimensional perceptual observations (im-
ages), A is the set of primitive actions, P : S × A × S →
[0, 1] is the transition function, R : S×A → R is the reward
function, and γ is the discount factor. We adopt the infinite-
horizon discounted formulation (γ ∈ (0, 1)) for theoreti-
cal clarity, while our experiments are conducted in finite-
horizon episodic tasks.

At each step t, the BT T is traversed from the root to
a leaf, producing a sequence of condition-node decisions
yt = (yt,1, . . . , yt,nt

), where each yt,i ∈ {0, 1} is the bi-
nary outcome of the i-th condition node at time t, and nt is
the number of condition nodes evaluated along the traversal.
The condition nodes are modeled using a shared binary clas-
sifier that receives the current perceptual state st (an image)
together with the condition node’s natural language query
qi. This classifier, implemented as a lightweight neural net-
work, outputs the probability of the decision yt,i given the
image–query pair (st, qi), denoted qθ(yt,i | st, qi), serving
as a compact surrogate for the VLM expert. We note that the
underlying MDP state space consists solely of images and
the queries that represent the condition nodes are part of the
fixed BT structure rather than the environment. Importantly,
these queries are hand-designed, reflecting the desired be-
havior for a given task. Given a full decision sequence yt, it
can then be mapped to a primitive action based on the BT.

To formalize this traversal, we use p(yt | st) to denote the
probability of selecting the decision sequence yt ∈ {0, 1}nt

at a given state st ∈ S . Each sampled sequence yt deter-
ministically maps to a primitive action via the BT structure,
T : Y → A. The probability distribution p naturally in-
duces an action policy, where the probability of selecting an
action at is given by the sum of probabilities of all decision
sequences that map to it:

π(at | st) =
∑

yt:T (yt)=at

p(yt | st). (1)

Proposition 1 then shows that this induced policy π is a



valid action distribution, i.e., it is properly normalized and
non-negative for all actions at ∈ A.1

Proposition 1 (Distribution over Decision Sequences In-
duces a Valid Action Policy). Let p(yt | st) be a normal-
ized probability distribution over decision sequences (i.e.,∑

yt
p(yt | st) = 1). Assume that the BT T is deterministic,

and for every sequence yt with p(yt | st) > 0, the BT re-
turns exactly one primitive action at = T (yt) ∈ A. Define
the induced action policy

π(at | st) =
∑

yt: T (yt)=at

p(yt | st). (2)

Then π(at | st) is a valid probability distribution over A.

While Proposition 1 establishes that the distribution p
over decision sequences yt induces a valid probability dis-
tribution over actions, directly computing π(at | st) is inef-
ficient since it requires summing over all decision sequences
that map to each action. This issue is especially relevant
for policy-gradient optimization, where we need to estimate
expectations of functions (e.g., reward or advantage func-
tions) by sampling from the action distribution. Proposi-
tion 2 shows that these action-level expectations can instead
be written as expectations over the sequence distribution
p(yt | st), which will allow us to estimate them by sampling
a single root-to-leaf path and using at = T (yt), without ex-
plicitly forming π(at | st).
Proposition 2 (Expectation preservation under determinis-
tic mapping). Let at = T (yt) for a deterministic mapping
T , and let p(yt | st) be a valid distribution over decision se-
quences. Then, for any function f over actions (e.g., reward
or advantage functions),

Eat∼π(·|st)[f(at)] = Eyt∼p(·|st)[f(T (yt))]. (3)

Although Proposition 2 guarantees that expectations over
actions can be replaced by expectations over decision se-
quences yt, directly modeling the full distribution p(yt |
st) is not practical. An autoregressive formulation could in
principle capture conditional dependencies across condition
nodes, but it would require sequential modeling along the
path. This would undermine the reusability property of BTs,
namely that condition-node classifiers can be reused across
BTs without retraining. Further, it would not be compati-
ble with the form of supervision available from the expert,
which provides labels at the node level rather than for en-
tire sequences. Therefore, we adopt a conditional indepen-
dence assumption, factorizing condition-node decisions as
independent given their image–query pairs:

p(yt | st) =

nt∏
i=1

qθ(yt,i | st, qi), (4)

where nt is the number of condition nodes traversed at
step t, yt,i ∈ {0, 1} denotes the binary decision at the i-
th condition node, and (st, qi) denotes the corresponding
image–query pair. Recall that qθ(yt,i | st, qi) denotes the

1All proofs appear in the supplementary material.

probability that condition node i outputs yt,i given its im-
age–query input, and it is implemented via a neural clas-
sifier parameterized by θ. Consequently, the sequence-level
probability p and the action policy π are not parameterized
directly, but are instead induced through qθ and the deter-
ministic BT mapping.

Under the factorization in Eq. (4), an action can be sam-
pled by traversing the BT once from root to leaf, sampling
node-level decisions from qθ and mapping the resulting se-
quence to a primitive action. This requires evaluating only
the nodes encountered along a single traversal, O(nmax) per
step (where nmax is the maximum depth of the BT), whereas
explicitly computing the full action distribution would re-
quire aggregating over all possible root-to-leaf decision se-
quences, whose number can grow exponentially with the
tree’s branching structure.

Having established both the validity of the induced action
distribution (Proposition 1) and the expectation preservation
under deterministic mapping (Proposition 2), we now derive
the policy gradient under the sequence distribution p, which
factorizes into node-level distributions qθ. Theorem 1 shows
that the gradient naturally decomposes into condition-node
log-probabilities, making optimization tractable.
Theorem 1 (Policy gradient for BT-driven policies). Let p
denote the distribution over BT decision sequences, which
induces the valid action policy π as established in Propo-
sition 1. Using the expectation-preservation property of
Proposition 2, the policy gradient is

∇θJ(θ) = Eτ∼π

[
T∑

t=0

nt∑
i=1

At ∇θ log qθ(yt,i | st, qi)

]
,

(5)

where At is any valid environment-time advantage, and the
expectation is over trajectories τ sampled from the environ-
ment distribution induced by π.

Importantly, although the policy is factorized over indi-
vidual condition-node outputs, all condition-node classifiers
share a single parameter set θ. At each environment step t,
condition nodes along the root-to-leaf path form a grouped
decision unit. Specifically, the gradients ∇θ log qθ(yt,i |
st, qi) for all visited nodes i = 1, . . . , nt are accumulated
and weighted by the same advantage At (Eq. 5), enabling a
single parameter update that alleviates credit assignment in
sparse-reward settings.

In practice, we optimize a surrogate objective using Prox-
imal Policy Optimization (Schulman et al. 2017), which
maximizes the following objective:

JPPO(θ) = Et [min (ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At)] ,
(6)

where the importance sampling ratio is defined as

ρt(θ) :=

∏nt

i=1 qθ(yt,i | st, qi)∏nt

i=1 qθold(yt,i | st, qi)
. (7)

The advantage estimator At is computed using General-
ized Advantage Estimation (Schulman et al. 2015). The full
PPO loss combines the clipped surrogate in Eq. (6) with the



importance sampling ratio defined over decision sequences
(Eq. (7)), plus a value loss based on the state st and an en-
tropy bonus computed over the node-level outputs qθ(yt,i |
st, qi), following the standard PPO (Schulman et al. 2017).

Credit assignment under sparse rewards. Our factor-
ized distribution treats all condition-node decisions within
an environment step as a single decision sequence yt =
(yt,1, . . . , yt,nt

) at state st, which deterministically induces
a primitive action via the BT. The update therefore uses
one environment–time advantage At attached to the log-
probability, ∇θ log p(yt | st)At. We note that an alterna-
tive, simpler MDP formulation could treat each condition-
node decision as its own step, with states represented as
pairs (st, qi). That is, instead of one environment step t
corresponding to a single decision sequence, it is expanded
into (t, 1), . . . , (t, nt) decision states, with the reward only
observed after the final decision (t, nt), which in sparse-
reward settings is typically zero until episode termination.
This forces credit to propagate backward across nt−i in-
tra–step links, so the signal available to early decisions (t, i)
is geometrically attenuated (approximately ∝ γnt−iλnt−i

with discount γ and GAE parameter λ (Schulman et al.
2015)). By aggregating the intra-step chain, our factorized
formulation preserves a concentrated learning signal at the
environment timescale and avoids inflating the critic’s input
domain from st to the expanded set of pairs (st, qi) for all
traversed condition nodes i = 1, . . . , nt at each step, thereby
reducing the number of distinct decision states that must be
evaluated. In the experiments, we empirically compare our
factorized formulation against the simpler baseline.

Expert-Regularized RL Training
RL with Expert Regularization. We optimize the policy
via expert-regularized RL, using PPO with Expert Regular-
ization (ER) derived from cross-entropy against expert la-
bels. At each iteration, trajectories are collected by executing
the current policy through the BT in the environment. The
PPO loss is computed from randomly sampled minibatches,
using advantage estimates based on GAE (Schulman et al.
2015) and the importance sampling ratio (Eq. (7)); the value
function is simultaneously updated to predict returns, as in
standard PPO. To maintain alignment with expert knowl-
edge, we also sample minibatches from the expert dataset
Dsup at every parameter update step and compute the ER
loss between the current policy’s predictions and the corre-
sponding precomputed VLM labels. The total loss combines
the PPO and ER objectives, weighted by a regularization co-
efficient. The full training procedure is provided in the sup-
plementary material (Algorithm 1).

Imitation Learning Initialization. We initialize the pol-
icy using IL. Specifically, we employ either Behavior
Cloning (BC) or DAgger under a given labeling budget. For
BC, we train on expert-labeled, mission-successful episodes
using a cross-entropy loss, with early stopping based on a
validation set from an 8:1:1 train/validation/test split; the
best checkpoint is then used to initialize RL. For DAgger, we
adopt a fixed-budget, chunked aggregation scheme: at each
iteration, we (i) collect a fixed quota of new labels by rolling

out a mixture policy πi = βiπ
∗ + (1 − βi)π̂i, where π∗

is the expert and π̂i is the current learner, with βi decayed
according to an exponential schedule (βi = β0 · αi), and
then (ii) perform a single supervised update on the aggre-
gated dataset, using the same cross-entropy objective as in
BC. While BC restricts training to successful expert-labeled
episodes, DAgger instead aggregates all episodes regardless
of outcome, since the mixed policy often has relatively low
success rates, resulting in very few successful expert-labeled
episodes otherwise. This process is repeated until the total
label budget is exhausted, outputting the final dataset Dsup
and the initialized policy π. Notably, BC can be seen as a
special case of DAgger where the per-iteration quota equals
the entire budget B and the mixture policy is fixed to the ex-
pert (πi = π∗), resulting in a single supervised update. The
complete DAgger procedure is provided in the supplemen-
tary material (Algorithm 2).

Expert Data Acquisition. To generate expert-labeled data
for IL, we deploy the BT in the environment and use a VLM
expert to decide whether each condition node is satisfied or
not. To do so, we design detailed, game-specific prompts that
describe the game context (e.g., mission, rules) and at each
condition-decision step, the input – including the rendered
image frame, the game context, and the condition query –
is provided to the VLM (GPT-4.1-mini), which returns a bi-
nary decision. These outputs are collected into a dataset of
(image, condition query, decision label) tuples. The resulting
expert dataset, Dsup, is then used for both policy initializa-
tion and expert regularization during the RL training.

Experiments
Experimental Setup
We evaluate our method on seven distinct visual decision-
making tasks drawn from three widely used evaluation
suites. These include NumberLine, EZPoints, and BlackJack
from GymCards (Zhai et al. 2024); the 4x4 and 8x8 from
FrozenLake (Towers et al. 2024); and Goto and Pickup from
BabyAIText (Paglieri et al. 2025). The detailed descriptions
of each task are provided in the supplementary material.
During training, episodes begin from random initial states
to ensure exposure to diverse scenarios, and all experiments
are executed with four random seeds. For evaluation, we use
a fixed set of 100 episodes generated from four seeds not
used in training and report averages over these four seeds.

We report four metrics: (1) Episodic Success Rate, the
proportion of successful episodes; (2) Decision Accuracy,
the agreement between the learned model’s condition-node
decisions and those of the expert VLM (GPT-4.1-mini),
measured as the proportion of matching decisions over eval-
uated samples; (3) Average Inference Time, mean runtime
per episode; and (4) Model Size, the number of parame-
ters in the compact model. Behavior Tree execution uses
the py trees (Stonier et al. 2025) library. Expert deci-
sions are obtained from GPT-4.1-mini accessed via API. We
allocate a limited budget for each task per random seed:
1,000 VLM queries for NumberLine and FrozenLake 4x4,
and 10,000 VLM queries for EZPoints, BlackJack, Frozen-
Lake 8x8, BabyAIText Goto, and BabyAIText Pickup. Imple-



Metrics Model GymCards FrozenLake BabyAIText
NL BJ EZP 4x4 8x8 Goto Pickup Avg

Success
Rate (%) ↑

Expert (GPT-4.1-mini) 100.00 36.75 78.00 98.25 82.00 99.75 99.50 84.89

IL BC 100.00 40.25 84.50 65.50 13.75 78.75 35.50 59.75
DA 100.00 36.25 44.50 69.75 19.75 66.25 15.75 50.32

RL RLb 100.00 28.00 0.00 0.00 0.00 5.25 0.75 19.14
RLf (ours) 100.00 44.00 0.00 97.75 0.00 86.75 2.50 47.29

IL + RL
(ours)

initBC + RLf w/ ER1.0 100.00 42.50 89.00 95.50 58.50 95.25 65.00 77.96
initBC + RLf w/ ER0.1 100.00 44.25 85.00 97.25 66.50 95.50 70.75 79.89

Ablation
RLf w/ ER0.1 100.00 40.25 0.00 99.00 21.75 98.75 9.50 52.75
initBC + RLf 100.00 41.75 78.00 95.00 59.25 95.50 71.00 77.21
initDA + RLf w/ ER0.1 100.00 45.25 79.00 96.50 69.25 93.00 35.25 74.04

Accuracy
(%) ↑

Expert (GPT-4.1-mini) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

IL BC 100.00 91.50 98.90 91.54 81.88 83.98 84.67 90.35
DA 100.00 93.56 91.85 91.47 87.09 83.03 79.74 89.53

RL RLb 100.00 57.84 53.57 77.78 29.13 69.62 53.75 63.10
RLf (ours) 95.71 58.52 61.19 73.09 34.66 76.34 73.05 67.51

IL + RL
(ours)

initBC + RLf w/ ER1.0 100.00 93.08 99.21 93.45 82.89 87.07 87.53 91.89
initBC + RLf w/ ER0.1 100.00 85.68 98.62 88.59 78.37 87.33 87.94 89.50

Ablation
RLf w/ ER0.1 100.00 75.95 86.00 87.78 76.09 79.77 78.51 83.44
initBC + RLf 100.00 72.87 95.34 77.44 68.23 84.00 85.49 83.34
initDA + RLf w/ ER0.1 100.00 88.90 97.04 88.48 86.97 87.15 83.00 90.22

Table 1: Performance comparison of models on Success Rate and Accuracy across seven tasks. Notations: NL = NumberLine,
BJ = BlackJack, EZP = EZPoints; BC = Behavior Cloning, DA = DAgger, RLb = baseline RL, RLf = factorized RL, ER =
Expert Regularization with coefficients 1.0 and 0.1.

mentation details, including the network architectures, ex-
perimental hardware, and hyperparameters, are provided in
the supplementary material.

We compare several model variants: IL baselines, Behav-
ior Cloning and DAgger; RL baselines, the baseline formu-
lation (RLb), which expands the environment from T steps
(episode length in primitive actions) to K =

∑T
t=1 nt steps,

where nt is the number of condition nodes traversed at step
t, and our factorized formulation (RLf ); IL+RL, RLf with
expert regularization, evaluated with regularization coeffi-
cients of 1.0 and 0.1; and Ablations, variants that remove
either initialization or regularization, as well as utilizing al-
ternative initialization based on our Dagger with fixed bud-
get.

Experimental Results
The results are presented in Table 1. Our experiments across
the GymCards, FrozenLake, and BabyAIText benchmarks
demonstrate that we can successfully learn compact and ef-
fective policies that maintain a high level of agreement with
the expert. In particular, our integrated CERL framework
outperforms both IL and RL baselines individually, while
achieving orders-of-magnitude faster inference with a much
smaller model size compared to the expert VLM.

CERL Outperforms Baselines. By combining IL and our
factorized RL with expert regularization (denoted as initBC
+ RLf w/ ER0.1), our approach achieves significantly higher

success rates than either pure IL (BC or DAgger) or RL
alone (RLb baseline or RLf factorized RL). Concretely, the
average success rate across all tasks improved to nearly 80%
with our IL+RL method compared to around 60% with IL
only and less than 50% with factorized RL alone, and only
slightly behind the 84.89% of the VLM expert. Furthermore,
our factorized RL (RLf) consistently outperforms the base-
line (RLb), improving average success rates from approxi-
mately 19% to more than 47%. With a regularization coef-
ficient of 0.1, the model achieves the best balance between
reward maximization and semantic fidelity, reaching nearly
80% average success and about 90% accuracy. Notably, us-
ing a stronger coefficient (ER1.0) yields further gains in
faithfulness: initBC + RLf w/ ER1.0 improves average ac-
curacy from 90.35% (BC) to 91.89%, showing that our ap-
proach not only boosts success rates but has the potential
to enhance the accuracy of imitation learning itself, further
minimizing the gap from the VLM expert. This confirms the
effectiveness of our expert-regularized RL in achieving high
success rates while preserving strong semantic faithfulness
to expert decisions.

Ablation Study Findings. Our ablation analysis validates
the contributions of the individual components. Ablating the
IL-based initialization (RLf w/ ER0.1) leads to lower accu-
racy of about 83.4% as well as lower success rate of about
52.8%. Conversely, IL initialization combined with factor-
ized RL but without expert regularization leads to slightly



lower success rate of 77.2% and a more significant decrease
in faithfulness. Our proposed framework that consists of IL
initialization and expert-regularized RL achieves the best
performance across both success rate and accuracy, demon-
strating that each component contributes to the overall per-
formance. Additionally, we observe that replacing BC with
Dagger (initDA + RLf w/ ER0.1) tends to underperform com-
pared to BC. This shortfall likely stems from DAgger’s lim-
ited labeling budget and its mixture policy, which produces
fewer successful episodes and thus less effective expert su-
pervision.

Speed, Size, and Cost Efficiency. Our distilled models
achieve orders of magnitude faster inference times com-
pared to the expert GPT-4.1-mini VLM, enabling fast ex-
ecution. Specifically, our IL+RL models infer in approxi-
mately 0.09 seconds per episode on average, compared to
over 63 seconds for the expert. The compact models we
use are significantly smaller than the expert, with approx-
imately 6.6 million parameters versus approximately 7 bil-
lion2(according to estimates), making them several orders of
magnitude lighter. Detailed comparisons of speed and model
size across all tasks are provided in the supplementary mate-
rial. Our expert labeling cost was tightly controlled, limited
to about 208,000 expert API calls for condition-node deci-
sions across seven tasks and four seeds, corresponding to a
total training cost of about US$96.74.

Related Work
A large body of research has combined IL with RL to im-
prove policy performance (Sun, Bagnell, and Boots 2018;
Nair et al. 2018; Rajeswaran et al. 2017; Xie et al. 2021;
Xue et al. 2023; Song et al. 2023; Ball et al. 2023; Reddy,
Dragan, and Levine 2020; Eysenbach, Levine, and Salakhut-
dinov 2021; Luo et al. 2024). These methods pursue diverse
goals, such as surpassing the expert, learning in reward-free
settings, or minimizing expert intervention. However, they
typically do not emphasize maintaining semantic fidelity to
expert behavior or integrating interpretability mechanisms.
In contrast, our work leverages IL to preserve faithfulness to
expert decisions while using RL for reward optimization, all
within an interpretable framework based on BTs.

Although RL has been applied to BTs to improve adapt-
ability and performance, typically by optimizing local node-
level decisions such as adjusting fallback priorities (Fu, Qin,
and Yin 2016; Zhang et al. 2017; Xu et al. 2022), embed-
ding learned policies into action nodes (Pereira and Engel
2015; Li et al. 2021, 2024), or constructing BT structures
through RL-based synthesis (Zhao et al. 2023; Huang et al.
2025), these approaches are largely limited to symbolic or
low-dimensional feature spaces as RL inputs. This limita-
tion restricts their applicability to high-dimensional percep-
tual inputs such as images and language without costly fea-
ture engineering. In addition, many of these methods modify
or replace standard BT nodes, for example, by embedding
opaque neural policies into action nodes or altering control-
flow logic, thereby weakening alignment with the human

2Unofficial estimate, e.g., https://amigochat.io/gpt-4-1-mini

designer’s intent and reducing the transparency and inter-
pretability that BTs are meant to provide. In contrast, our
approach preserves the standard BT structure by keeping ac-
tion and control-flow nodes unchanged, while training only
condition nodes with lightweight neural models regularized
by expert supervision to retain their intended semantics.

Decision trees (Breiman et al. 2017) have also been ex-
plored as interpretable policy representations in RL. Prior
studies primarily fall into two directions. Distillation-based
methods extract tree policies from trained RL agents to
enhance transparency and verifiability (Bastani, Pu, and
Solar-Lezama 2018; Acero and Li 2024), while differen-
tiable methods learn tree parameters end-to-end through
gradient-based optimization (Silva et al. 2020; Wen et al.
2025). To our knowledge, no prior approach has intro-
duced a factorized policy formulation that enables efficient
root-to-leaf sampling-based policy-gradient optimization for
differentiable tree structures, nor has it enabled direct
training of expert-designed, tree-structured policies from
high-dimensional perceptual inputs for sequential decision-
making.

Conclusion
We presented a unified framework for interpretable se-
quential decision-making based on expert-designed behav-
ior trees that operate on high-dimensional perceptual in-
puts, integrating imitation learning and reinforcement learn-
ing through expert regularization. Our approach uses a lim-
ited set of expert labels, leveraging them both for initial-
ization and as a continuous regularizer to preserve seman-
tic alignment with expert decisions. Reinforcement learning
drives performance improvement, while expert regulariza-
tion constrains the policy to remain close to expert behavior.
The RL component is built on factorized node-level distri-
butions that aggregate condition-node decisions into a sin-
gle unit, simplifying credit assignment under sparse rewards.
Across the GymCards, FrozenLake, and BabyAIText suites,
we showed that our approach achieves strong success rates,
maintains semantic consistency with expert behavior, and
runs efficiently on lightweight models suitable for resource-
constrained environments.

Our work focuses on expert-designed BTs that encode
agents’ desired policies for successfully completing tasks
while operating on high-dimensional perceptual inputs. It
assumes access to an expert model (e.g., VLM) that is capa-
ble of judging natural-language queries over perceptual in-
puts with high accuracy, but incurs high computational costs.
In future work, we plan to extend our work to consider ad-
ditional settings such as automated BT synthesis and adap-
tation, or the use of weaker or noisier supervision sources in
place of strong expert models.
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Supplementary Materials
Proofs
This section provides detailed proofs for the key theoretical
results presented in the main paper.

Proposition 1. (Distribution over Decision Sequences In-
duces a Valid Action Policy) Let p(yt | st) be a normal-
ized probability distribution over decision sequences (i.e.,∑

yt
p(yt | st) = 1). Assume that the BT T is deterministic,

and for every sequence yt with p(yt | st) > 0, the BT re-
turns exactly one primitive action at = T (yt) ∈ A. Define
the induced action policy

π(at | st) =
∑

yt: T (yt)=at

p(yt | st). (8)

Then π(at | st) is a valid probability distribution over A.

Proof. Each term p(yt | st) is nonnegative, so π(at | st) ≥
0 for every at ∈ A. To show the probabilities over actions
sum to 1, add them up:∑

at∈A
π(at | st) =

∑
at∈A

∑
yt: T (yt)=at

p(yt | st). (9)

Because the BT is deterministic, each sequence that can oc-
cur (i.e., has p(yt | st) > 0) leads to exactly one action, so
each sequence yt appears in exactly one of the inner sums.
Sequences with zero probability do not contribute. There-
fore the double sum counts each occurring sequence exactly
once, giving∑

at∈A
π(at | st) =

∑
yt

p(yt | st) = 1. (10)



Thus π(at | st) is nonnegative and sums to 1, so it is a valid
probability distribution over A.

Proposition 2. (Expectation preservation under determinis-
tic mapping) Let at = T (yt) for a deterministic mapping
T , and let p(yt | st) be a valid distribution over decision se-
quences. Then, for any function f over actions (e.g., reward
or advantage functions),

Eat∼π(·|st)[f(at)] = Eyt∼p(·|st)[f(T (yt))]. (11)

Proof. By the law of total probability (Proposition 1,
Eq. (8)),

Eat∼π(·|st)[f(at)] =
∑
at

π(at | st)f(at) (12)

=
∑
at

 ∑
yt:T (yt)=at

p(yt | st)

 f(at)

(13)

=
∑
yt

p(yt | st)f(T (yt)) (14)

= Eyt∼p(·|st)[f(T (yt))]. (15)

The crucial step is the move from Eq. (13) to Eq. (14).
Since each sequence yt deterministically maps to exactly
one action at = T (yt), Eq. (13) becomes equivalent to sum-
ming once over all sequences and evaluating f at the induced
action T (yt).

Theorem 1. (Policy gradient for BT-driven policies) Let p
denote the distribution over BT decision sequences, which
induces the valid action policy π as established in Propo-
sition 1. Using the expectation-preservation property of
Proposition 2, the policy gradient is

∇θJ(θ) = Eτ∼π

[
T∑

t=0

nt∑
i=1

At ∇θ log qθ(yt,i | st, qi)

]
,

(16)

where At is any valid environment-time advantage, and the
expectation is over trajectories τ sampled from the environ-
ment distribution induced by π.

Proof. We define the RL environment as a Markov
Decision Process, M = (S,A, P,R, γ). Let τ =
(s0,y0, a0, r0, s1, . . . , sT+1) denote a trajectory. Its proba-
bility under the induced action policy π is given by

π(τ) = p0(s0)

T∏
t=0

[
π(at | st) P (st+1 | st, at)

]
(17)

= p0(s0)

T∏
t=0

[
p(yt | st) P (st+1 | st, at)

]
(18)

= p0(s0)

T∏
t=0

[
nt∏
i=1

qθ(yt,i | st, qi) P (st+1 | st, at)

]
,

(19)

where p0(·) is the initial state distribution.
By the log-derivative trick (Sutton et al. 1999; Williams

1992), for any differentiable policy,

∇θJ(θ) = ∇θEτ∼π[R(τ)] = Eτ∼π [R(τ)∇θ log π(τ)] .
(20)

The full trajectory log-probability is

log π(τ) = log p0(s0) +

T∑
t=0

nt∑
i=1

log qθ(yt,i | st, qi) (21)

+

T∑
t=0

logP (st+1 | st, at). (22)

The initial state distribution p0 and the transition probability
distribution P do not depend on θ, so their gradient vanishes.
Thus,

∇θ log π(τ) =

T∑
t=0

nt∑
i=1

∇θ log qθ(yt,i | st, qi), (23)

substituting∇θ log π(τ) into the expectation, and using that
the return R(τ) can be replaced by an advantage-weighted
sum without changing the expectation, we obtain

∇θJ(θ) = Eτ∼π

[
T∑

t=0

nt∑
i=1

At ∇θ log qθ
(
yt,i | st, qi

)]
.

(24)

In practice, we optimize a surrogate objective using Prox-
imal Policy Optimization (Schulman et al. 2017), which
maximizes the following objective:

JPPO(θ) = Et [min (ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At)] ,
(25)

where the importance sampling ratio is defined as

ρt(θ) :=

∏nt

i=1 qθ(yt,i | st, qi)∏nt

i=1 qθold(yt,i | st, qi)
. (26)

The advantage estimator At is computed using Generalized
Advantage Estimation (Schulman et al. 2015). The full PPO
loss combines the clipped surrogate in Eq. (25) with the
importance sampling ratio defined over decision sequences
(Eq. (26)), plus a value loss based on the state st and an en-
tropy bonus computed over the node-level outputs qθ(yt,i |
st, qi), following the standard PPO (Schulman et al. 2017).

Algorithms
This section presents the complete pseudocode for the al-
gorithms discussed in the main paper, including CERL
(Condition-node Expert-Regularized Reinforcement Learn-
ing) and DAgger with Fixed Label Budget. These implemen-
tations correspond to Algorithms 1 and 2 referenced in the
main text.



Metrics Model GymCards FrozenLake BabyAIText Avg
NL BJ EZP 4x4 8x8 Goto Pickup

Inference
Time (s/ep) ↓

Expert (GPT-4.1-mini) 4.82 13.24 39.58 60.18 241.51 31.86 52.54 63.39

IL BC 0.01 0.17 0.08 0.03 0.06 0.09 0.37 0.12
DA 0.01 0.17 0.07 0.05 0.28 0.14 0.46 0.17

RL RLb 0.01 0.15 0.05 0.28 1.53 0.42 0.35 0.40
RLf (ours) 0.01 0.16 0.14 0.02 0.72 0.09 0.35 0.21

IL + RL
(ours)

initBC + RLf w/ ER1.0 0.01 0.17 0.11 0.04 0.11 0.07 0.16 0.09
initBC + RLf w/ ER0.1 0.01 0.17 0.11 0.03 0.14 0.06 0.11 0.09

Ablation
RLf w/ ER0.1 0.01 0.15 0.08 0.02 0.11 0.03 0.42 0.12
initBC + RLf 0.01 0.17 0.12 0.04 0.19 0.06 0.16 0.11
initDA + RLf w/ ER0.1 0.01 0.16 0.12 0.03 0.36 0.11 0.43 0.18

Model Size
(# params) ↓

Expert (GPT-4.1-mini) ∼7B3

Others 6.6M

Table 2: Inference time and model size across seven tasks. NL = NumberLine, BJ = BlackJack, EZP = EZPoints; BC = Behavior
Cloning, DA = DAgger, RLb = baseline RL, RLf = factorized RL, ER = Expert Regularization (coefficients 1.0 and 0.1).

Algorithm 1: CERL: Condition-node Expert-regularized Re-
inforcement Learning

Input: Behavior Tree T , initial policy π (parameters θ),
environment E , expert dataset Dsup, expert-regularization
(ER) coefficient λER
Output: policy π

1: Initialize π on Dsup via imitation learning (e.g., Behav-
ior Cloning or DAgger - Algorithm 2)

2: for each iteration do
3: Collect trajectories D in E using BT T and policy π
4: Compute returns and advantages (GAE) from D
5: for each PPO epoch do
6: for each minibatch (S,Y,A, R, Â) in D do
7: Compute LPPO: PPO loss based on
8: importance ratio Eq. (26), including
9: value and entropy terms

10: Sample minibatch (Ssup,Qsup,Ysup)
11: from Dsup
12: Compute LER: averaged cross-entropy loss
13: between π(ysup | ssup, qsup) and expert
14: labels ysup
15: Update θ to minimize LPPO + λER LER

16: return πθ

Extended and Additional Experimental Results
Speed and Model Size. As shown in Table 2, our compact
models demonstrate significant advantages in both inference
speed and size compared to the expert GPT-4.1-mini VLM.
Across all tasks, the distilled IL+RL variants achieve aver-
age inference times of roughly 0.09 seconds per episode,
while the expert requires more than 63 seconds on average.
This efficiency gain corresponds to a speedup of over three
orders of magnitude. In terms of size, each compact model
contains approximately 6.6 million parameters, compared to
the expert’s estimated 7 billion, making our approach both

Algorithm 2: DAgger with Fixed Label Budget

Input: Behavior Tree T , environment E , expert policy π∗,
initial policy π (parameters θ), total budget B, per-iteration
quota q, initial mix β0, decay α ∈ (0, 1)
Output: Aggregated dataset Dsup, policy π
Notation: x = (image, condition query) for learner input;
x+ = (image, game context + condition query) for expert
input

1: π̂0 ← π; Dsup ← ∅; b← B; i← 0
2: while b > 0 do
3: βi ← min{1, β0α

i}; c← min{q, b}
4: Define rollout mixture: πi = βi π

∗ + (1− βi) π̂i

5: while c > 0 do
6: Roll out T for one tick in E using πi

7: Get Di = {(x, π∗(x+))} of condition queries
8: visited by πi

9: Dsup ← Dsup∪Di; c← c−|Di|; b← b−|Di|
10: Update π̂i on Dsup with cross-entropy
11: i← i+ 1
12: π ← π̂i

13: return (Dsup, π)

computationally and memory efficient.

Effect of Expert Data Size. To evaluate the impact of ex-
pert dataset size, we train models using behavior cloning
with 0.5 × 10,000 and 0.2 × 10,000 expert labels on the
FrozenLake 8x8 and BabyAIText Pickup tasks, averaging re-
sults over four random seeds. As shown in Figure 3, reduc-
ing the amount of expert-labeled data leads to a clear decline
in both success rate and accuracy.

Experimental Details
Model Architectures. We implemented two variants of
the actor–critic network for condition-node policies: our



Figure 3: Effect of expert dataset size on FrozenLake 8x8 (left) and BabyAIText Pickup (right). While expert-regularized RL
improves performance even with limited expert labels, models trained with fewer labels (0.5× and 0.2× of the full dataset)
show progressively lower success rates and reduced agreement with expert decisions (accuracy), underscoring the need for
minimal expert supervision for overall performance. Results are averaged over four random seeds.

proposed factorized RL (RLf) and the baseline RL (RLb).
Both share the same image and text encoder architecture but
differ in how the critic’s state representation is defined. The
detailed architectures are provided in Table 3 and Table 4.

In the factorized formulation (RLf), the environment state
at step t is defined as st = imaget. Each condition-node
query (e.g., a sentence) is mapped to a token in the vocab-
ulary, with identical queries sharing the same token id and
embedding. The text encoder retrieves a single embedding
vector for the query token, which is combined with the im-
age feature by the actor to produce condition decisions. The
critic, however, depends only on the image feature and com-
putes V (st), reducing the critic’s input domain.

In the baseline setting (RLb), each condition decision
(t, i) is treated as a separate state st,i = (imaget, textt,i),
where textt,i is the query associated with condition node i.
Queries are again mapped to vocabulary tokens, with iden-
tical queries sharing the same token id and embedding. The
text encoder retrieves the query embedding, which the ac-
tor combines with the image feature to produce condition
decisions. Unlike RLf, the critic also takes the query into
account, computing V (st,i) from the joint image–text in-
put. This enlarges the critic’s input domain and complicates
credit assignment under sparse rewards.

Computing Environment. All experiments run on a Win-
dows 11 workstation with Intel 64-bit CPU @2.0GHz,
32GB RAM, and NVIDIA GeForce RTX 4090 GPU
24GB. Behavior Tree execution is implemented using the
py trees (Stonier et al. 2025) library.

Hyperparameters. The principal hyperparameters used
for training and evaluation are summarized in Table 5.
These include model parameters, optimization settings,
RL-specific coefficients, supervised learning configurations,

evaluation, and expert parameters.

Experimental Environments
GymCards. We evaluate our method on visual reasoning
and decision-making tasks from the GymCards suite (Zhai
et al. 2024): NumberLine, EZPoints, and BlackJack. In Num-
berLine, the agent operates in a deterministic environment
and must increment or decrement a visual counter to match
a target number, requiring basic numeric comparison. EZ-
Points is a visual arithmetic task in which the agent is shown
two playing cards, each displaying a number, and must use
arithmetic operators to build an expression that equals a
fixed target value (e.g., 12); each card is used once, demand-
ing both visual perception and symbolic reasoning. Black-
Jack is a stochastic version of the classic card game, where
the agent decides whether to “hit” or “stand” based on visu-
ally observed cards, with uncertainty introduced by hidden
cards and random draws. Figure 5 illustrates a step-by-step
progression in EZPoints.

FrozenLake. We assess our approach on two visual nav-
igation tasks based on the classic FrozenLake environment
in 4x4 and 8x8 random grid settings (Towers et al. 2024).
In each episode, the agent is presented with a top-down grid
map and must navigate from a start position to a designated
goal, avoiding “holes” that terminate the episode. The envi-
ronment is fully observable and deterministic, but the larger
8x8 grid increases task complexity by introducing a greater
number of possible paths and obstacles. Both variants re-
quire spatial reasoning and safe action selection, with the
8x8 setting posing a significantly greater challenge in terms
of path diversity and episode length, under the sparse-reward
settings described earlier.

3Unofficial estimate, e.g., https://amigochat.io/gpt-4-1-mini



Component Layer Output dim.

Image encoder
Conv2d(3, 64, 3×3, 3) + ReLU
Conv2d(64, 64, 3×3, 1) + ReLU dimg=64
Flatten + Linear(dflatten, 64)

Text encoder Embedding (|token|, demb = 32)→ Linear(32, 32) dtext=32

Actor Linear(dimg + dtext, 64) + ReLU→ Linear(64, 2) logits (Success/Failure)=2
Critic Linear(dimg, 64) + ReLU→ Linear(64, 1) V (st)=1

Initialization Orthogonal init (all linear + embeddings) –

Table 3: RLf (ours) network architecture.

Component Layer Output dim.

Image encoder
Conv2d(3, 64, 3×3, 3) + ReLU
Conv2d(64, 64, 3×3, 1) + ReLU dimg=64
Flatten + Linear(dflatten, 64)

Text encoder Embedding (|token|, demb=32)→ Linear(32, 32) dtext=32

Actor Linear(dimg + dtext, 64) + ReLU→ Linear(64, 2) logits (Success/Failure)=2
Critic Linear(dimg + dtext, 64) + ReLU→ Linear(64, 1) V (st,i)=1

Initialization Orthogonal init (all linear + embeddings) –

Table 4: RLb (baseline) network architecture.

BabyAIText. We evaluate our method on the BabyAIText
environment (Paglieri et al. 2025), a two-dimensional grid
world where an agent must follow natural language instruc-
tions to achieve specific goals. We focus on two task vari-
ants: Goto and Pickup. In the Goto task, the agent is in-
structed to navigate to a target object described in natural
language (e.g., “go to the blue ball”). In the Pickup task, the
agent must locate and pick up a specified object (e.g., “pick
up the grey key”). Both tasks require grounding language
in visual perception, spatial reasoning, and sequential plan-
ning. Each episode is generated with random object types
and colors to provide a diverse and challenging set of sce-
narios for both training and evaluation.

Prompts for Expert Data Acquisition

NumberLine

Prompt:
Game: NumberLine-v0 { Visual Number

Line Game (goal: reach the target
position).

↪→
↪→

Observation:
- The screen displays a horizontal

number line.↪→
- The 'target position' and the

'current position' are indicated
by labeled text rendered along
this line.

↪→
↪→
↪→

- There is no direct access to the
numeric positions|you must infer
the current and target locations
by reading the text in the image.

↪→
↪→
↪→

Condition Under Evaluation:
'<node.function>'↪→

Your task is to determine whether this
condition is TRUE or FALSE based
on the current visual observation.

↪→
↪→

Previous Reasoning:
<previous_thought>

Reasoning Guidelines:
1. Read and interpret the labeled

'Target' and 'Current' positions
shown on the number line.

↪→
↪→
2. Determine whether the current

position is to the left or right
of the target.

↪→
↪→
3. Use this understanding to evaluate

whether the condition logically
matches what is visible.

↪→
↪→
4. Only return 'True' if the image

clearly supports the condition
being evaluated.

↪→
↪→

Respond ONLY in the following JSON
format:↪→

{



Category Parameter Value

General

Image Size 128
Image Num. Channels 3
Image Feature Dim. 64
Text Feature Dim. 32
Actor/Critic Dim. 64
Frame Seq. Length 1
Frameskip 1

Training (RL)

Epochs 4
Batch Size 256

Iterations 200 (NL, BJ)
500 (Others)

Max Episode Steps 100

Rollout Steps T = 2000 (env steps; factorized RL)
K =

∑T
t=1 nt (b-RL, baseline)

Learning Rate (LR) 5× 10−5

LR Scheduler True

b-RL/RL Loss

Discount Factor γ 0.99
GAE λ 0.95
Value Loss Coef. 0.5
Entropy Coef. 0.05
Clip Epsilon 0.2
Cross-Entropy Coef. 0.1 or 1.0

Supervised

Sup. Batch Size 64
Sup. Epochs 100
Sup. Patience 30
Sup. Learning Rate 1× 10−4

DAgger
Iteration Budget Quota 100 (NL, FL4x4)

1,000 (Others)
Initial Beta 1.0
Decay α 0.95

Evaluation
Eval. Episodes 100
Eval. Interval 10
Eval. Greedy True

Expert Expert Budget (API Calls) 1,000 (NL, FL4x4)
10,000 (Others)

Table 5: Key hyperparameters used in all experiments.

"thought": "<Step-by-step
reasoning>",↪→

"action": "<True or False>"
}

Blackjack

Prompt:
Game: Blackjack-v0 { Visual Blackjack

Game (goal: get closer to 21 than
the dealer).

↪→
↪→

Observation:
- The top part of the image shows the

dealer’s visible card.↪→
- The bottom part shows the player’s

current hand.↪→

- There is no numerical input. You
must infer hand values from card
visuals.

↪→
↪→
- Face cards (J, Q, K) count as 10.

Ace can count as either 1 or 11.↪→

Condition Under Evaluation:
'<node.function>'↪→

Your task is to determine whether this
condition is TRUE or FALSE in the
current state.

↪→
↪→

Previous Reasoning:
<previous_thought>

Reasoning Guidelines:
1. Identify the dealer’s visible card

and assess its strength.↪→



Figure 4: Illustrations of the experimental environments. From left to right: (1) NumberLine, increment or decrement the
counter to match a target; (2) BlackJack, decide to “hit” or “stand” based on visible and hidden cards; (3) EZPoints, build
an arithmetic expression from shown cards to match a target value; (4) FrozenLake 4x4, navigate a small frozen grid to the
goal while avoiding holes; (5) FrozenLake 8x8, a larger and more challenging variant; (6) BabyAIText Goto/Pickup, perform
language-guided navigation and object manipulation in a grid world.

(a) Initial step: No tokens selected. (b) After selecting digit ‘2’. (c) After selecting ‘+’.

Figure 5: Example trajectory in EZPoints. The agent constructs an arithmetic formula step-by-step using visual input. It first
selects a digit (b), then an operator (c), and continues until the expression reaches the target value. The final step involves
selecting the equals token (=) to submit the completed formula.

2. Visually estimate the player’s hand
value using the visible cards.↪→

3. Evaluate whether the condition
description logically matches the
current visual state.

↪→
↪→
4. Only return 'True' if the visual

evidence clearly supports the
condition.

↪→
↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

reasoning>",↪→
"action": "<True or False>"

}

EZPoints

Prompt:
Game: EZPoints-v0 { Card-Based

Arithmetic Game (goal: evaluate to
exactly 12).

↪→
↪→

Objective:
- Construct a valid arithmetic

expression by selecting cards one
at a time.

↪→
↪→
- Expressions must use visible cards

(digits 1{10) and operators (+, *,
=).

↪→
↪→
- Use '=' only if the formula is

complete and expected to evaluate
to 12.

↪→
↪→
- A maximum of 5 tokens can be

selected (e.g., '4 + 8').↪→

Game Rules:
- Number cards must match one of the

visible cards and cannot repeat.↪→
- Operators can only appear between

valid numbers and must follow the
formula logic.

↪→
↪→
- '=' is only valid if the formula

includes at least two numbers and
one operator.

↪→
↪→
- Face cards (J, Q, K) count as 10.

Rewards:



- +10 if '=' is selected and formula
evaluates to exactly 12.↪→

- {1 for invalid actions (e.g.,
repeated card, premature '=')↪→

- 0 for valid intermediate steps.

Condition Under Evaluation:
'<node.function>'↪→

Your task is to determine whether this
condition is TRUE or FALSE in the
current state.

↪→
↪→

Previous Reasoning:
<previous_thought>

Reasoning Guidelines:
1. Assess if the condition logically

fits the current formula and
visible cards.

↪→
↪→
2. Only return 'True' if the condition

leads to a valid and useful next
step.

↪→
↪→
3. Use visual and textual cues from

the image (card layout, formula
progress).

↪→
↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

reasoning>",↪→
"action": "<True or False>"

}

FrozenLake 4x4

Prompt:
Game: FrozenLake-v1 on a 4x4 grid

(goal at (3,3)).↪→
Coordinate System: (0, 0) is top-left.

Format is (row, column).↪→
Row increases ↓, Column increases →.

Grid Information:
- S = Start (safe),
- F = Frozen tile (safe),
- H = Hole (dangerous),
- G = Goal (target destination).

- (0,0)=S, (0,1)=F, (0,2)=F, (0,3)=H
- (1,0)=F, (1,1)=F, (1,2)=F, (1,3)=H
- (2,0)=F, (2,1)=H, (2,2)=F, (2,3)=H
- (3,0)=H, (3,1)=F, (3,2)=F, (3,3)=G
- Agent is currently at (row <row>,

column <col>), standing on tile
'<tile>'.

↪→
↪→

Objective:
- Reach the goal tile (G) at (3,3)

safely and efficiently.↪→

Previous Actions:
- <previous 4 actions>

Reasoning Guidelines:
- Only RIGHT, DOWN, LEFT, or UP moves

are allowed at each step (diagonal
or jumping moves are not
permitted).

↪→
↪→
↪→
Question: Based on the above, is the

condition '<node.function>' true?↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

justification based on reasoning
guidelines>",

↪→
↪→
"action": "<True or False>"

}

FrozenLake 8x8

Prompt:
Game: FrozenLake-v1 on an 8×8 grid

(goal at (7,7)).↪→
Coordinate System: (0, 0) is top-left.

Format is (row, column).↪→
Row increases ↓, Column increases →.

Grid Information:
- S = Start (safe),
- F = Frozen tile (safe),
- H = Hole (dangerous),
- G = Goal (target destination).

- (0,0)=S, (0,1)=F, (0,2)=F, (0,3)=F,
(0,4)=F, (0,5)=F, (0,6)=F, (0,7)=H↪→

- (1,0)=F, (1,1)=F, (1,2)=H, (1,3)=F,
(1,4)=F, (1,5)=H, (1,6)=F, (1,7)=H↪→

- (2,0)=F, (2,1)=F, (2,2)=F, (2,3)=F,
(2,4)=H, (2,5)=F, (2,6)=F, (2,7)=F↪→

- (3,0)=H, (3,1)=H, (3,2)=F, (3,3)=H,
(3,4)=F, (3,5)=F, (3,6)=F, (3,7)=H↪→

- (4,0)=F, (4,1)=F, (4,2)=F, (4,3)=F,
(4,4)=F, (4,5)=H, (4,6)=F, (4,7)=F↪→

- (5,0)=F, (5,1)=H, (5,2)=F, (5,3)=F,
(5,4)=F, (5,5)=F, (5,6)=H, (5,7)=F↪→

- (6,0)=F, (6,1)=F, (6,2)=F, (6,3)=F,
(6,4)=H, (6,5)=F, (6,6)=F, (6,7)=H↪→

- (7,0)=F, (7,1)=H, (7,2)=F, (7,3)=H,
(7,4)=F, (7,5)=F, (7,6)=F, (7,7)=G↪→

- Agent is currently at (row <row>,
column <col>), standing on tile
'<tile>'.

↪→
↪→

Objective:
- Reach the goal tile (G) at (7,7)

safely and efficiently.↪→

Previous Actions:
- <previous 4 actions>



Reasoning Guidelines:
- Only RIGHT, DOWN, LEFT, or UP moves

are allowed at each step (diagonal
or jumping moves are not
permitted).

↪→
↪→
↪→
Question: Based on the above, is the

condition '<node.function>' true?↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

justification based on reasoning
guidelines>",

↪→
↪→
"action": "<True or False>"

}

BabyAIText Goto

Prompt:
Game: BabyAIText-v0 { Grid World with

Language Instructions.↪→

Mission: <mission text>
Coordinate System: (0, 0) is top-left.

Format is (row, column).↪→
Row increases ↓, Column increases →.
Agent Position: <row, col>, Facing:

<direction>↪→
Visible Objects:
- <object list, e.g., "green box at

(1,2)" ...>↪→

Scene Description: <long term context
from environment>↪→

Possible Actions: <action_1>,
<action_2>, ...↪→

Condition Under Evaluation:
'<node.function>'↪→

Your task is to determine whether this
condition is TRUE or FALSE in the
current state.

↪→
↪→

Reasoning Guidelines:
0. The agent is shaped like a

triangle. The pointed tip of the
triangle indicates the direction
it is facing (e.g., North, South,
East, West). 'Turn left' means
rotating the triangle (agent) 90
degrees counterclockwise, and
'Turn right' means rotating it 90
degrees clockwise, relative to the
direction the tip is pointing.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
1. Directional terms like 'Left' and

'Right' are defined strictly
relative to the agent's current
facing direction. This means:

↪→
↪→
↪→

- If facing North, 'left' is West
and 'right' is East.↪→

- If facing East, 'left' is North
and 'right' is South.↪→

- If facing South, 'left' is East
and 'right' is West.↪→

- If facing West, 'left' is South
and 'right' is North.↪→

* Do not confuse these with object
positions on the map or
coordinates like (x, y). Always
interpret directions from the
agent's perspective.

↪→
↪→
↪→
↪→
For example, if the agent is facing

South and an object is at (x+1,
y), that object is to the
agent’s left.

↪→
↪→
↪→

2. Explore the area if there are no
target objects mentioned in the
Scene Description.

↪→
↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

reasoning>",↪→
"action": "<True or False>"

}

BabyAIText Pickup

Prompt:
Game: BabyAIText-v0 { Grid World with

Language Instructions.↪→

Mission: <mission text>
Coordinate System: (0, 0) is top-left.

Format is (row, column).↪→
Row increases ↓, Column increases →.
Agent Position: <row, col>, Facing:

<direction>↪→
Visible Objects:
- <object list, e.g., "green box at

(1,2)" ...>↪→

Scene Description: <long term context
from environment>↪→

Possible Actions: <action_1>,
<action_2>, ...↪→

Condition Under Evaluation:
'<node.function>'↪→

Your task is to determine whether this
condition is TRUE or FALSE in the
current state.

↪→
↪→

Reasoning Guidelines:



0. The agent is shaped like a
triangle. The pointed tip of the
triangle indicates the direction
it is facing (e.g., North, South,
East, West). 'Turn left' means
rotating the triangle (agent) 90
degrees counterclockwise, and
'Turn right' means rotating it 90
degrees clockwise, relative to the
direction the tip is pointing.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
1. An object can only be picked up if

it is in the cell directly in
front of the agent.

↪→
↪→
2. Some objects, such as doors, cannot

be picked up. Only items like
keys, boxes, or balls are
pickable.

↪→
↪→
↪→
3. Directional terms like 'Left' and

'Right' are defined strictly
relative to the agent's current
facing direction. This means:

↪→
↪→
↪→

- If facing North, 'left' is West
and 'right' is East.↪→

- If facing East, 'left' is North
and 'right' is South.↪→

- If facing South, 'left' is East
and 'right' is West.↪→

- If facing West, 'left' is South
and 'right' is North.↪→

* Do not confuse these with object
positions on the map or
coordinates like (x, y). Always
interpret directions from the
agent's perspective.

↪→
↪→
↪→
↪→

4. Explore the area if there are no
target objects mentioned in the
Scene Description.

↪→
↪→

Respond ONLY in the following JSON
format:↪→

{
"thought": "<Step-by-step

reasoning>",↪→
"action": "<True or False>"

}

Bahavior Trees for Each Task

NumberLine

Behavior Tree:
{

"type": "selector",
"name": "Root",
"children": [

{
"type": "sequence",
"name": "Move Right

Sequence",↪→
"children": [

{

"type":
"condition",↪→

"name": "Check
Current Less
Than Target",

↪→
↪→
"function": "Is

current
position less
than target?"

↪→
↪→
↪→

},
{

"type": "action",
"name": "Execute

Move Right",↪→
"function":

"MOVE_RIGHT"↪→
}

]
},
{

"type": "sequence",
"name": "Move Left

Sequence",↪→
"children": [

{
"type":

"condition",↪→
"name": "Check

Current
Greater Than
Target",

↪→
↪→
↪→
"function": "Is

current
position
greater than
target?"

↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Execute

Move Left",↪→
"function":

"MOVE_LEFT"↪→
}

]
},
{

"type": "action",
"name": "Default Move

Right",↪→
"function": "MOVE_RIGHT"

}
]

}

Blackjack

Behavior Tree:
{
"type": "selector",
"name": "Root",



"children": [
{
"type": "sequence",
"name": "Stick If Hand Is

Exactly 21",↪→
"children": [

{
"type": "condition",
"name": "Hand Equals 21",
"function": "Is the player's

hand exactly 21?"↪→
},
{

"type": "action",
"name": "Select Stick",
"function": "STICK"

}
]

},
{
"type": "sequence",
"name": "Stick If Hand Is Very

High",↪→
"children": [

{
"type": "condition",
"name": "Hand Is 19 or 20",
"function": "Is the player's

hand value very high (19
or 20)?"

↪→
↪→

},
{

"type": "action",
"name": "Select Stick",
"function": "STICK"

}
]

},
{
"type": "sequence",
"name": "Hit If Dealer Strong

And Hand Moderate",↪→
"children": [

{
"type": "condition",
"name": "Dealer Has Strong

Card",↪→
"function": "Is the dealer's

visible card strong (7
to Ace)?"

↪→
↪→

},
{

"type": "condition",
"name": "Hand Is 17 or 18",
"function": "Is the player's

hand in moderate range
(17 or 18)?"

↪→
↪→

},
{

"type": "action",
"name": "Select Hit",
"function": "HIT"

}

]
},
{
"type": "sequence",
"name": "Hit If Hand Low",
"children": [

{
"type": "condition",
"name": "Hand Below 17",
"function": "Is the player's

hand below 17?"↪→
},
{

"type": "action",
"name": "Select Hit",
"function": "HIT"

}
]

},
{
"type": "action",
"name": "Fallback Stick",
"function": "STICK"

}
]

}

EZPoints

Behavior Tree:
{
"type": "selector",
"name": "Root",
"children": [

{
"type": "sequence",
"name": "Try Finish Formula

Correctly",↪→
"children": [

{
"type": "condition",
"name": "Formula Ready Equals

12",↪→
"function": "Is the formula

complete and does it
evaluate to 12?"

↪→
↪→
},
{
"type": "action",
"name": "Select Equals",
"function": "="
}

]
},
{
"type": "sequence",
"name": "Add Operator If Needed",
"children": [

{
"type": "condition",
"name": "Needs Operator",



"function": "Does the formula
end with a number and not
yet have an operator?"

↪→
↪→
},
{
"type": "selector",
"name": "Choose Operator",
"children": [

{
"type": "sequence",
"name": "Try Plus",
"children": [

{
"type": "condition",
"name": "Should Use

Plus",↪→
"function": "Is '+' a

better choice
based on remaining
values?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select Plus",
"function": "+"
}

]
},
{
"type": "action",
"name": "Select Multiply",
"function": "*"
}

]
}

]
},
{
"type": "sequence",
"name": "Add Number If Needed",
"children": [

{
"type": "condition",
"name": "Needs Number",
"function": "Is the formula

empty or ends with an
operator?"

↪→
↪→
},
{
"type": "selector",
"name": "Choose Number From

Visible Cards",↪→
"children": [

{
"type": "sequence",
"name": "Use 1",
"children": [

{
"type": "condition",
"name": "Can Use 1",

"function": "Is '1'
visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 1",
"function": "1"
}

]
},
{
"type": "sequence",
"name": "Use 2",
"children": [

{
"type": "condition",
"name": "Can Use 2",
"function": "Is '2'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 2",
"function": "2"
}

]
},
{
"type": "sequence",
"name": "Use 3",
"children": [

{
"type": "condition",
"name": "Can Use 3",
"function": "Is '3'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 3",
"function": "3"
}

]
},
{
"type": "sequence",
"name": "Use 4",
"children": [

{
"type": "condition",
"name": "Can Use 4",
"function": "Is '4'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{



"type": "action",
"name": "Select 4",
"function": "4"
}

]
},
{
"type": "sequence",
"name": "Use 5",
"children": [

{
"type": "condition",
"name": "Can Use 5",
"function": "Is '5'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 5",
"function": "5"
}

]
},
{
"type": "sequence",
"name": "Use 6",
"children": [

{
"type": "condition",
"name": "Can Use 6",
"function": "Is '6'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 6",
"function": "6"
}

]
},
{
"type": "sequence",
"name": "Use 7",
"children": [

{
"type": "condition",
"name": "Can Use 7",
"function": "Is '7'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 7",
"function": "7"
}

]
},

{
"type": "sequence",
"name": "Use 8",
"children": [

{
"type": "condition",
"name": "Can Use 8",
"function": "Is '8'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 8",
"function": "8"
}

]
},
{
"type": "sequence",
"name": "Use 9",
"children": [

{
"type": "condition",
"name": "Can Use 9",
"function": "Is '9'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 9",
"function": "9"
}

]
},
{
"type": "sequence",
"name": "Use 10",
"children": [

{
"type": "condition",
"name": "Can Use 10",
"function": "Is '10'

visible in cards
and not in the
formula?"

↪→
↪→
↪→
},
{
"type": "action",
"name": "Select 10",
"function": "10"
}

]
}

]
}

]
},
{
"type": "sequence",



"name": "Force Finish If Out Of
Tokens",↪→

"children": [
{
"type": "condition",
"name": "Formula At Max

Tokens",↪→
"function": "Is the formula at

5 tokens and not yet
evaluated?"

↪→
↪→
},
{
"type": "action",
"name": "Force Equals",
"function": "="
}

]
},
{
"type": "action",
"name": "Default Select Equals",
"function": "="
}

]
}

FrozenLake 4x4 / 8x8

Behavior Tree:
{
"type": "selector",
"name": "Root",
"children": [

{
"type": "sequence",
"name": "Move RIGHT if Safe and

Valid Path",↪→
"children": [

{
"type": "condition",
"name": "RIGHT is non-hole",
"function": "Does moving

RIGHT lead to a non-hole
tile?"

↪→
↪→

},
{

"type": "condition",
"name": "RIGHT is on valid

path",↪→

"function": "Is the next
tile after moving RIGHT
not surrounded on three
sides by holes or by
holes and walls, can you
immediately continue
moving down or right
from there to reach the
goal, and does this move
avoid repeatedly
alternating between two
actions (such as [RIGHT,
LEFT] followed by
another RIGHT)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move RIGHT",
"function": "RIGHT"

}
]

},
{
"type": "sequence",
"name": "Move DOWN if Safe and

Valid Path",↪→
"children": [

{
"type": "condition",
"name": "DOWN is non-hole",
"function": "Does moving

DOWN lead to a non-hole
tile?"

↪→
↪→

},
{

"type": "condition",
"name": "DOWN is on valid

path",↪→
"function": "Is the next

tile after moving DOWN
not surrounded on three
sides by holes or by
holes and walls, can you
immediately continue
moving down or right
from there to reach the
goal, and does this move
avoid repeatedly
alternating between two
actions (such as [DOWN,
UP] followed by another
DOWN)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move DOWN",
"function": "DOWN"

}
]

},
{
"type": "sequence",



"name": "Move LEFT if Safe and
Valid Path",↪→

"children": [
{

"type": "condition",
"name": "LEFT is non-hole",
"function": "Does moving

LEFT lead to a non-hole
tile?"

↪→
↪→

},
{

"type": "condition",
"name": "LEFT is on valid

path",↪→
"function": "Is the next

tile after moving LEFT
not surrounded on three
sides by holes or by
holes and walls, can you
immediately continue
moving down or right
from there to reach the
goal, and does this move
avoid repeatedly
alternating between two
actions (such as [LEFT,
RIGHT] followed by
another LEFT)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move LEFT",
"function": "LEFT"

}
]

},
{
"type": "sequence",
"name": "Move UP if Safe and

Valid Path",↪→
"children": [

{
"type": "condition",
"name": "UP is non-hole",
"function": "Does moving UP

lead to a non-hole
tile?"

↪→
↪→

},
{

"type": "condition",
"name": "UP is on valid

path",↪→

"function": "Is the next
tile after moving UP not
surrounded on three
sides by holes or by
holes and walls, can you
immediately continue
moving down or right
from there to reach the
goal, and does this move
avoid repeatedly
alternating between two
actions (such as [UP,
DOWN] followed by
another UP)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move UP",
"function": "UP"

}
]

},
{
"type": "action",
"name": "Default Action (LEFT)",
"function": "LEFT"

}
]

}

BabyAIText Goto

Behavior Tree:
{
"type": "selector",
"name": "Root",
"children": [

{
"type": "sequence",
"name": "Move Forward Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Target Ahead",
"function": "Is the target

object located somewhere
in front of the agent
(not 0 steps forward),
possibly with a few
steps left or right
relative to its facing
direction? (e.g., x
steps left/right and y
steps forward)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "condition",
"name": "Immediate Step

Clear",↪→



"function": "Is the cell one
step ahead of the agent
clear (i.e., no object
listed at that position
in 'Visible Objects')?"

↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move Forward",
"function": "go forward"

}
]

},

{
"type": "sequence",
"name": "Rotate Left Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Need To Turn Left",
"function": "Is the target

object located to the
agent's left side (0˜90
degrees
counterclockwise) from
its current facing
direction?"

↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Left",
"function": "turn left"

}
]

},

{
"type": "sequence",
"name": "Rotate Right Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Need To Turn

Right",↪→
"function": "Is the target

object located to the
agent's right side (0˜90
degrees clockwise) from
its current facing
direction?"

↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Right",
"function": "turn right"

}
]

},

{

"type": "selector",
"name": "Exploration (Optimal

Default Action)",↪→
"children": [

{
"type": "sequence",
"name": "Explore Left

Required",↪→
"children": [
{

"type": "condition",
"name": "Turn Left

Toward Target?",↪→
"function": "Is turning

left (90 degrees
counterclockwise,
possibly multiple
times) required
among the possible
actions to reach the
target object?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Left",
"function": "turn left"

}
]

},
{

"type": "sequence",
"name": "Explore Right

Required",↪→
"children": [
{

"type": "condition",
"name": "Turn Right

Toward Target?",↪→
"function": "Is turning

right (90 degrees
clockwise, possibly
multiple times)
required among the
possible actions to
reach the target
object?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Right",
"function": "turn right"

}
]

},
{

"type": "sequence",
"name": "Explore Forward

Required",↪→
"children": [
{

"type": "condition",
"name": "Go Forward

Toward Target?",↪→



"function": "Is going
forward required
among the possible
actions to reach the
target object?"

↪→
↪→
↪→
↪→

},
{
"type": "action",
"name": "Go Forward",
"function": "go forward"

}
]

}
]

},
{
"type": "action",
"name": "Default Action (Turn

Left)",↪→
"function": "turn left"

}
]

}

BabyAIText Pickup

Behavior Tree:
{
"type": "selector",
"name": "Root",
"children": [

{
"type": "sequence",
"name": "Pick Up Target If In

Front",↪→
"children": [

{
"type": "condition",
"name": "Target Directly

Ahead",↪→
"function": "Is the target

object located in the
cell directly in front
of the agent?"

↪→
↪→
↪→

},
{

"type": "action",
"name": "Pick Up",
"function": "pick up"

}
]

},

{
"type": "sequence",
"name": "Move Forward Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Target Ahead",

"function": "Is the target
object located somewhere
in front of the agent
(not 0 steps forward),
possibly with a few
steps left or right
relative to its facing
direction? (e.g., x
steps left/right and y
steps forward)?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "condition",
"name": "Immediate Step

Clear",↪→
"function": "Is the cell one

step ahead of the agent
clear (i.e., no object
listed at that position
in 'Visible Objects')?"

↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Move Forward",
"function": "go forward"

}
]

},

{
"type": "sequence",
"name": "Rotate Left Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Need To Turn Left",
"function": "Is the target

object located to the
agent's left side (0˜90
degrees
counterclockwise) from
its current facing
direction?"

↪→
↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Left",
"function": "turn left"

}
]

},

{
"type": "sequence",
"name": "Rotate Right Toward

Target",↪→
"children": [

{
"type": "condition",
"name": "Need To Turn

Right",↪→



"function": "Is the target
object located to the
agent's right side (0˜90
degrees clockwise) from
its current facing
direction?"

↪→
↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Turn Right",
"function": "turn right"

}
]

},

{
"type": "selector",
"name": "Exploration (Optimal

Default Action)",↪→
"children": [

{
"type": "sequence",
"name": "Explore Left

Required",↪→
"children": [
{
"type": "condition",
"name": "Turn Left

Toward Target?",↪→
"function": "Is turning

left (90 degrees
counterclockwise,
possibly multiple
times) required
among the possible
actions to reach the
target object?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{
"type": "action",
"name": "Turn Left",
"function": "turn left"

}
]

},
{

"type": "sequence",
"name": "Explore Right

Required",↪→
"children": [
{
"type": "condition",
"name": "Turn Right

Toward Target?",↪→
"function": "Is turning

right (90 degrees
clockwise, possibly
multiple times)
required among the
possible actions to
reach the target
object?"

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},

{
"type": "action",
"name": "Turn Right",
"function": "turn right"

}
]

},
{

"type": "sequence",
"name": "Explore Forward

Required",↪→
"children": [
{

"type": "condition",
"name": "Go Forward

Toward Target?",↪→
"function": "Is going

forward required
among the possible
actions to reach the
target object?"

↪→
↪→
↪→
↪→

},
{

"type": "action",
"name": "Go Forward",
"function": "go forward"

}
]

}
]

},
{
"type": "action",
"name": "Default Action (Turn

Left)",↪→
"function": "turn left"

}
]

}

Visualization of Behavior Trees for each task
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